Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2012

Open Access 01-12-2012 | Research

Motor modules in robot-aided walking

Authors: Leonardo Gizzi, Jørgen Feldbæk Nielsen, Francesco Felici, Juan C Moreno, José L Pons, Dario Farina

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2012

Login to get access

Abstract

Background

It is hypothesized that locomotion is achieved by means of rhythm generating networks (central pattern generators) and muscle activation generating networks. This modular organization can be partly identified from the analysis of the muscular activity by means of factorization algorithms. The activity of rhythm generating networks is described by activation signals whilst the muscle intervention generating network is represented by motor modules (muscle synergies). In this study, we extend the analysis of modular organization of walking to the case of robot-aided locomotion, at varying speed and body weight support level.

Methods

Non Negative Matrix Factorization was applied on surface electromyographic signals of 8 lower limb muscles of healthy subjects walking in gait robotic trainer at different walking velocities (1 to 3km/h) and levels of body weight support (0 to 30%).

Results

The muscular activity of volunteers could be described by low dimensionality (4 modules), as for overground walking. Moreover, the activation signals during robot-aided walking were bursts of activation timed at specific phases of the gait cycle, underlying an impulsive controller, as also observed in overground walking. This modular organization was consistent across the investigated speeds, body weight support level, and subjects.

Conclusions

These results indicate that walking in a Lokomat robotic trainer is achieved by similar motor modules and activation signals as overground walking and thus supports the use of robotic training for re-establishing natural walking patterns.
Appendix
Available only for authorised users
Literature
1.
go back to reference Andriacchi T, Alexander E: Studies of human locomotion: past, present and future. J Biomech 2000, (33): 1217-1224.CrossRef Andriacchi T, Alexander E: Studies of human locomotion: past, present and future. J Biomech 2000, (33): 1217-1224.CrossRef
2.
go back to reference Grillner S: Locomotion in vertebrates: central mechanisms and reflex interaction. Physiol Rev 1975, 5(2): 247-304. Grillner S: Locomotion in vertebrates: central mechanisms and reflex interaction. Physiol Rev 1975, 5(2): 247-304.
3.
go back to reference Giszter S, Patil V, Hart C: Primitives, premotor drives, and pattern generation: a combined computational and neuroethological perspective. Prog Brain Res 2007, 165: 323-346.CrossRefPubMed Giszter S, Patil V, Hart C: Primitives, premotor drives, and pattern generation: a combined computational and neuroethological perspective. Prog Brain Res 2007, 165: 323-346.CrossRefPubMed
4.
go back to reference Hart C, Giszter S: A neural basis for motor primitives in the spinal cord. J Neurosci 2010, 30(4): 1322-1336.CrossRef Hart C, Giszter S: A neural basis for motor primitives in the spinal cord. J Neurosci 2010, 30(4): 1322-1336.CrossRef
6.
go back to reference Burke R, Degtyarenko A, Simon E: Patterns of locomotor drive to motoneurons and last-order interneurons: clues to the structure of the CPG. J Neurophysiol 2001, 86(1): 447-462. Burke R, Degtyarenko A, Simon E: Patterns of locomotor drive to motoneurons and last-order interneurons: clues to the structure of the CPG. J Neurophysiol 2001, 86(1): 447-462.
7.
