Skip to main content
Top
Published in: Virology Journal 1/2013

Open Access 01-12-2013 | Research

The tree shrew provides a useful alternative model for the study of influenza H1N1 virus

Authors: Zi-feng Yang, Jin Zhao, Yu-tong Zhu, Yu-tao Wang, Rong Liu, Sui-shan Zhao, Run-feng Li, Chun-guang Yang, Ji-qiang Li, Nan-shan Zhong

Published in: Virology Journal | Issue 1/2013

Login to get access

Abstract

Background

The influenza pandemics have resulted in significant morbidity and mortality worldwide. Animal models are useful in the study of influenza virus pathogenesis. Because of various limitations in current laboratory animal models, it is essential to develop new alternative animal models for influenza virus research aimed at understanding the viral and host factors that contribute to virus infection in human.

Method

We investigated the replicative efficiency of influenza H1N1 virus (classic strain (Influenza A/PR/8/34), seasonal influenza isolate (A/Guangzhou/GIRD/02/09) and swine-origin human influenza virus (A/Guangzhou/GIRD/07/09)) at Day1,2,4,6 and 9 p.i. using TCID50 and qPCR assay in tree shrew model. Body temperature was monitored in the morning and evening for 3 days before infection and for 14 days. Seroconversion was detected by determining the neutralizing antibody titers against the challenge viruses in the pre- and exposure serum samples collected before infection and at 14 days p.i., respectively. Lungs and tracheas of tree shews were collected at day 14 post p.i. for histopathological analysis. Lectinhistochemistry analysis was conducted to identify the distribution of SAα2,3 Gal and SAα2,6 Gal receptors in the lung and trachea.

Results

The infected tree shrew displayed mild or moderate systemic and respiratory symptoms and pathological changes in respiratory tracts. The human H1N1 influenza virus may replicate in the upper respiratory tract of tree shrews. Analysis of the receptors distribution in the respiratory tract of tree shrews by lectinhistochemistry showed that sialic acid (SA)α2,6-Gal receptors were widely distributed in the trachea and nasal mucosa, whereas (SA)α2,3-Gal receptor was the main receptor in the lung tissue.

