Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2010

Open Access 01-12-2010 | Research

Innovative gait robot for the repetitive practice of floor walking and stair climbing up and down in stroke patients

Authors: Stefan Hesse, Andreas Waldner, Christopher Tomelleri

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2010

Login to get access

Abstract

Background

Stair climbing up and down is an essential part of everyday's mobility. To enable wheelchair-dependent patients the repetitive practice of this task, a novel gait robot, G-EO-Systems (EO, Lat: I walk), based on the end-effector principle, has been designed. The trajectories of the foot plates are freely programmable enabling not only the practice of simulated floor walking but also stair climbing up and down. The article intended to compare lower limb muscle activation patterns of hemiparetic subjects during real floor walking and stairs climbing up, and during the corresponding simulated conditions on the machine, and secondly to demonstrate gait improvement on single case after training on the machine.

Methods

The muscle activation pattern of seven lower limb muscles of six hemiparetic patients during free and simulated walking on the floor and stair climbing was measured via dynamic electromyography. A non-ambulatory, sub-acute stroke patient additionally trained on the G-EO-Systems every workday for five weeks.

Results

The muscle activation patterns were comparable during the real and simulated conditions, both on the floor and during stair climbing up. Minor differences, concerning the real and simulated floor walking conditions, were a delayed (prolonged) onset (duration) of the thigh muscle activation on the machine across all subjects. Concerning stair climbing conditions, the shank muscle activation was more phasic and timely correct in selected patients on the device. The severely affected subject regained walking and stair climbing ability.

Conclusions

The G-EO-Systems is an interesting new option in gait rehabilitation after stroke. The lower limb muscle activation patterns were comparable, a training thus feasible, and the positive case report warrants further clinical studies.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kolominsky-Rabas PL, Heuschmann PU: Incidence, etiology and long-term prognosis of stroke. Fortschr Neurol Psychiatr 2002, 70: 657-62. 10.1055/s-2002-35857CrossRefPubMed Kolominsky-Rabas PL, Heuschmann PU: Incidence, etiology and long-term prognosis of stroke. Fortschr Neurol Psychiatr 2002, 70: 657-62. 10.1055/s-2002-35857CrossRefPubMed
2.
go back to reference Jorgensen HS, Nakayama H, Raaschou HO, Olsen TS: Recovery of walking function in stroke patients: the Copenhagen stroke study. Arch Phys Med Rehabil 1995, 76: 27-32. 10.1016/S0003-9993(95)80038-7CrossRefPubMed Jorgensen HS, Nakayama H, Raaschou HO, Olsen TS: Recovery of walking function in stroke patients: the Copenhagen stroke study. Arch Phys Med Rehabil 1995, 76: 27-32. 10.1016/S0003-9993(95)80038-7CrossRefPubMed
3.
go back to reference Carr J, Shepherd R: Stroke Rehabilitation: Guidelines for exercises and training. London: Butterworth Heinemann; 2003. Carr J, Shepherd R: Stroke Rehabilitation: Guidelines for exercises and training. London: Butterworth Heinemann; 2003.
4.
go back to reference Barbeau H, Visintin M: Optimal outcomes obtained with body-weight support combined with treadmill training in stroke subjects. Arch Phys Med Rehabil 2003,84(10):1458-65. 10.1016/S0003-9993(03)00361-7CrossRefPubMed Barbeau H, Visintin M: Optimal outcomes obtained with body-weight support combined with treadmill training in stroke subjects. Arch Phys Med Rehabil 2003,84(10):1458-65. 10.1016/S0003-9993(03)00361-7CrossRefPubMed
5.
go back to reference Dobkin BH, Apple D, Barbeau H, Basso M, Behrman A, Deforge D, Ditunno J, Dudley G, Elashoff R, Fugate L, Harkema S, Saulino M, Scott M: Methods for a randomized trial of weight-supported treadmill training versus conventional training for walking during inpatient rehabilitation after incomplete traumatic spinal cord injury. Neurorehabil Neural Repair 2003,17(3):153-67. 10.1177/0888439003255508PubMedCentralCrossRefPubMed Dobkin BH, Apple D, Barbeau H, Basso M, Behrman A, Deforge D, Ditunno J, Dudley G, Elashoff R, Fugate L, Harkema S, Saulino M, Scott M: Methods for a randomized trial of weight-supported treadmill training versus conventional training for walking during inpatient rehabilitation after incomplete traumatic spinal cord injury. Neurorehabil Neural Repair 2003,17(3):153-67. 10.1177/0888439003255508PubMedCentralCrossRefPubMed
6.
go back to reference Colombo G, Joerg M, Schreier R, Dietz V: Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev 2000,37(6):693-700.PubMed Colombo G, Joerg M, Schreier R, Dietz V: Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev 2000,37(6):693-700.PubMed
7.
go back to reference Veneman JF, Kruidhof R, Hekman EE, Ekkelenkamp R, Van Asseldonk EH, van der Kooij H: Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng 2007,15(3):379-86. 10.1109/TNSRE.2007.903919CrossRefPubMed Veneman JF, Kruidhof R, Hekman EE, Ekkelenkamp R, Van Asseldonk EH, van der Kooij H: Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng 2007,15(3):379-86. 10.1109/TNSRE.2007.903919CrossRefPubMed
8.
9.
go back to reference Mantone J: Getting a leg up? Rehab patients get an assist from devices such as HealthSouth's AutoAmbulator, but the robots' clinical benefits are still in doubt. Mod Healthc 2006,36(7):58-60.PubMed Mantone J: Getting a leg up? Rehab patients get an assist from devices such as HealthSouth's AutoAmbulator, but the robots' clinical benefits are still in doubt. Mod Healthc 2006,36(7):58-60.PubMed
10.
go back to reference Hesse S, Uhlenbrock D: A mechanized gait trainer for restoration of gait. J Rehab Res Dev 2000,37(6):701-8. Hesse S, Uhlenbrock D: A mechanized gait trainer for restoration of gait. J Rehab Res Dev 2000,37(6):701-8.
11.
go back to reference Schmidt H, Werner C, Bernhardt R, Hesse S, Krüger J: Gait rehabilitation machines based on programmable footplates. J Neuroeng Rehabil 2007, 4: 2. 10.1186/1743-0003-4-2PubMedCentralCrossRefPubMed Schmidt H, Werner C, Bernhardt R, Hesse S, Krüger J: Gait rehabilitation machines based on programmable footplates. J Neuroeng Rehabil 2007, 4: 2. 10.1186/1743-0003-4-2PubMedCentralCrossRefPubMed
12.
go back to reference Freivogel S, Mehrholz J, Husak-Sotomayor T, Schmalohr D: Gait training with the newly developed 'LokoHelp'-system is feasible for non-ambulatory patients after stroke, spinal cord and brain injury. A feasibility study. Brain Inj 2008,22(7-8):625-32. 10.1080/02699050801941771CrossRefPubMed Freivogel S, Mehrholz J, Husak-Sotomayor T, Schmalohr D: Gait training with the newly developed 'LokoHelp'-system is feasible for non-ambulatory patients after stroke, spinal cord and brain injury. A feasibility study. Brain Inj 2008,22(7-8):625-32. 10.1080/02699050801941771CrossRefPubMed
13.
go back to reference Husemann B, Müller F, Krewer C, Heller S, Koenig E: Effects of locomotion training with assistance of a robot-driven gait orthosis in hemiparetic patients after stroke. A randomized controlled pilot study. Stroke 2007,38(2):349-54. 10.1161/01.STR.0000254607.48765.cbCrossRefPubMed Husemann B, Müller F, Krewer C, Heller S, Koenig E: Effects of locomotion training with assistance of a robot-driven gait orthosis in hemiparetic patients after stroke. A randomized controlled pilot study. Stroke 2007,38(2):349-54. 10.1161/01.STR.0000254607.48765.cbCrossRefPubMed
14.
go back to reference Pohl M, Werner C, Holzgraefe M, Kroczek G, Mehrholz J, Wingendorf I, Hoölig G, Koch R, Hesse S: Repetitive locomotor training and physiotherapy improve walking and basic activities of daily living in subacute, nonambulatory stroke patients: a single-blind, randomised multi-centre trial (DEutsche GAngtrainerStudie, DEGAS). Clinical Rehabilitation 2007,21(1):17-27. 10.1177/0269215506071281CrossRefPubMed Pohl M, Werner C, Holzgraefe M, Kroczek G, Mehrholz J, Wingendorf I, Hoölig G, Koch R, Hesse S: Repetitive locomotor training and physiotherapy improve walking and basic activities of daily living in subacute, nonambulatory stroke patients: a single-blind, randomised multi-centre trial (DEutsche GAngtrainerStudie, DEGAS). Clinical Rehabilitation 2007,21(1):17-27. 10.1177/0269215506071281CrossRefPubMed
15.
go back to reference Regnaux JP, Saremi K, Marehbian J, Bussel B, Dobkin BH: An accelerometry-based comparison of 2 robotic assistive devices for treadmill training of gait. Neurorehabil Neural Repair 2008,22(4):348-54.CrossRefPubMed Regnaux JP, Saremi K, Marehbian J, Bussel B, Dobkin BH: An accelerometry-based comparison of 2 robotic assistive devices for treadmill training of gait. Neurorehabil Neural Repair 2008,22(4):348-54.CrossRefPubMed
16.
go back to reference Paolucci S, Braagoni M, Coiro P, De Angelis D, Fusco FR, Morelli D, Venturiero V, Pratesi L: Quantification of the probability of reaching mobility indipendend at discharge from the rehabilitation hospital in non walking early ischemic stroke patient: a multivariate study. Cerebrovasc Dis 2008,26(1):16-22. 10.1159/000135648CrossRefPubMed Paolucci S, Braagoni M, Coiro P, De Angelis D, Fusco FR, Morelli D, Venturiero V, Pratesi L: Quantification of the probability of reaching mobility indipendend at discharge from the rehabilitation hospital in non walking early ischemic stroke patient: a multivariate study. Cerebrovasc Dis 2008,26(1):16-22. 10.1159/000135648CrossRefPubMed
17.
go back to reference Schmidt H, Sorowka D, Hesse S, Bernhardt R: Development of a robotic walking simulator for gait rehabilitation. Biomed Tech (Berl) 2003,48(10):281-6. 10.1515/bmte.2003.48.10.281CrossRef Schmidt H, Sorowka D, Hesse S, Bernhardt R: Development of a robotic walking simulator for gait rehabilitation. Biomed Tech (Berl) 2003,48(10):281-6. 10.1515/bmte.2003.48.10.281CrossRef
18.
go back to reference Behrman AL, Harkema SJ: Locomotor training after human spinal cord injury: A series of case studies. Physical Therapy 2000,80(7):688-700.PubMed Behrman AL, Harkema SJ: Locomotor training after human spinal cord injury: A series of case studies. Physical Therapy 2000,80(7):688-700.PubMed
19.
go back to reference Winter DA: Foot trajectory in human gait: a precise and multifactorial motor control task. Phys Ther 1992,72(1):45-53.PubMed Winter DA: Foot trajectory in human gait: a precise and multifactorial motor control task. Phys Ther 1992,72(1):45-53.PubMed
20.
go back to reference Winter DA: Biomechanics and control of human movement. Second edition. Wiley Inter Science; 1990:212-32. Winter DA: Biomechanics and control of human movement. Second edition. Wiley Inter Science; 1990:212-32.
21.
go back to reference Hogan N: The organizing principle for a class of voluntary movements. Journal of Neuroscience 1984,11(4):2745-54. Hogan N: The organizing principle for a class of voluntary movements. Journal of Neuroscience 1984,11(4):2745-54.
22.
go back to reference Zachazewski JE, Riley PO, Krebs DE: Biomechanical analysis of body mass transfer during stair ascent and descent of healthy subjects. J Rehabil Res Dev 1993,30(4):412-22.PubMed Zachazewski JE, Riley PO, Krebs DE: Biomechanical analysis of body mass transfer during stair ascent and descent of healthy subjects. J Rehabil Res Dev 1993,30(4):412-22.PubMed
23.
go back to reference McFadyen BJ, Winter DA: An integrated biomechanical analysis of normal stair ascent and descent. J Biomech 1988,21(9):733-44. 10.1016/0021-9290(88)90282-5CrossRefPubMed McFadyen BJ, Winter DA: An integrated biomechanical analysis of normal stair ascent and descent. J Biomech 1988,21(9):733-44. 10.1016/0021-9290(88)90282-5CrossRefPubMed
24.
go back to reference Hidler JM, Wall AE: Alterations in muscle activation patterns during robotic-assisted walking. Clin Biomech 2005, 20: 184-93. 10.1016/j.clinbiomech.2004.09.016CrossRef Hidler JM, Wall AE: Alterations in muscle activation patterns during robotic-assisted walking. Clin Biomech 2005, 20: 184-93. 10.1016/j.clinbiomech.2004.09.016CrossRef
25.
go back to reference Giakas G, Baltzopoulos V: A comparison of automatic filtering techniques applied to biomechanical walking data. J Biomech 1997, 30: 847-50. 10.1016/S0021-9290(97)00042-0CrossRefPubMed Giakas G, Baltzopoulos V: A comparison of automatic filtering techniques applied to biomechanical walking data. J Biomech 1997, 30: 847-50. 10.1016/S0021-9290(97)00042-0CrossRefPubMed
26.
go back to reference Simons W, Yang K: Differentiation of human motion data using combined spline and least squares concept. Journal of Biomechanical Engineering 1991, 113: 348-51. 10.1115/1.2894894CrossRefPubMed Simons W, Yang K: Differentiation of human motion data using combined spline and least squares concept. Journal of Biomechanical Engineering 1991, 113: 348-51. 10.1115/1.2894894CrossRefPubMed
27.
go back to reference van Asseldonk EH, Veneman JF, Ekkelenkamp R, Buurke JH, van der Helm FC, van der Kooij H: The Effects on Kinematics and Muscle Activity of Walking in a Robotic Gait Trainer During Zero-Force Control. IEEE Trans Neural Syst Rehabil Eng 2008,16(4):360-70. 10.1109/TNSRE.2008.925074CrossRefPubMed van Asseldonk EH, Veneman JF, Ekkelenkamp R, Buurke JH, van der Helm FC, van der Kooij H: The Effects on Kinematics and Muscle Activity of Walking in a Robotic Gait Trainer During Zero-Force Control. IEEE Trans Neural Syst Rehabil Eng 2008,16(4):360-70. 10.1109/TNSRE.2008.925074CrossRefPubMed
28.
go back to reference Den Otter AG, Guerts AC, Mulder T, Duysens J: Abnormalities in the temporal patterning of lower extremity muscle activity in hemiparetic gait. Gait Posture 2007,25(3):342-52. 10.1016/j.gaitpost.2006.04.007CrossRefPubMed Den Otter AG, Guerts AC, Mulder T, Duysens J: Abnormalities in the temporal patterning of lower extremity muscle activity in hemiparetic gait. Gait Posture 2007,25(3):342-52. 10.1016/j.gaitpost.2006.04.007CrossRefPubMed
29.
go back to reference Knuttson E, Richards C: Different types of disturbed motor control in gait of hemiparetic patients. Brain 1979, 102: 405-30. 10.1093/brain/102.2.405CrossRef Knuttson E, Richards C: Different types of disturbed motor control in gait of hemiparetic patients. Brain 1979, 102: 405-30. 10.1093/brain/102.2.405CrossRef
30.
go back to reference Hussein S, Schmidt H, Volkmar M, Werner C, Helmich I, Piorko F, Krüger J, Hesse S: Muscle coordination in healthy subjects during floor walking and stair climbing in robot assisted gait training. Conf Proc IEEE Eng Med Biol Soc 2008, 1961-4. Hussein S, Schmidt H, Volkmar M, Werner C, Helmich I, Piorko F, Krüger J, Hesse S: Muscle coordination in healthy subjects during floor walking and stair climbing in robot assisted gait training. Conf Proc IEEE Eng Med Biol Soc 2008, 1961-4.
Metadata
Title
Innovative gait robot for the repetitive practice of floor walking and stair climbing up and down in stroke patients
Authors
Stefan Hesse
Andreas Waldner
Christopher Tomelleri
Publication date
01-12-2010
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2010
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-7-30

Other articles of this Issue 1/2010

Journal of NeuroEngineering and Rehabilitation 1/2010 Go to the issue