Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2012

Open Access 01-12-2012 | Research

Sit-stand and stand-sit transitions in older adults and patients with Parkinson’s disease: event detection based on motion sensors versus force plates

Authors: Agnes Zijlstra, Martina Mancini, Ulrich Lindemann, Lorenzo Chiari, Wiebren Zijlstra

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2012

Login to get access

Abstract

Background

Motion sensors offer the possibility to obtain spatiotemporal measures of mobility-related activities such as sit-stand and stand-sit transitions. However, the application of new sensor-based methods for assessing sit-stand-sit performance requires the detection of crucial events such as seat on/off in the sensor-based data. Therefore, the aim of this study was to evaluate the agreement of detecting sit-stand and stand-sit events based on a novel body-fixed-sensor method with a force-plate based analysis.

Methods

Twelve older adults and 10 patients with mild to moderate Parkinson’s disease with mean age of 70 years performed sit-stand-sit movements while trunk movements were measured with a sensor-unit at vertebrae L2-L4 and reaction forces were measured with separate force plates below the feet and chair. Movement onsets and ends were determined. In addition, seat off and seat on were determined based on forces acting on the chair. Data analysis focused on the agreement of the timing of sit-stand and stand-sit events as detected by the two methods.

Results

For the start and end of standing-up, only small delays existed for the start of forward trunk rotation and end of backward trunk rotation compared to movement onset/end as detected in the force-plate data. The end of forward trunk rotation had a small and consistent delay compared to seat off, whereas during sitting-down, the end of forward trunk rotation occurred earlier in relation to seat on. In detecting the end of sitting-down, backward trunk rotation ended after reaching the minimum in the below-feet vertical force signal. Since only small time differences existed between the two methods for detecting the start of sitting-down, longer movement durations were found for the sensor-based method. Relative agreement between the two methods in assessing movement duration was high (i.e. ICCs ≥ 0.75), except for duration of standing-up in the Parkinson’s patients (ICC = 0.61).