Conclusions

Based on these findings, tree shrew seemed to mimic well influenza virus infection in humans. We propose that tree shrews could be a useful alternative mammalian model to study pathogenesis of influenza H1N1 virus.
Appendix
Available only for authorised users
Literature
1.
go back to reference Douglas D, RichmanJ R, Whitley GF: Clinical virology. Washington: ASM Press; 2009:943-975. Douglas D, RichmanJ R, Whitley GF: Clinical virology. Washington: ASM Press; 2009:943-975.
2.
go back to reference Beigel J, Bray M: Current and future antiviral therapy of severe seasonal and avian influenza. Antiviral Res 2008,78(1):91-102. 10.1016/j.antiviral.2008.01.003PubMedPubMedCentralCrossRef Beigel J, Bray M: Current and future antiviral therapy of severe seasonal and avian influenza. Antiviral Res 2008,78(1):91-102. 10.1016/j.antiviral.2008.01.003PubMedPubMedCentralCrossRef
3.
go back to reference Sidwell RW, Smee DF: Experimental disease models of influenza virus infections:recentdevelopments. DrugDiscov Today 2004,1(1):57-63. Sidwell RW, Smee DF: Experimental disease models of influenza virus infections:recentdevelopments. DrugDiscov Today 2004,1(1):57-63.
4.
go back to reference Ottolini MG, Blanco JC, Eichelberger MC, Porter DD, Pletneva L, Richardson JY, Prince GA: The cotton rat provides a useful small-animal model for the study of influenza virus pathogenesis. J Gen Virol 2005,86(Pt 10):2823-2830.PubMedCrossRef Ottolini MG, Blanco JC, Eichelberger MC, Porter DD, Pletneva L, Richardson JY, Prince GA: The cotton rat provides a useful small-animal model for the study of influenza virus pathogenesis. J Gen Virol 2005,86(Pt 10):2823-2830.PubMedCrossRef
5.
go back to reference Van Hoeven N, Belser JA, Szretter KJ, Zeng H, Staeheli P, Swayne DE, Katz JM, Tumpey TM: Pathogenesis of the 1918 pandemic and H5N1 influenza virus infection in a guinea pig model: the antiviral potential of exogenous alpha-interferon to reduce virus shedding. J Virol 2009,83(7):2851-2861. 10.1128/JVI.02174-08PubMedPubMedCentralCrossRef Van Hoeven N, Belser JA, Szretter KJ, Zeng H, Staeheli P, Swayne DE, Katz JM, Tumpey TM: Pathogenesis of the 1918 pandemic and H5N1 influenza virus infection in a guinea pig model: the antiviral potential of exogenous alpha-interferon to reduce virus shedding. J Virol 2009,83(7):2851-2861. 10.1128/JVI.02174-08PubMedPubMedCentralCrossRef
6.
go back to reference Taylor RM, Parodi AS: Use of hamster (cricetusauratus) for the detection of influenza virus in throat washings. ProcSocExpBiol Med 1942,49(1):105-108. Taylor RM, Parodi AS: Use of hamster (cricetusauratus) for the detection of influenza virus in throat washings. ProcSocExpBiol Med 1942,49(1):105-108.
7.
go back to reference Munster VJ, de Wit E, van den Brand JM, Herfst S, Schrauwen EJ, Bestebroer TM, van de Vijver D, Boucher CA, Koopmans M, Rimmelzwaan GF, Kuiken T, Osterhaus AD, Fouchier RA: Pathogenesis and transmission of swine-origin 2009 a(H1N1) influenza virus in ferrets. Science 2009,325(5939):481-483.PubMed Munster VJ, de Wit E, van den Brand JM, Herfst S, Schrauwen EJ, Bestebroer TM, van de Vijver D, Boucher CA, Koopmans M, Rimmelzwaan GF, Kuiken T, Osterhaus AD, Fouchier RA: Pathogenesis and transmission of swine-origin 2009 a(H1N1) influenza virus in ferrets. Science 2009,325(5939):481-483.PubMed
8.