go back to reference Bizzi E, Cheung V, D'Avella A, Saltiel P, Tresch EM: Combining modules for movement. Brain Res Rev 2008, S57: 125-133.CrossRef Bizzi E, Cheung V, D'Avella A, Saltiel P, Tresch EM: Combining modules for movement. Brain Res Rev 2008, S57: 125-133.CrossRef
8.
go back to reference Tresch M, Cheung V, d'Avella A: Matrix factorization algorithms for the identification of muscle synergies: evaluation on simulated and experimental data sets. J Neurophysiol 2006, 95: 2199-2212.CrossRefPubMed Tresch M, Cheung V, d'Avella A: Matrix factorization algorithms for the identification of muscle synergies: evaluation on simulated and experimental data sets. J Neurophysiol 2006, 95: 2199-2212.CrossRefPubMed
9.
go back to reference Muceli S, Boye A, d'Avella A, Farina D: Identifying representative synergy matrices for describing muscular activation patterns during multidirectional reaching in the horizontal plane. J Neurophysiol 2010, 103(3): 1532-1542.CrossRef Muceli S, Boye A, d'Avella A, Farina D: Identifying representative synergy matrices for describing muscular activation patterns during multidirectional reaching in the horizontal plane. J Neurophysiol 2010, 103(3): 1532-1542.CrossRef
10.
go back to reference Cheung V, Piron L, Agostini M, Silvoni S, Turolla A, Bizzi E: Stability of muscle synergies for voluntary actions after cortical stroke in humans. Proc Natl Acad Sci USA 2009, 106(46): 19563-19568.CrossRef Cheung V, Piron L, Agostini M, Silvoni S, Turolla A, Bizzi E: Stability of muscle synergies for voluntary actions after cortical stroke in humans. Proc Natl Acad Sci USA 2009, 106(46): 19563-19568.CrossRef
11.
go back to reference Ivanenko Y, Poppele R, Lacquaniti F: Five basic muscle activation patterns account for muscle activity during human locomotion. J Physiol 2004, 556(Pt 1): 267-282.CrossRef Ivanenko Y, Poppele R, Lacquaniti F: Five basic muscle activation patterns account for muscle activity during human locomotion. J Physiol 2004, 556(Pt 1): 267-282.CrossRef
12.
go back to reference Monaco V, Ghionzoli A, Micera S: Age-related modifications of muscle synergies and spinal cord activity during locomotion. J Neurophysiol 2010, 104(4): 2092-2102.CrossRef Monaco V, Ghionzoli A, Micera S: Age-related modifications of muscle synergies and spinal cord activity during locomotion. J Neurophysiol 2010, 104(4): 2092-2102.CrossRef
13.
go back to reference Ivanenko Y, Poppele R, Lacquaniti EF: Spinal cord maps of spatiotemporal alpha-motoneuron activation in humans walking at different speeds. J Neurophyisiol 2006, 95: 602-618.CrossRef Ivanenko Y, Poppele R, Lacquaniti EF: Spinal cord maps of spatiotemporal alpha-motoneuron activation in humans walking at different speeds. J Neurophyisiol 2006, 95: 602-618.CrossRef
14.
go back to reference Merkle L, Layne C, Bloomberg J, Zhang J: Using factor analysis to identify neuromuscular synergies during treadmill walking. J Neurosci Methods 1998, 82: 207-214. 10.1016/S0165-0270(98)00054-5CrossRefPubMed Merkle L, Layne C, Bloomberg J, Zhang J: Using factor analysis to identify neuromuscular synergies during treadmill walking. J Neurosci Methods 1998, 82: 207-214. 10.1016/S0165-0270(98)00054-5CrossRefPubMed
15.
go back to reference Olree K, Vaughan C: Fundamental patterns of bilateral muscle activity in human locomotion. Biol Cybern 1995, 73: 409-414. 10.1007/BF00201475CrossRefPubMed Olree K, Vaughan C: Fundamental patterns of bilateral muscle activity in human locomotion. Biol Cybern 1995, 73: 409-414. 10.1007/BF00201475CrossRefPubMed
16.
