Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2012

Open Access 01-12-2012 | Research

Design and evaluation of a low-cost instrumented glove for hand function assessment

Authors: Ninja P Oess, Johann Wanek, Armin Curt

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2012

Login to get access

Abstract

Background

The evaluation of hand function impairment following a neurological disorder (stroke and cervical spinal cord injury) requires sensitive, reliable and clinically meaningful assessment tools. Clinical performance measures of hand function mainly focus on the accomplishment of activities of daily living (ADL), typically rather complex tasks assessed by a gross ordinal rating; while the motor performance (i.e. kinematics) is less detailed. The goal of this study was to develop a low-cost instrumented glove to capture details in grasping, feasible for the assessment of hand function in clinical practice and rehabilitation settings.

Methods

Different sensor types were tested for output signal stability over time by measuring the signal drift of their step responses. A system that converted sensor output voltages into angles based on pre-measured curves was implemented. Furthermore, the voltage supply of each sensor signal conditioning circuit was increased to enhance the sensor resolution. The repeatability of finger bending trajectories, recorded during the performance of three ADL-based tasks, was established using the intraclass correlation coefficient (ICC). Moreover, the accuracy of the glove was evaluated by determining the agreement between angles measured with the embedded sensors and angles measured by traditional goniometry. In addition, the feasibility of the glove was tested in four patients with a pathological hand function caused by a cervical spinal cord injury (cSCI).

Results

A sensor type that displayed a stable output signal over time was identified, and a high sensor resolution of 0.5° was obtained. The evaluation of the glove's reliability yielded high ICC values (0.84 to 0.92) with an accuracy error of about ± 5°. Feasibility testing revealed that the glove was sensitive to distinguish different levels of hand function impairment in cSCI patients.