go back to reference Itoh Y, Shinya K, Kiso M, Watanabe T, Sakoda Y, Hatta M, Muramoto Y, Tamura D, Sakai-Tagawa Y, Noda T, Sakabe S, Imai M, Hatta Y, Watanabe S, Li C, Yamada S, Fujii K, Murakami S, Imai H, Kakugawa S, Ito M, Takano R, Iwatsuki-Horimoto K, Shimojima M, Horimoto T, Goto H, Takahashi K, Makino A, Ishigaki H, Nakayama M, et al.: In vitro and in vivo characterization of new swine-origin H1N1 influenza viruses. Nature 2009,460(7258):1021-1025.PubMedPubMedCentral Itoh Y, Shinya K, Kiso M, Watanabe T, Sakoda Y, Hatta M, Muramoto Y, Tamura D, Sakai-Tagawa Y, Noda T, Sakabe S, Imai M, Hatta Y, Watanabe S, Li C, Yamada S, Fujii K, Murakami S, Imai H, Kakugawa S, Ito M, Takano R, Iwatsuki-Horimoto K, Shimojima M, Horimoto T, Goto H, Takahashi K, Makino A, Ishigaki H, Nakayama M, et al.: In vitro and in vivo characterization of new swine-origin H1N1 influenza viruses. Nature 2009,460(7258):1021-1025.PubMedPubMedCentral
10.
go back to reference Smith W, Andrewes CH, Laidlaw PP: A virus obtained from influenza patients. Rev Med Virol 1995,5(4):187-191. 10.1002/rmv.1980050402CrossRef Smith W, Andrewes CH, Laidlaw PP: A virus obtained from influenza patients. Rev Med Virol 1995,5(4):187-191. 10.1002/rmv.1980050402CrossRef
11.
12.
go back to reference Maher JA, DeStefano J: The ferret: an animal model to study influenza virus. LabAnim (NY) 2004,33(9):50-53.CrossRef Maher JA, DeStefano J: The ferret: an animal model to study influenza virus. LabAnim (NY) 2004,33(9):50-53.CrossRef
13.
go back to reference Kumar S, Hedges SB: A molecular timescale for vertebrate evolution. Nature 1998,392(6679):917-920. 10.1038/31927PubMedCrossRef Kumar S, Hedges SB: A molecular timescale for vertebrate evolution. Nature 1998,392(6679):917-920. 10.1038/31927PubMedCrossRef
14.
15.
go back to reference Cao J, Yang EB, Su JJ, Li Y, Chow P: The tree shrews: adjuncts and alternatives to primates as models for biomedical research. J Med Primatol 2003,32(3):123-130. 10.1034/j.1600-0684.2003.00022.xPubMedCrossRef Cao J, Yang EB, Su JJ, Li Y, Chow P: The tree shrews: adjuncts and alternatives to primates as models for biomedical research. J Med Primatol 2003,32(3):123-130. 10.1034/j.1600-0684.2003.00022.xPubMedCrossRef
16.
go back to reference Xu XP, Chen HB, Ben KL: Application of tree shrew as an animal model in biomedical research. Acta Lab AnimSci Sin 2005,13(3):49-52. Xu XP, Chen HB, Ben KL: Application of tree shrew as an animal model in biomedical research. Acta Lab AnimSci Sin 2005,13(3):49-52.
17.
go back to reference Wu XX, Tang EH, Xie GZ, Wen YL, Liu MY, Zhu BY, Liang WS, Dai CB, Xiao HF, Dai ZX: Studies on serum complement fixation antibodies to Epstein-Barr virus in tupaias. ZhongguoYiXueKeXue Yuan XueBao 1982,4(5):313-315. Wu XX, Tang EH, Xie GZ, Wen YL, Liu MY, Zhu BY, Liang WS, Dai CB, Xiao HF, Dai ZX: Studies on serum complement fixation antibodies to Epstein-Barr virus in tupaias. ZhongguoYiXueKeXue Yuan XueBao 1982,4(5):313-315.
18.
go back to reference Pang QF, Wan XB, Chen SD, Xie XL: Treatment of rotavirus infection in tree shrews (tupaiabelangeriyunalis) with herbal valerianajatamansi (VJ). J Tradit Chin Med 1984,4(4):301-306.PubMed Pang QF, Wan XB, Chen SD, Xie XL: Treatment of rotavirus infection in tree shrews (tupaiabelangeriyunalis) with herbal valerianajatamansi (VJ). J Tradit Chin Med 1984,4(4):301-306.PubMed
19.
go back to reference Zhan MY, Liu CB, Li CM, Zhang WY, Zhu C, Pang QF, Zhao TX, Wang CA, Wang JL, Yu CY, Li SF, Tong ZG, Lin ZH, Niu JQ: A preliminary study of hepatitis a virus in Chinese Tupaia (author's transl). Zhongguo Yi XueKeXue Yuan XueBao 1981,3(3):148-152. Zhan MY, Liu CB, Li CM, Zhang WY, Zhu C, Pang QF, Zhao TX, Wang CA, Wang JL, Yu CY, Li SF, Tong ZG, Lin ZH, Niu JQ: A preliminary study of hepatitis a virus in Chinese Tupaia (author's transl). Zhongguo Yi XueKeXue Yuan XueBao 1981,3(3):148-152.
20.
go back to reference Yang EB, Cao J, Su JJ, Chow P: The tree shrews:useful animal models for the viral hepatitis and hepatocellular carcinoma. Hepatogastroenterology 2005,52(62):613-616.PubMed Yang EB, Cao J, Su JJ, Chow P: The tree shrews:useful animal models for the viral hepatitis and hepatocellular carcinoma. Hepatogastroenterology 2005,52(62):613-616.PubMed