Conclusions

This study demonstrated high agreement of body-fixed-sensor based detection of sit-stand and stand-sit events with that based on force plates in older adults and patients with mild to moderate Parkinson’s disease. Further development and testing is needed to establish reliability for unstandardized performance in clinical and home settings.
Appendix
Available only for authorised users
Literature
1.
go back to reference Rapp K, Becker C, Cameron ID, Konig HH, Buchele G: Epidemiology of falls in residential aged care: analysis of more than 70,000 falls from residents of bavarian nursing homes. J Am Med Dir Assoc 2012, 13: 187.e1-6. 10.1016/j.jamda.2011.06.011CrossRef Rapp K, Becker C, Cameron ID, Konig HH, Buchele G: Epidemiology of falls in residential aged care: analysis of more than 70,000 falls from residents of bavarian nursing homes. J Am Med Dir Assoc 2012, 13: 187.e1-6. 10.1016/j.jamda.2011.06.011CrossRef
2.
go back to reference Najafi B, Aminian K, Loew F, Blanc Y, Robert PA: Measurement of stand-sit and sit-stand transitions using a miniature gyroscope and its application in fall risk evaluation in the elderly. IEEE Trans Biomed Eng 2002, 49: 843-851. 10.1109/TBME.2002.800763CrossRefPubMed Najafi B, Aminian K, Loew F, Blanc Y, Robert PA: Measurement of stand-sit and sit-stand transitions using a miniature gyroscope and its application in fall risk evaluation in the elderly. IEEE Trans Biomed Eng 2002, 49: 843-851. 10.1109/TBME.2002.800763CrossRefPubMed
3.
go back to reference Cheng PT, Liaw MY, Wong MK, Tang FT, Lee MY, Lin PS: The sit-to-stand movement in stroke patients and its correlation with falling. Arch Phys Med Rehabil 1998, 79: 1043-1046. 10.1016/S0003-9993(98)90168-XCrossRefPubMed Cheng PT, Liaw MY, Wong MK, Tang FT, Lee MY, Lin PS: The sit-to-stand movement in stroke patients and its correlation with falling. Arch Phys Med Rehabil 1998, 79: 1043-1046. 10.1016/S0003-9993(98)90168-XCrossRefPubMed
4.
go back to reference Mak MK, Pang MY: Parkinsonian single fallers versus recurrent fallers: different fall characteristics and clinical features. J Neurol 2010, 257: 1543-1551. 10.1007/s00415-010-5573-9CrossRefPubMed Mak MK, Pang MY: Parkinsonian single fallers versus recurrent fallers: different fall characteristics and clinical features. J Neurol 2010, 257: 1543-1551. 10.1007/s00415-010-5573-9CrossRefPubMed
5.
go back to reference Galli M, Cimolin V, Crivellini M, Campanini I: Quantitative analysis of sit to stand movement: experimental set-up definition and application to healthy and hemiplegic adults. Gait Posture 2008, 28: 80-85. 10.1016/j.gaitpost.2007.10.003CrossRefPubMed Galli M, Cimolin V, Crivellini M, Campanini I: Quantitative analysis of sit to stand movement: experimental set-up definition and application to healthy and hemiplegic adults. Gait Posture 2008, 28: 80-85. 10.1016/j.gaitpost.2007.10.003CrossRefPubMed
6.
go back to reference Zijlstra W, Aminian K: Mobility assessment in older people: new possibilities and challenges. Eur J Ageing 2007, 4: 3-12. 10.1007/s10433-007-0041-9CrossRef Zijlstra W, Aminian K: Mobility assessment in older people: new possibilities and challenges. Eur J Ageing 2007, 4: 3-12. 10.1007/s10433-007-0041-9CrossRef
7.
go back to reference Janssen WG, Bussmann JB, Horemans HL, Stam HJ: Analysis and decomposition of accelerometric signals of trunk and thigh obtained during the sit-to-stand movement. Med Biol Eng Comput 2005, 43: 265-272. 10.1007/BF02345965CrossRefPubMed Janssen WG, Bussmann JB, Horemans HL, Stam HJ: Analysis and decomposition of accelerometric signals of trunk and thigh obtained during the sit-to-stand movement. Med Biol Eng Comput 2005, 43: 265-272. 10.1007/BF02345965CrossRefPubMed
8.
go back to reference Boonstra MC, van der Slikke RM, Keijsers NL, van Lummel RC, de Waal Malefijt MC, Verdonschot N: The accuracy of measuring the kinematics of rising from a chair with accelerometers and gyroscopes. J Biomech 2006, 39: 354-358. 10.1016/j.jbiomech.2004.11.021CrossRefPubMed Boonstra MC, van der Slikke RM, Keijsers NL, van Lummel RC, de Waal Malefijt MC, Verdonschot N: The accuracy of measuring the kinematics of rising from a chair with accelerometers and gyroscopes. J Biomech 2006, 39: 354-358. 10.1016/j.jbiomech.2004.11.021CrossRefPubMed