Conclusions

The device satisfied the desired system requirements in terms of low cost, stable sensor signal over time, full finger-flexion range of motion tracking and capability to monitor all three joints of one finger. The developed rapid calibration system for easy use (high feasibility) and excellent psychometric properties (i.e. reliability and validity) qualify the device for the assessment of hand function in clinical practice and rehabilitation settings.
Appendix
Available only for authorised users
Literature
1.
go back to reference Krebs HI, Hogan N, Aisen ML, Volpe BT: Robot-aided neurorehabilitation. IEEE Trans Rehab Eng 1998,6(1):75-87. 10.1109/86.662623CrossRef Krebs HI, Hogan N, Aisen ML, Volpe BT: Robot-aided neurorehabilitation. IEEE Trans Rehab Eng 1998,6(1):75-87. 10.1109/86.662623CrossRef
2.
go back to reference Nef T, Guidali M, Riener R: ARMin III - arm therapy exoskeleton with an ergonomic shoulder actuation. Appl Bionic Biomech 2009,6(2):127-142. 10.1080/11762320902840179CrossRef Nef T, Guidali M, Riener R: ARMin III - arm therapy exoskeleton with an ergonomic shoulder actuation. Appl Bionic Biomech 2009,6(2):127-142. 10.1080/11762320902840179CrossRef
3.
go back to reference Micera S, Carrozza MC: A simple robotic system for neurorehabilitation. Auton Robot 2005, 19: 271-284. 10.1007/s10514-005-4749-0CrossRef Micera S, Carrozza MC: A simple robotic system for neurorehabilitation. Auton Robot 2005, 19: 271-284. 10.1007/s10514-005-4749-0CrossRef
4.
go back to reference Sanchez RJ, Liu J, Rao S, Shah P, Smith R, Rahman T, Cramer SC, Bobrow JE, Reinkensmeyer DJ: Automating arm movement training following severe stroke: functional exercises with quantitative feedback in a gravity-reduced environment. IEEE Trans Neural Syst Rehabil Eng 2006,14(3):378-389.CrossRefPubMed Sanchez RJ, Liu J, Rao S, Shah P, Smith R, Rahman T, Cramer SC, Bobrow JE, Reinkensmeyer DJ: Automating arm movement training following severe stroke: functional exercises with quantitative feedback in a gravity-reduced environment. IEEE Trans Neural Syst Rehabil Eng 2006,14(3):378-389.CrossRefPubMed
5.
go back to reference Kowalczewski J: Upper extremity neurorehabilitation. PhD thesis. Alberta University, Medicine Department; 2009. Kowalczewski J: Upper extremity neurorehabilitation. PhD thesis. Alberta University, Medicine Department; 2009.
6.
go back to reference Popovic MR, Keller T: Modular transcutaneous functional electrical stimulation system. Med Eng Phys 2005, 27: 81-92. 10.1016/j.medengphy.2004.08.016CrossRefPubMed Popovic MR, Keller T: Modular transcutaneous functional electrical stimulation system. Med Eng Phys 2005, 27: 81-92. 10.1016/j.medengphy.2004.08.016CrossRefPubMed
7.
go back to reference Popovic MR, Curt A, Keller T, Dietz V: Functional electrical stimulation for grasping and walking: indications and limitations. Spinal Cord 2001, 39: 403-412. 10.1038/sj.sc.3101191CrossRefPubMed Popovic MR, Curt A, Keller T, Dietz V: Functional electrical stimulation for grasping and walking: indications and limitations. Spinal Cord 2001, 39: 403-412. 10.1038/sj.sc.3101191CrossRefPubMed
8.
go back to reference Lyle RC: A performance test for assessment of upper limb function in physical rehabilitation treatment and research. Int J Rehab Research 1981,4(4):483-492. 10.1097/00004356-198112000-00001CrossRef Lyle RC: A performance test for assessment of upper limb function in physical rehabilitation treatment and research. Int J Rehab Research 1981,4(4):483-492. 10.1097/00004356-198112000-00001CrossRef
9.
go back to reference Wolf SL, Lecraw DE, Barton LA, Jann BB: Forced use of hemiplegic upper extremities to reverse the effect of learned nonuse among chronic stroke and head-injured patients. Exp Neurol 1989, 104: 125-132. 10.1016/S0014-4886(89)80005-6CrossRefPubMed Wolf SL, Lecraw DE, Barton LA, Jann BB: Forced use of hemiplegic upper extremities to reverse the effect of learned nonuse among chronic stroke and head-injured patients. Exp Neurol 1989, 104: 125-132. 10.1016/S0014-4886(89)80005-6CrossRefPubMed
10.
go back to reference Dipietro L, Sabatini AM, Dario P: A survey of glove-based systems and their applications. IEEE Trans Syst Man Cyber 2008,38(4):461-482.CrossRef Dipietro L, Sabatini AM, Dario P: A survey of glove-based systems and their applications. IEEE Trans Syst Man Cyber 2008,38(4):461-482.CrossRef
11.
go back to reference Simone LK, Kamper DG: Design considerations for a wearable monitor to measure finger posture. J Neuroeng Rehabil 2005,2(5):1-10. Simone LK, Kamper DG: Design considerations for a wearable monitor to measure finger posture. J Neuroeng Rehabil 2005,2(5):1-10.
12.