21.
go back to reference Köck J, Nassal M, MacNelly S, Baumert TF, Blum HE, von Weizsäcker F: Efficient infection of primary Tupaia hepatocytes with purified human and woolly monkey hepatitis B virus. J Virol 2001,75(11):5084-5089. 10.1128/JVI.75.11.5084-5089.2001PubMedPubMedCentralCrossRef Köck J, Nassal M, MacNelly S, Baumert TF, Blum HE, von Weizsäcker F: Efficient infection of primary Tupaia hepatocytes with purified human and woolly monkey hepatitis B virus. J Virol 2001,75(11):5084-5089. 10.1128/JVI.75.11.5084-5089.2001PubMedPubMedCentralCrossRef
22.
go back to reference Zhao X, Tang ZY, Klumpp B, Wolff-Vorbeck G, Barth H, Levy S, von Weizsäcker F, Blum HE, Baumert TF: Primary hepatocytes of tupaiabelangeri as a potential model for hepatitis C virus infection. JClin Invest 2002,109(2):221-232.CrossRef Zhao X, Tang ZY, Klumpp B, Wolff-Vorbeck G, Barth H, Levy S, von Weizsäcker F, Blum HE, Baumert TF: Primary hepatocytes of tupaiabelangeri as a potential model for hepatitis C virus infection. JClin Invest 2002,109(2):221-232.CrossRef
23.
go back to reference Wang XX, Li JX, Wang WG, Sun XM, He CY, Dai JJ: Preliminary investigation of viruses to the wild tree shrews (tupaiabelangeri Chinese). Dong wuxueYanjiu 2011,32(1):66-69. Wang XX, Li JX, Wang WG, Sun XM, He CY, Dai JJ: Preliminary investigation of viruses to the wild tree shrews (tupaiabelangeri Chinese). Dong wuxueYanjiu 2011,32(1):66-69.
24.
go back to reference Bahr U, Schöndorf E, Handermann M, Darai G: Molecular anatomy of Tupaia (tree shrew) adenovirus genome; evolution of viral genes and viral phylogeny. Virus Genes 2002,27(1):29-48.CrossRef Bahr U, Schöndorf E, Handermann M, Darai G: Molecular anatomy of Tupaia (tree shrew) adenovirus genome; evolution of viral genes and viral phylogeny. Virus Genes 2002,27(1):29-48.CrossRef
25.
go back to reference Darai G, Matz B, Flügel RM, Grafe A, Gelderblom H, Delius H: An adenovirus from Tupaia(tree shrew): growth of the virus, characterization of viral DNA, and transforming ability. Virology 1980,104(1):122-138. 10.1016/0042-6822(80)90371-2PubMedCrossRef Darai G, Matz B, Flügel RM, Grafe A, Gelderblom H, Delius H: An adenovirus from Tupaia(tree shrew): growth of the virus, characterization of viral DNA, and transforming ability. Virology 1980,104(1):122-138. 10.1016/0042-6822(80)90371-2PubMedCrossRef
26.
go back to reference Darai G, Schwaier A, Komitowski D, Munk K: Experimental infection of Tupaia belangeri (tree shrews) with herpes simplex virus types 1 and 2. J Infect Dis 1978,137(3):221-226. 10.1093/infdis/137.3.221PubMedCrossRef Darai G, Schwaier A, Komitowski D, Munk K: Experimental infection of Tupaia belangeri (tree shrews) with herpes simplex virus types 1 and 2. J Infect Dis 1978,137(3):221-226. 10.1093/infdis/137.3.221PubMedCrossRef
27.
go back to reference Collins PL, Wertz GW: The 1A protein gene of human respiratory syncytial virus: nucleotide sequence of the mRNA and a related polycistronic transcript. Virology 1985,141(2):283-291. 10.1016/0042-6822(85)90259-4PubMedCrossRef Collins PL, Wertz GW: The 1A protein gene of human respiratory syncytial virus: nucleotide sequence of the mRNA and a related polycistronic transcript. Virology 1985,141(2):283-291. 10.1016/0042-6822(85)90259-4PubMedCrossRef
28.
go back to reference Hofmann W, Schubert D, LaBonte J, Munson L, Gibson S, Scammell J, Ferrigno P, Sodroski J: Species-specific, postentry barriers to primate immunodeficiency virus infection. J Virol 1999,73(12):10020-10028.PubMedPubMedCentral Hofmann W, Schubert D, LaBonte J, Munson L, Gibson S, Scammell J, Ferrigno P, Sodroski J: Species-specific, postentry barriers to primate immunodeficiency virus infection. J Virol 1999,73(12):10020-10028.PubMedPubMedCentral
29.