9.
go back to reference Giansanti D, Maccioni G, Benvenuti F, Macellari V: Inertial measurement units furnish accurate trunk trajectory reconstruction of the sit-to-stand manoeuvre in healthy subjects. Med Biol Eng Comput 2007, 45: 969-976. 10.1007/s11517-007-0224-8CrossRefPubMed Giansanti D, Maccioni G, Benvenuti F, Macellari V: Inertial measurement units furnish accurate trunk trajectory reconstruction of the sit-to-stand manoeuvre in healthy subjects. Med Biol Eng Comput 2007, 45: 969-976. 10.1007/s11517-007-0224-8CrossRefPubMed
10.
go back to reference Zijlstra W, Bisseling RW, Schlumbohm S, Baldus H: A body-fixed-sensor-based analysis of power during sit-to-stand movements. Gait Posture 2010, 31: 272-278. 10.1016/j.gaitpost.2009.11.003CrossRefPubMed Zijlstra W, Bisseling RW, Schlumbohm S, Baldus H: A body-fixed-sensor-based analysis of power during sit-to-stand movements. Gait Posture 2010, 31: 272-278. 10.1016/j.gaitpost.2009.11.003CrossRefPubMed
11.
go back to reference Zijlstra W: Assessment of spatio-temporal parameters during unconstrained walking. Eur J Appl Physiol 2004, 92: 39-44. 10.1007/s00421-004-1041-5CrossRefPubMed Zijlstra W: Assessment of spatio-temporal parameters during unconstrained walking. Eur J Appl Physiol 2004, 92: 39-44. 10.1007/s00421-004-1041-5CrossRefPubMed
12.
go back to reference Dijkstra B, Zijlstra W, Scherder E, Kamsma Y: Detection of walking periods and number of steps in older adults and patients with Parkinson’s disease: accuracy of a pedometer and an accelerometry-based method. Age Ageing 2008, 37: 436-441. 10.1093/ageing/afn097CrossRefPubMed Dijkstra B, Zijlstra W, Scherder E, Kamsma Y: Detection of walking periods and number of steps in older adults and patients with Parkinson’s disease: accuracy of a pedometer and an accelerometry-based method. Age Ageing 2008, 37: 436-441. 10.1093/ageing/afn097CrossRefPubMed
13.
go back to reference Weiss A, Herman T, Plotnik M, Brozgol M, Maidan I, Giladi N, Gurevich T, Hausdorff JM: Can an accelerometer enhance the utility of the Timed Up & Go Test when evaluating patients with Parkinson’s disease? Med Eng Phys 2010, 32: 119-125. 10.1016/j.medengphy.2009.10.015CrossRefPubMed Weiss A, Herman T, Plotnik M, Brozgol M, Maidan I, Giladi N, Gurevich T, Hausdorff JM: Can an accelerometer enhance the utility of the Timed Up & Go Test when evaluating patients with Parkinson’s disease? Med Eng Phys 2010, 32: 119-125. 10.1016/j.medengphy.2009.10.015CrossRefPubMed
14.
go back to reference Weiss A, Herman T, Plotnik M, Brozgol M, Giladi N, Hausdorff JM: An instrumented timed up and go: the added value of an accelerometer for identifying fall risk in idiopathic fallers. Physiol Meas 2011, 32: 2003-2018. 10.1088/0967-3334/32/12/009CrossRefPubMed Weiss A, Herman T, Plotnik M, Brozgol M, Giladi N, Hausdorff JM: An instrumented timed up and go: the added value of an accelerometer for identifying fall risk in idiopathic fallers. Physiol Meas 2011, 32: 2003-2018. 10.1088/0967-3334/32/12/009CrossRefPubMed
15.
go back to reference Dijkstra B, Kamsma Y, Zijlstra W: Detection of gait and postures using a miniaturised triaxial accelerometer-based system: accuracy in community-dwelling older adults. Age Ageing 2010, 39: 259-262.CrossRefPubMed Dijkstra B, Kamsma Y, Zijlstra W: Detection of gait and postures using a miniaturised triaxial accelerometer-based system: accuracy in community-dwelling older adults. Age Ageing 2010, 39: 259-262.CrossRefPubMed
16.
go back to reference Dijkstra B, Kamsma YP, Zijlstra W: Detection of gait and postures using a miniaturized triaxial accelerometer-based system: accuracy in patients with mild to moderate Parkinson’s disease. Arch Phys Med Rehabil 2010, 91: 1272-1277. 10.1016/j.apmr.2010.05.004CrossRefPubMed Dijkstra B, Kamsma YP, Zijlstra W: Detection of gait and postures using a miniaturized triaxial accelerometer-based system: accuracy in patients with mild to moderate Parkinson’s disease. Arch Phys Med Rehabil 2010, 91: 1272-1277. 10.1016/j.apmr.2010.05.004CrossRefPubMed
17.