go back to reference Gentner R, Classen J: Development and evaluation of a low-cost sensor glove for assessment of human finger movements in neurophysiological settings. J Neuroscience Meth 2009,178(2):138-147.CrossRef Gentner R, Classen J: Development and evaluation of a low-cost sensor glove for assessment of human finger movements in neurophysiological settings. J Neuroscience Meth 2009,178(2):138-147.CrossRef
13.
go back to reference Simone LK, Sundarrajan N, Luo X, Jia Y, Kamper DG: A low cost instrumented glove for extended monitoring and functional hand assessment. J Neurosci Meth 2007, 160: 335-348. 10.1016/j.jneumeth.2006.09.021CrossRef Simone LK, Sundarrajan N, Luo X, Jia Y, Kamper DG: A low cost instrumented glove for extended monitoring and functional hand assessment. J Neurosci Meth 2007, 160: 335-348. 10.1016/j.jneumeth.2006.09.021CrossRef
14.
go back to reference Tsagarakis NG, Kenward B, Rosander K, Caldwell DG, von Hofsten C: "BabyGlove": a device to study hand motion control development in infants. EuroHaptics 2006. Tsagarakis NG, Kenward B, Rosander K, Caldwell DG, von Hofsten C: "BabyGlove": a device to study hand motion control development in infants. EuroHaptics 2006.
15.
go back to reference Williams NW, Penrose JMT, Caddy CM, Barnes E, Hose DR, Harley P: A goniometric glove for clinical hand assessment. J Hand Surg 2000,25B(2):200-207.CrossRef Williams NW, Penrose JMT, Caddy CM, Barnes E, Hose DR, Harley P: A goniometric glove for clinical hand assessment. J Hand Surg 2000,25B(2):200-207.CrossRef
16.
go back to reference Langford GB: Flexible potentiometer. US Patent 5 157 372 1992. Langford GB: Flexible potentiometer. US Patent 5 157 372 1992.
17.
go back to reference Gentile CT, Wallace M, Avalon TD, Goodman S, Fuller R, Hall T: Angular displacement sensors. US Patent 5 086 785 1992. Gentile CT, Wallace M, Avalon TD, Goodman S, Fuller R, Hall T: Angular displacement sensors. US Patent 5 086 785 1992.
18.
go back to reference Oess NP, Wanek J, van Hedel HJA: Enhancement of bend sensor properties as applied in a glove for use in neurorehabilitation settings. In Proceedings of the 32nd Annual International Conference of the IEEE EMBS. Buenos Aires, Argentina; 2010. Oess NP, Wanek J, van Hedel HJA: Enhancement of bend sensor properties as applied in a glove for use in neurorehabilitation settings. In Proceedings of the 32nd Annual International Conference of the IEEE EMBS. Buenos Aires, Argentina; 2010.
19.
go back to reference Sollerman C, Ejeskär A: Sollerman hand function test: a standardised method and its use in tetraplegic patients. Scand J Plast Reconstr Surg Hand Surg 1995, 29: 167-176. 10.3109/02844319509034334CrossRefPubMed Sollerman C, Ejeskär A: Sollerman hand function test: a standardised method and its use in tetraplegic patients. Scand J Plast Reconstr Surg Hand Surg 1995, 29: 167-176. 10.3109/02844319509034334CrossRefPubMed
20.
go back to reference van de Ven-Stevens LA, Munneke M, Terwee CB, Spauwen PH, van der Linde H: Clinimetric properties of instruments to assess activities in patients with hand injury: a systematic review of the literature. Arch Phys Med Rehabil 2009, 90: 151-169. 10.1016/j.apmr.2008.06.024CrossRefPubMed van de Ven-Stevens LA, Munneke M, Terwee CB, Spauwen PH, van der Linde H: Clinimetric properties of instruments to assess activities in patients with hand injury: a systematic review of the literature. Arch Phys Med Rehabil 2009, 90: 151-169. 10.1016/j.apmr.2008.06.024CrossRefPubMed
21.
go back to reference Dipietro L, Sabatini AM, Dario P: Evaluation of an instrumented glove for hand-movement acquisition. J Rehabil Res Dev 2003,40(2):179-190.CrossRefPubMed Dipietro L, Sabatini AM, Dario P: Evaluation of an instrumented glove for hand-movement acquisition. J Rehabil Res Dev 2003,40(2):179-190.CrossRefPubMed
22.
go back to reference Wise S, Gardner W, Sabelman E, Valainis E, Wong Y, Glass K, Drace J, Rosen JM: Evaluation of a fiber optic glove for semi-automated goniometric measurements. J Rehabil Res Dev 1990,27(4):411-424. 10.1682/JRRD.1990.10.0411CrossRefPubMed Wise S, Gardner W, Sabelman E, Valainis E, Wong Y, Glass K, Drace J, Rosen JM: Evaluation of a fiber optic glove for semi-automated goniometric measurements. J Rehabil Res Dev 1990,27(4):411-424. 10.1682/JRRD.1990.10.0411CrossRefPubMed
Metadata
Title
Design and evaluation of a low-cost instrumented glove for hand function assessment
Authors
Ninja P Oess
Johann Wanek
Armin Curt
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2012
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-9-2

Other articles of this Issue 1/2012

Journal of NeuroEngineering and Rehabilitation 1/2012 Go to the issue