go back to reference Yao L, Korteweg C, Hsueh W, Gu J: Avian influenza receptor expression in H5N1-infected and noninfected human tissues. FASEB J 2008,22(3):733-740.PubMedCrossRef Yao L, Korteweg C, Hsueh W, Gu J: Avian influenza receptor expression in H5N1-infected and noninfected human tissues. FASEB J 2008,22(3):733-740.PubMedCrossRef
30.
go back to reference van Riel D, Munster VJ, de Wit E, Rimmelzwaan GF, Fouchier RA, Osterhaus AD, Kuiken T: H5N1 Virus attachment to lower respiratory tract. Science 2006,312(5772):399. 10.1126/science.1125548PubMedCrossRef van Riel D, Munster VJ, de Wit E, Rimmelzwaan GF, Fouchier RA, Osterhaus AD, Kuiken T: H5N1 Virus attachment to lower respiratory tract. Science 2006,312(5772):399. 10.1126/science.1125548PubMedCrossRef
31.
go back to reference van Riel D, Munster VJ, de Wit E, Rimmelzwaan GF, Fouchier RA, Osterhaus AD, Kuiken T: Human and avian influenza viruses target different cells in the lower respiratory tract of humans and other mammals. Am J Pathol 2007,171(4):1215-1223. 10.2353/ajpath.2007.070248PubMedPubMedCentralCrossRef van Riel D, Munster VJ, de Wit E, Rimmelzwaan GF, Fouchier RA, Osterhaus AD, Kuiken T: Human and avian influenza viruses target different cells in the lower respiratory tract of humans and other mammals. Am J Pathol 2007,171(4):1215-1223. 10.2353/ajpath.2007.070248PubMedPubMedCentralCrossRef
32.
go back to reference Shinya K, Ebina M, Yamada S, Ono M, Kasai N, Kawaoka Y: Avian flu: influenza virus receptors in the human airway. Nature 2006,440(7083):435-436. 10.1038/440435aPubMedCrossRef Shinya K, Ebina M, Yamada S, Ono M, Kasai N, Kawaoka Y: Avian flu: influenza virus receptors in the human airway. Nature 2006,440(7083):435-436. 10.1038/440435aPubMedCrossRef
33.
go back to reference Potter CW, Phair JP, Vodinelich L, Fenton R, Jennings R: Antiviral, immunosuppressive and antitumour effects of ribavirin. Nature 1976,259(5543):496-497. 10.1038/259496a0PubMedCrossRef Potter CW, Phair JP, Vodinelich L, Fenton R, Jennings R: Antiviral, immunosuppressive and antitumour effects of ribavirin. Nature 1976,259(5543):496-497. 10.1038/259496a0PubMedCrossRef
34.
go back to reference Smith H, Sweet C: Lesson for human influenza from pathogenicity studies with ferrets. Rev Infect Dis 1988,10(1):56-65. 10.1093/clinids/10.1.56PubMedCrossRef Smith H, Sweet C: Lesson for human influenza from pathogenicity studies with ferrets. Rev Infect Dis 1988,10(1):56-65. 10.1093/clinids/10.1.56PubMedCrossRef
35.
36.
go back to reference Nicholls JM, Chan MC, Chan WY, Wong HK, Cheung CY, Kwong DL, Wong MP, Chui WH, Poon LL, Tsao SW, Guan Y, Peiris JS: Tropism of avian influenza a (H5N1) in the upper and lower respiratory tract. Nat Med 2007,13(2):147-149. 10.1038/nm1529PubMedCrossRef Nicholls JM, Chan MC, Chan WY, Wong HK, Cheung CY, Kwong DL, Wong MP, Chui WH, Poon LL, Tsao SW, Guan Y, Peiris JS: Tropism of avian influenza a (H5N1) in the upper and lower respiratory tract. Nat Med 2007,13(2):147-149. 10.1038/nm1529PubMedCrossRef
37.
go back to reference Stevens J, Blixt O, Tumpey TM, Taubenberger JK, Paulson JC, Wilson IA: Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science 2006,312(5772):404-410. 10.1126/science.1124513PubMedCrossRef Stevens J, Blixt O, Tumpey TM, Taubenberger JK, Paulson JC, Wilson IA: Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science 2006,312(5772):404-410. 10.1126/science.1124513PubMedCrossRef
38.
go back to reference Vollmann-Honsdorf GK, Flügge G, Fuchs E: Chronic psychosocial stress does not affect the number of pyramidal neurons in tree shrew. NeurosciLet 1997,233(2–3):121-124. Vollmann-Honsdorf GK, Flügge G, Fuchs E: Chronic psychosocial stress does not affect the number of pyramidal neurons in tree shrew. NeurosciLet 1997,233(2–3):121-124.
39.