go back to reference Klenk J, Becker C, Lieken F, Nicolai S, Maetzler W, Alt W, Zijlstra W, Hausdorff JM, van Lummel RC, Chiari L, Lindemann U: Comparison of acceleration signals of simulated and real-world backward falls. Med Eng Phys 2011, 33: 368-373. 10.1016/j.medengphy.2010.11.003CrossRefPubMed Klenk J, Becker C, Lieken F, Nicolai S, Maetzler W, Alt W, Zijlstra W, Hausdorff JM, van Lummel RC, Chiari L, Lindemann U: Comparison of acceleration signals of simulated and real-world backward falls. Med Eng Phys 2011, 33: 368-373. 10.1016/j.medengphy.2010.11.003CrossRefPubMed
18.
go back to reference Lindemann U, Claus H, Stuber M, Augat P, Muche R, Nikolaus T, Becker C: Measuring power during the sit-to-stand transfer. Eur J Appl Physiol 2003, 89: 466-470. 10.1007/s00421-003-0837-zCrossRefPubMed Lindemann U, Claus H, Stuber M, Augat P, Muche R, Nikolaus T, Becker C: Measuring power during the sit-to-stand transfer. Eur J Appl Physiol 2003, 89: 466-470. 10.1007/s00421-003-0837-zCrossRefPubMed
19.
go back to reference Chang CS, Leung CY, Liou JJ, Tsai WW: Evaluation of key points in the sit-to-stand movement using two force platforms. Percept Mot Skills 2010, 111: 496-502. 10.2466/10.15.26.PMS.111.5.496-502CrossRefPubMed Chang CS, Leung CY, Liou JJ, Tsai WW: Evaluation of key points in the sit-to-stand movement using two force platforms. Percept Mot Skills 2010, 111: 496-502. 10.2466/10.15.26.PMS.111.5.496-502CrossRefPubMed
20.
go back to reference Hoehn MM, Yahr MD: Parkinsonism - Onset progression and mortality. Neurology 1967, 17: 427. 10.1212/WNL.17.5.427CrossRefPubMed Hoehn MM, Yahr MD: Parkinsonism - Onset progression and mortality. Neurology 1967, 17: 427. 10.1212/WNL.17.5.427CrossRefPubMed
21.
go back to reference Podsiadlo D, Richardson S: The Timed Up and Go - A test of basic functional mobility for frail elderly persons. J Am Geriatr Soc 1991, 39: 142-148.CrossRefPubMed Podsiadlo D, Richardson S: The Timed Up and Go - A test of basic functional mobility for frail elderly persons. J Am Geriatr Soc 1991, 39: 142-148.CrossRefPubMed
22.
go back to reference Williamson R, Andrews BJ: Detecting absolute human knee angle and angular velocity using accelerometers and rate gyroscopes. Med Biol Eng Comput 2001, 39: 294-302. 10.1007/BF02345283CrossRefPubMed Williamson R, Andrews BJ: Detecting absolute human knee angle and angular velocity using accelerometers and rate gyroscopes. Med Biol Eng Comput 2001, 39: 294-302. 10.1007/BF02345283CrossRefPubMed
23.
go back to reference Burdock EI, Fleiss JL, Hardesty AS: A new view of inter-observer agreement. Person Psychol 1963, 16: 373-384. 10.1111/j.1744-6570.1963.tb01283.xCrossRef Burdock EI, Fleiss JL, Hardesty AS: A new view of inter-observer agreement. Person Psychol 1963, 16: 373-384. 10.1111/j.1744-6570.1963.tb01283.xCrossRef
24.
go back to reference Bland JM, Altman DG: Statistical methods for assessing agreement between 2 methods of clinical measurement. Lancet 1986, 1: 307-310.CrossRefPubMed Bland JM, Altman DG: Statistical methods for assessing agreement between 2 methods of clinical measurement. Lancet 1986, 1: 307-310.CrossRefPubMed
25.
go back to reference Zampieri C, Salarian A, Carlson-Kuhta P, Aminian K, Nutt JG, Horak FB: The instrumented timed up and go test: potential outcome measure for disease modifying therapies in Parkinson’s disease. J Neurol Neurosur Ps 2010, 81: 171-176. 10.1136/jnnp.2009.173740CrossRef Zampieri C, Salarian A, Carlson-Kuhta P, Aminian K, Nutt JG, Horak FB: The instrumented timed up and go test: potential outcome measure for disease modifying therapies in Parkinson’s disease. J Neurol Neurosur Ps 2010, 81: 171-176. 10.1136/jnnp.2009.173740CrossRef
Metadata
Title
Sit-stand and stand-sit transitions in older adults and patients with Parkinson’s disease: event detection based on motion sensors versus force plates
Authors
Agnes Zijlstra
Martina Mancini
Ulrich Lindemann
Lorenzo Chiari
Wiebren Zijlstra
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2012
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-9-75

Other articles of this Issue 1/2012

Journal of NeuroEngineering and Rehabilitation 1/2012 Go to the issue