go back to reference Ivanenko Y, Cappellini G, Poppele E, Lacquaniti F: patiotemporal organization of alpha-motoneuron activity in the human spinal cord during different gaits and gait transitions. Eur J Neurosci 2008, 27(12): 3351-3368.CrossRef Ivanenko Y, Cappellini G, Poppele E, Lacquaniti F: patiotemporal organization of alpha-motoneuron activity in the human spinal cord during different gaits and gait transitions. Eur J Neurosci 2008, 27(12): 3351-3368.CrossRef
17.
go back to reference Cappellini G, Ivanenko Y, Poppele R, Lacquaniti EF: Motor patterns in human walking and running. J Neurophysiol 2006,95(6):3426-3437. 10.1152/jn.00081.2006CrossRefPubMed Cappellini G, Ivanenko Y, Poppele R, Lacquaniti EF: Motor patterns in human walking and running. J Neurophysiol 2006,95(6):3426-3437. 10.1152/jn.00081.2006CrossRefPubMed
18.
go back to reference Dominici N, Ivanenko Y, Cappellini G, D'Avella A, Mondì V, Cicchese M, Fabiano A, Silei T, Di Paolo A, Giannini C, Poppele R, Lacquaniti EF: Locomotor primitives in newborn babies and their development. Science 2012,334(6058):997-999.CrossRef Dominici N, Ivanenko Y, Cappellini G, D'Avella A, Mondì V, Cicchese M, Fabiano A, Silei T, Di Paolo A, Giannini C, Poppele R, Lacquaniti EF: Locomotor primitives in newborn babies and their development. Science 2012,334(6058):997-999.CrossRef
19.
go back to reference Clark D, Ting L, Zajac F, Neptune R, Kautz S: Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke. J Neurophysiol 2010, 103(2): 844-857.CrossRef Clark D, Ting L, Zajac F, Neptune R, Kautz S: Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke. J Neurophysiol 2010, 103(2): 844-857.CrossRef
20.
go back to reference Gizzi L, Feldbæk Nielsen J, Felici F, Farina D: Impulses of activation but not motor modules are preserved in the locomotion of subacute stroke patients. J Neurophysiol 2011, 106(1): 202-210.CrossRef Gizzi L, Feldbæk Nielsen J, Felici F, Farina D: Impulses of activation but not motor modules are preserved in the locomotion of subacute stroke patients. J Neurophysiol 2011, 106(1): 202-210.CrossRef
21.
go back to reference Grasso R, Ivanenko Y, Zago M, Molinari M, Scivoletto G, Castellano V, Macellari V, Lacquaniti EF: Distributed plasticity of locomotor pattern generators in spinal cord injured patients. Brain 2004,127(Pt 5):1019-1034.CrossRefPubMed Grasso R, Ivanenko Y, Zago M, Molinari M, Scivoletto G, Castellano V, Macellari V, Lacquaniti EF: Distributed plasticity of locomotor pattern generators in spinal cord injured patients. Brain 2004,127(Pt 5):1019-1034.CrossRefPubMed
22.
go back to reference Colombo G, Joerg M, Schreier R, Dietz V: Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev 2000, 37: 693-700.PubMed Colombo G, Joerg M, Schreier R, Dietz V: Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev 2000, 37: 693-700.PubMed
23.
go back to reference Hesse S, Waldner A, Tomelleri C: Innovative gait robot for the repetitive practice of floor walking and stair climbing up and down in stroke patients. J Neuroeng Rehabil 2010, 28: 7-30. Hesse S, Waldner A, Tomelleri C: Innovative gait robot for the repetitive practice of floor walking and stair climbing up and down in stroke patients. J Neuroeng Rehabil 2010, 28: 7-30.
24.
go back to reference Mayr A, Kofler M, Quirbach E, Matzak H, Fröhlich K, Saltuari EL: Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the Lokomat gait orthosis. Neurorehabil Neural Repair 2007,21(4):307-314. 10.1177/1545968307300697CrossRefPubMed Mayr A, Kofler M, Quirbach E, Matzak H, Fröhlich K, Saltuari EL: Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the Lokomat gait orthosis. Neurorehabil Neural Repair 2007,21(4):307-314. 10.1177/1545968307300697CrossRefPubMed
25.
go back to reference Beer S, Aschbacher B, Manoglou D, Gamper E, Kool J, Kesselring EJ: Robot-assisted gait training in multiple sclerosis: a pilot randomized trial. Mult Scler 2008, 14(2): 231-236. Beer S, Aschbacher B, Manoglou D, Gamper E, Kool J, Kesselring EJ: Robot-assisted gait training in multiple sclerosis: a pilot randomized trial. Mult Scler 2008, 14(2): 231-236.
26.
go back to reference Lo A, Triche E: Improving gait in multiple sclerosis using robot-assisted, body weight supported treadmill training. Neurorehabil Neural Repair 2008, 22(6): 661-671.CrossRef Lo A, Triche E: Improving gait in multiple sclerosis using robot-assisted, body weight supported treadmill training. Neurorehabil Neural Repair 2008, 22(6): 661-671.CrossRef
27.
go back to reference Freivogel S, Mehrholz J, Husak-Sotomayor T, Schmalohr ED: Gait training with the newly developed 'LokoHelp'-system is feasible for non-ambulatory patients after stroke, spinal cord and brain injury. A feasibility study. Brain 2008,222(7–8):625-632. Freivogel S, Mehrholz J, Husak-Sotomayor T, Schmalohr ED: Gait training with the newly developed 'LokoHelp'-system is feasible for non-ambulatory patients after stroke, spinal cord and brain injury. A feasibility study. Brain 2008,222(7–8):625-632.
28.
go back to reference Wirz M, Zemon D, Rupp R, Scheel A, Colombo EG: Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial. Arch Phys Med Rehabil 2005, 86: 672-680. 10.1016/j.apmr.2004.08.004CrossRefPubMed Wirz M, Zemon D, Rupp R, Scheel A, Colombo EG: Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial. Arch Phys Med Rehabil 2005, 86: 672-680. 10.1016/j.apmr.2004.08.004CrossRefPubMed
29.
go back to reference Ustinova K, Chernikova L, Bilimenko A, Telenkov A, Epstein e N: Effect of robotic locomotor training in an individual with Parkinson's disease: a case report. Disabil Rehabil Assist Technol 2011, 6(1): 77-85.CrossRef Ustinova K, Chernikova L, Bilimenko A, Telenkov A, Epstein e N: Effect of robotic locomotor training in an individual with Parkinson's disease: a case report. Disabil Rehabil Assist Technol 2011, 6(1): 77-85.CrossRef
30.
go back to reference Lo A, Chang V, Gianfrancesco M, Friedman J, Patterson T, Benedicto D: Reduction of freezing of gait in Parkinson's disease by repetitive robot-assisted treadmill training: a pilot study. J Neuroeng Rehabil 2010, 14: 7-51. Lo A, Chang V, Gianfrancesco M, Friedman J, Patterson T, Benedicto D: Reduction of freezing of gait in Parkinson's disease by repetitive robot-assisted treadmill training: a pilot study. J Neuroeng Rehabil 2010, 14: 7-51.
31.
go back to reference Borggraefe I, Meyer-Heim A, Kumar A, Schaefer EJ: Improved gait parameters after robotic-assisted locomotor treadmill therapy in a 6-year-old child with cerebral palsy. Mov Disord 2008,30; 23(2):280-3.CrossRef Borggraefe I, Meyer-Heim A, Kumar A, Schaefer EJ: Improved gait parameters after robotic-assisted locomotor treadmill therapy in a 6-year-old child with cerebral palsy. Mov Disord 2008,30; 23(2):280-3.CrossRef
32.
33.
go back to reference Chen C, Neufeld P, Feely C, Skinner C: Factors influencing compliance with home exercise programs among patients with upper-extremity impairment. Am J Occup Ther 1999, 53: 171-180. 10.5014/ajot.53.2.171CrossRefPubMed Chen C, Neufeld P, Feely C, Skinner C: Factors influencing compliance with home exercise programs among patients with upper-extremity impairment. Am J Occup Ther 1999, 53: 171-180. 10.5014/ajot.53.2.171CrossRefPubMed
34.
go back to reference Maclean N, Pound P, Wolfe C, Rudd A: The concept of patient motivation. A quantitative analysis of stroke professionals' attitudes. Stroke 2002, 33: 444-448. 10.1161/hs0202.102367CrossRefPubMed Maclean N, Pound P, Wolfe C, Rudd A: The concept of patient motivation. A quantitative analysis of stroke professionals' attitudes. Stroke 2002, 33: 444-448. 10.1161/hs0202.102367CrossRefPubMed
35.
go back to reference Hornby T, Campbell D, Kahn J, Demott T, Moore J, Roth H: Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study. Stroke 2008, 39(6): 1786-1792.CrossRef Hornby T, Campbell D, Kahn J, Demott T, Moore J, Roth H: Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study. Stroke 2008, 39(6): 1786-1792.CrossRef
36.
go back to reference Banala S, Kim S, Agrawal S, Scholz e J: Robot assisted gait training with active leg exoskeleton (ALEX). IEEE Trans Neural Syst Rehabil Eng 2009, 17(1): 2-8.CrossRef Banala S, Kim S, Agrawal S, Scholz e J: Robot assisted gait training with active leg exoskeleton (ALEX). IEEE Trans Neural Syst Rehabil Eng 2009, 17(1): 2-8.CrossRef
37.
go back to reference van Asseldonk E, Veneman J, Ekkelenkamp R, Buurke J, van der Helm F, van der Kooij H: The Effects on Kinematics and Muscle Activity of Walking in a Robotic Gait Trainer During Zero-Force Control. IEEE Trans Neural Syst Rehabil Eng 2008, 16(4): 360-370.CrossRef van Asseldonk E, Veneman J, Ekkelenkamp R, Buurke J, van der Helm F, van der Kooij H: The Effects on Kinematics and Muscle Activity of Walking in a Robotic Gait Trainer During Zero-Force Control. IEEE Trans Neural Syst Rehabil Eng 2008, 16(4): 360-370.CrossRef
38.
go back to reference Aoyagi D, Ichinose W, Harkema S, Reinkensmeyer D, Bobrow J: A robot and control algorithm that can synchronously assist in naturalistic motion during body-weight-supported gait training following neurologic injury. IEEE Trans Neural Syst Rehabil Eng 2007, 15(3): 387-400.CrossRef Aoyagi D, Ichinose W, Harkema S, Reinkensmeyer D, Bobrow J: A robot and control algorithm that can synchronously assist in naturalistic motion during body-weight-supported gait training following neurologic injury. IEEE Trans Neural Syst Rehabil Eng 2007, 15(3): 387-400.CrossRef
39.
go back to reference Hidler J, Nichols D, Pelliccio M, Brady K, Campbell D, Kahn J, Hornby T: Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke. Neurorehabil Neural Repair 2009, 23(1): 5-13. Hidler J, Nichols D, Pelliccio M, Brady K, Campbell D, Kahn J, Hornby T: Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke. Neurorehabil Neural Repair 2009, 23(1): 5-13.
40.
go back to reference Wu M, Hornby T, Landry J, Roth H, Schmit B: A cable-driven locomotor training system for restoration of gait in human SCI. Gait Posture 2011, 33(2): 256-260.CrossRef Wu M, Hornby T, Landry J, Roth H, Schmit B: A cable-driven locomotor training system for restoration of gait in human SCI. Gait Posture 2011, 33(2): 256-260.CrossRef
41.
go back to reference Schwartz I, Sajin A, Fisher I, Neeb M, Shochina M, Katz-Leurer M, Meiner EZ: The effectiveness of locomotor therapy using robotic-assisted gait training in subacute stroke patients: a randomized controlled trial. PM R 2009,1(6):516-523. 10.1016/j.pmrj.2009.03.009CrossRefPubMed Schwartz I, Sajin A, Fisher I, Neeb M, Shochina M, Katz-Leurer M, Meiner EZ: The effectiveness of locomotor therapy using robotic-assisted gait training in subacute stroke patients: a randomized controlled trial. PM R 2009,1(6):516-523. 10.1016/j.pmrj.2009.03.009CrossRefPubMed
42.
go back to reference Riener R, Lünenburger L, Maier I, Colombo G, Dietz EV: Locomotor Training in Subjects with Sensori-Motor Deficits: An Overview of the Robotic Gait Orthosis Lokomat. Journal of Healthcare Engineering 2010, 2: 197-216.CrossRef Riener R, Lünenburger L, Maier I, Colombo G, Dietz EV: Locomotor Training in Subjects with Sensori-Motor Deficits: An Overview of the Robotic Gait Orthosis Lokomat. Journal of Healthcare Engineering 2010, 2: 197-216.CrossRef
43.
go back to reference Duschau-Wicke A, Zitzewitz J, Lünenburger L, Riener ER: Patient-Driven Cooperative Gait Training with the Rehabilitation Robot Lokomat. in IFMBE Proceedings 2009,22(11):1616-1619. 10.1007/978-3-540-89208-3_384CrossRef Duschau-Wicke A, Zitzewitz J, Lünenburger L, Riener ER: Patient-Driven Cooperative Gait Training with the Rehabilitation Robot Lokomat. in IFMBE Proceedings 2009,22(11):1616-1619. 10.1007/978-3-540-89208-3_384CrossRef
44.
go back to reference Colombo G, Bucher ER: Device for adjusting the prestress of an elastic means around a predetermined tension or position. Patient wo2008040554. Colombo G, Bucher ER: Device for adjusting the prestress of an elastic means around a predetermined tension or position. Patient wo2008040554.
45.
go back to reference Hermens H, Freriks B, Merletti R, Stegeman D, Blok J, Rau G, Disselhorst-Klug C, Hägg EG: European Recommendations for Surface ElectroMyoGraphy. Results of the SENIAM project. Roessingh Research and Development 1999. ISBN 9075452152 Hermens H, Freriks B, Merletti R, Stegeman D, Blok J, Rau G, Disselhorst-Klug C, Hägg EG: European Recommendations for Surface ElectroMyoGraphy. Results of the SENIAM project. Roessingh Research and Development 1999. ISBN 9075452152
46.
go back to reference Ng J, Kippers V, Richardson e C: Muscle fibre orientation of abdominal muscles and suggested surface EMG electrode positions. Electromyogr Clin Neurophysiol 1998, 38(1): 51-8. Ng J, Kippers V, Richardson e C: Muscle fibre orientation of abdominal muscles and suggested surface EMG electrode positions. Electromyogr Clin Neurophysiol 1998, 38(1): 51-8.
47.
go back to reference McGowan C, Neptune R, Clark D, Kautz ES: Modular control of human walking: Adaptations to altered mechanical demands. J Biomech 2010,43(3):412-9. 10.1016/j.jbiomech.2009.10.009PubMedCentralCrossRefPubMed McGowan C, Neptune R, Clark D, Kautz ES: Modular control of human walking: Adaptations to altered mechanical demands. J Biomech 2010,43(3):412-9. 10.1016/j.jbiomech.2009.10.009PubMedCentralCrossRefPubMed
48.
go back to reference Lee D, Seung H: Algorithms for Non-negative Matrix Factorization. Adv Neur Infor Proc Syst 2001, 13: 556-562. Lee D, Seung H: Algorithms for Non-negative Matrix Factorization. Adv Neur Infor Proc Syst 2001, 13: 556-562.
49.
go back to reference D'Avella A, Bizzi E: Shared and specific muscle synergies in natural motor behaviours. Proc Nat Acad Sci USA 2005,102(8):3076-8. 10.1073/pnas.0500199102PubMedCentralCrossRefPubMed D'Avella A, Bizzi E: Shared and specific muscle synergies in natural motor behaviours. Proc Nat Acad Sci USA 2005,102(8):3076-8. 10.1073/pnas.0500199102PubMedCentralCrossRefPubMed
50.
go back to reference Tresch M, Saltiel P, Bizzi E: The construction of movement by the spinal cord. Nat Neurosci 1999,2(2):162-7. 10.1038/5721CrossRefPubMed Tresch M, Saltiel P, Bizzi E: The construction of movement by the spinal cord. Nat Neurosci 1999,2(2):162-7. 10.1038/5721CrossRefPubMed
51.
go back to reference D'Avella A, Saltiel P, Bizzi EE: Combination of muscle synergies in the construction of a natural motor behaviour. Nat Neurosci 2003, 6: 300-308. 10.1038/nn1010CrossRefPubMed D'Avella A, Saltiel P, Bizzi EE: Combination of muscle synergies in the construction of a natural motor behaviour. Nat Neurosci 2003, 6: 300-308. 10.1038/nn1010CrossRefPubMed
52.
go back to reference D'Avella A, Portone A, Fernandez L, Lacquaniti EF: Control of fast reaching movements by muscle synergy combinations. 2006,26(30):7791-810. D'Avella A, Portone A, Fernandez L, Lacquaniti EF: Control of fast reaching movements by muscle synergy combinations. 2006,26(30):7791-810.
53.
go back to reference Hidler J, Wall EA: Alterations in muscle activation patterns during robotic-assisted walking. Clin Biomech (Bristol, Avon) 2005,20(2):184-93. 10.1016/j.clinbiomech.2004.09.016CrossRef Hidler J, Wall EA: Alterations in muscle activation patterns during robotic-assisted walking. Clin Biomech (Bristol, Avon) 2005,20(2):184-93. 10.1016/j.clinbiomech.2004.09.016CrossRef
54.
go back to reference Dietz V, Müller R, Colombo G: Locomotor activity in spinal man: significance of afferent input from joint and load receptors. Brain 2002,125(Pt 12):2626-34.CrossRefPubMed Dietz V, Müller R, Colombo G: Locomotor activity in spinal man: significance of afferent input from joint and load receptors. Brain 2002,125(Pt 12):2626-34.CrossRefPubMed
55.
go back to reference Patla A: Some characteristics of EMG patterns during locomotion: implications for the locomotor control process. J Mot Behav 1985, 17(4): 443-61.CrossRef Patla A: Some characteristics of EMG patterns during locomotion: implications for the locomotor control process. J Mot Behav 1985, 17(4): 443-61.CrossRef
56.
go back to reference Bosco G, Poppele R: Modulation of dorsal spinocerebellar responses to limb movement. II. Effect of sensory input. J Neurophysiol 2003, 90(5): 3372-83.CrossRef Bosco G, Poppele R: Modulation of dorsal spinocerebellar responses to limb movement. II. Effect of sensory input. J Neurophysiol 2003, 90(5): 3372-83.CrossRef
57.
go back to reference Rossignol S, Dubuc R, Gossard EJ: Dynamic sensorimotor interactions in locomotion. Physiol Rev 2006,86(1):89-154. Review 10.1152/physrev.00028.2005CrossRefPubMed Rossignol S, Dubuc R, Gossard EJ: Dynamic sensorimotor interactions in locomotion. Physiol Rev 2006,86(1):89-154. Review 10.1152/physrev.00028.2005CrossRefPubMed
58.
go back to reference Af Klint R, Mazzaro N, Nielsen J, Sinkjaer T, Grey M: Load rather than length sensitive feedback contributes to soleus muscle activity during human treadmill walking. J Neurophysiol 2010, 103(5): 2747-56.CrossRef Af Klint R, Mazzaro N, Nielsen J, Sinkjaer T, Grey M: Load rather than length sensitive feedback contributes to soleus muscle activity during human treadmill walking. J Neurophysiol 2010, 103(5): 2747-56.CrossRef
59.
go back to reference Ivanenko Y, Grasso R, Macellari V, Lacquaniti EF: Control of Foot Trajectory in Human Locomotion: Role of Ground Contact Forces in Simulated Reduced Gravity. J Neurophysiol 2002,87(6):3070-89.PubMed Ivanenko Y, Grasso R, Macellari V, Lacquaniti EF: Control of Foot Trajectory in Human Locomotion: Role of Ground Contact Forces in Simulated Reduced Gravity. J Neurophysiol 2002,87(6):3070-89.PubMed
Metadata
Title
Motor modules in robot-aided walking
Authors
Leonardo Gizzi
Jørgen Feldbæk Nielsen
Francesco Felici
Juan C Moreno
José L Pons
Dario Farina
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2012
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-9-76

Other articles of this Issue 1/2012

Journal of NeuroEngineering and Rehabilitation 1/2012 Go to the issue