go back to reference Kunming Medical University: Laboratory breeding method for cage bred tree shrew. The State Intellectual Property Office of the People's Republic of China (SIPO); 2010. patent application No.201010273025.0 P Kunming Medical University: Laboratory breeding method for cage bred tree shrew. The State Intellectual Property Office of the People's Republic of China (SIPO); 2010. patent application No.201010273025.0 P
40.
go back to reference Kunming Medical University: Laboratory breeding method in large scale mating of tree shrew. China: The State Intellectual Property Office of the People's Republic of China (SIPO); 2010. Kunming Medical University: Laboratory breeding method in large scale mating of tree shrew. China: The State Intellectual Property Office of the People's Republic of China (SIPO); 2010.
41.
go back to reference Xu L, Chen SY, Nie WH, Jiang XL, Yao YG: Evaluating the phylogenetic position of Chinese tree shrew (tupaiabelangerichinensis) based on complete mitochondrial genome: implication for using tree shrew as an alternative experimental animal to primates in biomedical research. J Genet Genomics 2012,39(3):131-137. 10.1016/j.jgg.2012.02.003PubMedCrossRef Xu L, Chen SY, Nie WH, Jiang XL, Yao YG: Evaluating the phylogenetic position of Chinese tree shrew (tupaiabelangerichinensis) based on complete mitochondrial genome: implication for using tree shrew as an alternative experimental animal to primates in biomedical research. J Genet Genomics 2012,39(3):131-137. 10.1016/j.jgg.2012.02.003PubMedCrossRef
42.
go back to reference McBrayer A, Camp JV, Tapp R, Yamshchikov V, Grimes S, Noah DL, Jonsson CB, Bruder CE: Course of seasonal influenza a/Brisbane/59/07 H1N1 infection in the ferret. Virol J 2010, 7: 149. 10.1186/1743-422X-7-149PubMedPubMedCentralCrossRef McBrayer A, Camp JV, Tapp R, Yamshchikov V, Grimes S, Noah DL, Jonsson CB, Bruder CE: Course of seasonal influenza a/Brisbane/59/07 H1N1 infection in the ferret. Virol J 2010, 7: 149. 10.1186/1743-422X-7-149PubMedPubMedCentralCrossRef
43.
go back to reference Reed LJ, Muench HA: A simple method of estimating fifty percent endpoints. Am J Epidemiol 1938,27(3):493-497. Reed LJ, Muench HA: A simple method of estimating fifty percent endpoints. Am J Epidemiol 1938,27(3):493-497.
44.
go back to reference Poon LL, Chan KH, Smith GJ, Leung CS, Guan Y, Yuen KY, Peiris JS: Molecular detection of a novel human influenza (H1N1) of pandemic potential by conventional and real-time quantitative RT-PCR assays. ClinChem 2009,55(8):1555-1558. Poon LL, Chan KH, Smith GJ, Leung CS, Guan Y, Yuen KY, Peiris JS: Molecular detection of a novel human influenza (H1N1) of pandemic potential by conventional and real-time quantitative RT-PCR assays. ClinChem 2009,55(8):1555-1558.
45.
go back to reference Govorkova EA, Webby RJ, Humberd J, Seiler JP, Webster RG: Immunization with reverse-genetics-produced H5N1 influenza vaccine protects ferrets against homologous and heterologous challenge. J Infect Dis 2006,194(2):159-167. 10.1086/505225PubMedCrossRef Govorkova EA, Webby RJ, Humberd J, Seiler JP, Webster RG: Immunization with reverse-genetics-produced H5N1 influenza vaccine protects ferrets against homologous and heterologous challenge. J Infect Dis 2006,194(2):159-167. 10.1086/505225PubMedCrossRef
Metadata
Title
The tree shrew provides a useful alternative model for the study of influenza H1N1 virus
Authors
Zi-feng Yang
Jin Zhao
Yu-tong Zhu
Yu-tao Wang
Rong Liu
Sui-shan Zhao
Run-feng Li
Chun-guang Yang
Ji-qiang Li
Nan-shan Zhong
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2013
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/1743-422X-10-111

Other articles of this Issue 1/2013

Virology Journal 1/2013 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine