Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2009

Open Access 01-12-2009 | Research

Pilot study of Lokomat versus manual-assisted treadmill training for locomotor recovery post-stroke

Authors: Kelly P Westlake, Carolynn Patten

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2009

Login to get access

Abstract

Background

While manually-assisted body-weight supported treadmill training (BWSTT) has revealed improved locomotor function in persons with post-stroke hemiparesis, outcomes are inconsistent and it is very labor intensive. Thus an alternate treatment approach is desirable. Objectives of this pilot study were to: 1) compare the efficacy of body-weight supported treadmill training (BWSTT) combined with the Lokomat robotic gait orthosis versus manually-assisted BWSTT for locomotor training post-stroke, and 2) assess effects of fast versus slow treadmill training speed.

Methods

Sixteen volunteers with chronic hemiparetic gait (0.62 ± 0.30 m/s) post-stroke were randomly allocated to Lokomat (n = 8) or manual-BWSTT (n = 8) 3×/wk for 4 weeks. Groups were also stratified by fast (mean 0.92 ± 0.15 m/s) or slow (0.58 ± 0.12 m/s) training speeds. The primary outcomes were self-selected overground walking speed and paretic step length ratio. Secondary outcomes included: fast overground walking speed, 6-minute walk test, and a battery of clinical measures.

Results

No significant differences in primary outcomes were revealed between Lokomat and manual groups as a result of training. However, within the Lokomat group, self-selected walk speed, paretic step length ratio, and four of the six secondary measures improved (p = 0.04–0.05, effect sizes = 0.19–0.60). Within the manual group, only balance scores improved (p = 0.02, effect size = 0.57). Group differences between fast and slow training groups were not revealed (p ≥ 0.28).

Conclusion

Results suggest that Lokomat training may have advantages over manual-BWSTT following a modest intervention dose in chronic hemiparetic persons and further, that our training speeds produce similar gait improvements. Suggestions for a larger randomized controlled trial with optimal study parameters are provided.
Appendix
Available only for authorised users
Literature
1.
go back to reference Chen G, Patten C, Kothari DH, Zajac FE: Gait differences between individuals with post-stroke hemiparesis and non-disabled controls at matched speeds. Gait Posture 2005, 22: 51-56. 10.1016/j.gaitpost.2004.06.009CrossRefPubMed Chen G, Patten C, Kothari DH, Zajac FE: Gait differences between individuals with post-stroke hemiparesis and non-disabled controls at matched speeds. Gait Posture 2005, 22: 51-56. 10.1016/j.gaitpost.2004.06.009CrossRefPubMed
2.
go back to reference Olney SJ, Monga TN, Costigan PA: Mechanical energy of walking of stroke patients. Arch Phys Med Rehabil 1986, 67: 92-98. 10.1016/0003-9993(86)90109-7CrossRefPubMed Olney SJ, Monga TN, Costigan PA: Mechanical energy of walking of stroke patients. Arch Phys Med Rehabil 1986, 67: 92-98. 10.1016/0003-9993(86)90109-7CrossRefPubMed
4.
go back to reference Perry J, Garrett M, Gronley JK, Mulroy SJ: Classification of walking handicap in the stroke population. Stroke 1995, 26: 982-989.CrossRefPubMed Perry J, Garrett M, Gronley JK, Mulroy SJ: Classification of walking handicap in the stroke population. Stroke 1995, 26: 982-989.CrossRefPubMed
5.
go back to reference Maclean N, Pound P, Wolfe C, Rudd A: Qualitative analysis of stroke patients' motivation for rehabilitation. BMJ 2000, 321: 1051-1054. 10.1136/bmj.321.7268.1051PubMedCentralCrossRefPubMed Maclean N, Pound P, Wolfe C, Rudd A: Qualitative analysis of stroke patients' motivation for rehabilitation. BMJ 2000, 321: 1051-1054. 10.1136/bmj.321.7268.1051PubMedCentralCrossRefPubMed
6.
go back to reference McCain KJ, Pollo FE, Baum BS, Coleman SC, Baker S, Smith PS: Locomotor treadmill training with partial body-weight support before overground gait in adults with acute stroke: a pilot study. Arch Phys Med Rehabil 2008, 89: 684-691. 10.1016/j.apmr.2007.09.050CrossRefPubMed McCain KJ, Pollo FE, Baum BS, Coleman SC, Baker S, Smith PS: Locomotor treadmill training with partial body-weight support before overground gait in adults with acute stroke: a pilot study. Arch Phys Med Rehabil 2008, 89: 684-691. 10.1016/j.apmr.2007.09.050CrossRefPubMed
7.
go back to reference Visintin M, Barbeau H, Korner-Bitensky N, Mayo NE: A new approach to retrain gait in stroke patients through body weight support and treadmill stimulation. Stroke 1998, 29: 1122-1128.CrossRefPubMed Visintin M, Barbeau H, Korner-Bitensky N, Mayo NE: A new approach to retrain gait in stroke patients through body weight support and treadmill stimulation. Stroke 1998, 29: 1122-1128.CrossRefPubMed
8.
go back to reference Sullivan KJ, Knowlton BJ, Dobkin BH: Step training with body weight support: effect of treadmill speed and practice paradigms on poststroke locomotor recovery. Arch Phys Med Rehabil 2002, 83: 683-691. 10.1053/apmr.2002.32488CrossRefPubMed Sullivan KJ, Knowlton BJ, Dobkin BH: Step training with body weight support: effect of treadmill speed and practice paradigms on poststroke locomotor recovery. Arch Phys Med Rehabil 2002, 83: 683-691. 10.1053/apmr.2002.32488CrossRefPubMed
9.
go back to reference Moseley AM, Stark A, Cameron ID, Pollock A: Treadmill training and body weight support for walking after stroke. Cochrane Database Syst Rev 2005, CD002840. Moseley AM, Stark A, Cameron ID, Pollock A: Treadmill training and body weight support for walking after stroke. Cochrane Database Syst Rev 2005, CD002840.
10.
go back to reference Edgerton VR, Leon RD, Harkema SJ, Hodgson JA, London N, Reinkensmeyer DJ, Roy RR, Talmadge RJ, Tillakaratne NJ, Timoszyk W, Tobin A: Retraining the injured spinal cord. J Physiol 2001, 533: 1-22. 10.1111/j.1469-7793.2001.0015b.xCrossRef Edgerton VR, Leon RD, Harkema SJ, Hodgson JA, London N, Reinkensmeyer DJ, Roy RR, Talmadge RJ, Tillakaratne NJ, Timoszyk W, Tobin A: Retraining the injured spinal cord. J Physiol 2001, 533: 1-22. 10.1111/j.1469-7793.2001.0015b.xCrossRef
11.
go back to reference Edgerton VR, Courtine G, Gerasimenko YP, Lavrov I, Ichiyama RM, Fong AJ, Cai LL, Otoshi CK, Tillakaratne NJK, Burdick JW, Roy RR: Training locomotor networks. Brain Res Rev 2008, 57: 241-254. 10.1016/j.brainresrev.2007.09.002PubMedCentralCrossRefPubMed Edgerton VR, Courtine G, Gerasimenko YP, Lavrov I, Ichiyama RM, Fong AJ, Cai LL, Otoshi CK, Tillakaratne NJK, Burdick JW, Roy RR: Training locomotor networks. Brain Res Rev 2008, 57: 241-254. 10.1016/j.brainresrev.2007.09.002PubMedCentralCrossRefPubMed
12.
go back to reference Cha J, Heng C, Reinkensmeyer DJ, Roy RR, Edgerton VR, De Leon RD: Locomotor ability in spinal rats is dependent on the amount of activity imposed on the hindlimbs during treadmill training. J Neurotrauma 2007, 24: 1000-1012. 10.1089/neu.2006.0233CrossRefPubMed Cha J, Heng C, Reinkensmeyer DJ, Roy RR, Edgerton VR, De Leon RD: Locomotor ability in spinal rats is dependent on the amount of activity imposed on the hindlimbs during treadmill training. J Neurotrauma 2007, 24: 1000-1012. 10.1089/neu.2006.0233CrossRefPubMed
13.
go back to reference Rossignol S: Locomotion and its recovery after spinal injury. Curr Opin Neurobiol 2000, 10: 708-716. 10.1016/S0959-4388(00)00151-3CrossRefPubMed Rossignol S: Locomotion and its recovery after spinal injury. Curr Opin Neurobiol 2000, 10: 708-716. 10.1016/S0959-4388(00)00151-3CrossRefPubMed
14.
go back to reference Nessler JA, De Leon RD, Sharp K, Kwak E, Minakata K, Reinkensmeyer DJ: Robotic gait analysis of bipedal treadmill stepping by spinal contused rats: characterization of intrinsic recovery and comparison with BBB. J Neurotrauma 2006, 23: 882-896. 10.1089/neu.2006.23.882CrossRefPubMed Nessler JA, De Leon RD, Sharp K, Kwak E, Minakata K, Reinkensmeyer DJ: Robotic gait analysis of bipedal treadmill stepping by spinal contused rats: characterization of intrinsic recovery and comparison with BBB. J Neurotrauma 2006, 23: 882-896. 10.1089/neu.2006.23.882CrossRefPubMed
15.
go back to reference Winchester P, McColl R, Querry R, Foreman N, Mosby J, Tansey K, Williamson J: Changes in supraspinal activation patterns following robotic locomotor therapy in motor-incomplete spinal cord injury. Neurorehabil Neural Repair 2005, 19: 313-324. 10.1177/1545968305281515CrossRefPubMed Winchester P, McColl R, Querry R, Foreman N, Mosby J, Tansey K, Williamson J: Changes in supraspinal activation patterns following robotic locomotor therapy in motor-incomplete spinal cord injury. Neurorehabil Neural Repair 2005, 19: 313-324. 10.1177/1545968305281515CrossRefPubMed
16.
go back to reference Mehrholz J, Werner C, Kugler J, Pohl M: Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev 2007, CD006185. Mehrholz J, Werner C, Kugler J, Pohl M: Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev 2007, CD006185.
17.
go back to reference Werner C, Von Frankenberg S, Treig T, Konrad M, Hesse S: Treadmill training with partial body weight support and an electromechanical gait trainer for restoration of gait in subacute stroke patients: a randomized crossover study. Stroke 2002, 33: 2895-2901. 10.1161/01.STR.0000035734.61539.F6CrossRefPubMed Werner C, Von Frankenberg S, Treig T, Konrad M, Hesse S: Treadmill training with partial body weight support and an electromechanical gait trainer for restoration of gait in subacute stroke patients: a randomized crossover study. Stroke 2002, 33: 2895-2901. 10.1161/01.STR.0000035734.61539.F6CrossRefPubMed
18.
go back to reference Husemann B, Muller F, Krewer C, Heller S, Koenig E: Effects of locomotion training with assistance of a robot-driven gait orthosis in hemiparetic patients after stroke: a randomized controlled pilot study. Stroke 2007, 38: 349-354. 10.1161/01.STR.0000254607.48765.cbCrossRefPubMed Husemann B, Muller F, Krewer C, Heller S, Koenig E: Effects of locomotion training with assistance of a robot-driven gait orthosis in hemiparetic patients after stroke: a randomized controlled pilot study. Stroke 2007, 38: 349-354. 10.1161/01.STR.0000254607.48765.cbCrossRefPubMed
19.
go back to reference Mayr A, Kofler M, Quirbach E, Matzak H, Frohlich K, Saltuari L: Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the Lokomat gait orthosis. Neurorehabil Neural Repair 2007, 21: 307-314. 10.1177/1545968307300697CrossRefPubMed Mayr A, Kofler M, Quirbach E, Matzak H, Frohlich K, Saltuari L: Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the Lokomat gait orthosis. Neurorehabil Neural Repair 2007, 21: 307-314. 10.1177/1545968307300697CrossRefPubMed
20.
go back to reference Hornby TG, Campbell DD, Kahn JH, Demott T, Moore JL, Roth HR: Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study. Stroke 2008, 39: 1786-1792. 10.1161/STROKEAHA.107.504779CrossRefPubMed Hornby TG, Campbell DD, Kahn JH, Demott T, Moore JL, Roth HR: Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study. Stroke 2008, 39: 1786-1792. 10.1161/STROKEAHA.107.504779CrossRefPubMed
21.
go back to reference Chen G, Patten C: Treadmill training with harness support: selection of parameters for individuals with poststroke hemiparesis. J Rehabil Res Dev 2006, 43: 485-498. 10.1682/JRRD.2005.04.0063CrossRefPubMed Chen G, Patten C: Treadmill training with harness support: selection of parameters for individuals with poststroke hemiparesis. J Rehabil Res Dev 2006, 43: 485-498. 10.1682/JRRD.2005.04.0063CrossRefPubMed
22.
go back to reference Pohl M, Mehrholz J, Ritschel C, Ruckriem S: Speed-dependent treadmill training in ambulatory hemiparetic stroke patients: a randomized controlled trial. Stroke 2002, 33: 553-558. 10.1161/hs0202.102365CrossRefPubMed Pohl M, Mehrholz J, Ritschel C, Ruckriem S: Speed-dependent treadmill training in ambulatory hemiparetic stroke patients: a randomized controlled trial. Stroke 2002, 33: 553-558. 10.1161/hs0202.102365CrossRefPubMed
23.
go back to reference Schmid A, Duncan PW, Studenski S, Lai SM, Richards L, Perera S, Wu SS: Improvements in speed-based gait classifications are meaningful. Stroke 2007, 38: 2096-2100. 10.1161/STROKEAHA.106.475921CrossRefPubMed Schmid A, Duncan PW, Studenski S, Lai SM, Richards L, Perera S, Wu SS: Improvements in speed-based gait classifications are meaningful. Stroke 2007, 38: 2096-2100. 10.1161/STROKEAHA.106.475921CrossRefPubMed
24.
go back to reference Patterson SL, Rodgers MM, Macko RF, Forrester LW: Effect of treadmill exercise training on spatial and temporal gait parameters in subjects with chronic stroke: A preliminary report. J Rehabil Res Dev 2008, 45: 221-228. 10.1682/JRRD.2007.02.0024PubMedCentralCrossRefPubMed Patterson SL, Rodgers MM, Macko RF, Forrester LW: Effect of treadmill exercise training on spatial and temporal gait parameters in subjects with chronic stroke: A preliminary report. J Rehabil Res Dev 2008, 45: 221-228. 10.1682/JRRD.2007.02.0024PubMedCentralCrossRefPubMed
25.
go back to reference Chen G, Patten C, Kothari DH, Zajac FE: Gait deviations associated with post-stroke hemiparesis: improvement during treadmill walking using weight support, speed, support stiffness, and handrail hold. Gait Posture 2005, 22: 57-62. 10.1016/j.gaitpost.2004.06.008CrossRefPubMed Chen G, Patten C, Kothari DH, Zajac FE: Gait deviations associated with post-stroke hemiparesis: improvement during treadmill walking using weight support, speed, support stiffness, and handrail hold. Gait Posture 2005, 22: 57-62. 10.1016/j.gaitpost.2004.06.008CrossRefPubMed
26.
go back to reference Balasubramanian CK, Bowden MG, Neptune RR, Kautz SA: Relationship between step length asymmetry and walking performance in subjects with chronic hemiparesis. Arch Phys Med Rehabil 2007, 88: 43-49. 10.1016/j.apmr.2006.10.004CrossRefPubMed Balasubramanian CK, Bowden MG, Neptune RR, Kautz SA: Relationship between step length asymmetry and walking performance in subjects with chronic hemiparesis. Arch Phys Med Rehabil 2007, 88: 43-49. 10.1016/j.apmr.2006.10.004CrossRefPubMed
27.
go back to reference Duncan PW, Propst M, Nelson SG: Reliability of the Fugl-Meyer assessment of sensorimotor recovery following cerebrovascular accident. Phys Ther 1983, 63: 1606-1610.PubMed Duncan PW, Propst M, Nelson SG: Reliability of the Fugl-Meyer assessment of sensorimotor recovery following cerebrovascular accident. Phys Ther 1983, 63: 1606-1610.PubMed
28.
go back to reference Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S: The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand J Rehabil Med 1975, 7: 13-31.PubMed Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S: The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand J Rehabil Med 1975, 7: 13-31.PubMed
29.
go back to reference Guralnik JM, Simonsick EM, Ferrucci L, Glynn RJ, Berkman LF, Blazer DG, Scherr PA, Wallace RB: A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol 1994, 49: M85-M94.CrossRefPubMed Guralnik JM, Simonsick EM, Ferrucci L, Glynn RJ, Berkman LF, Blazer DG, Scherr PA, Wallace RB: A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol 1994, 49: M85-M94.CrossRefPubMed
30.
go back to reference Jette AM, Jette DU, Ng J, Plotkin DJ, Bach MA: Are performance-based measures sufficiently reliable for use in multicenter trials? Musculoskeletal Impairment (MSI) Study Group. J Gerontol A Biol Sci Med Sci 1999, 54: M3-M6.CrossRefPubMed Jette AM, Jette DU, Ng J, Plotkin DJ, Bach MA: Are performance-based measures sufficiently reliable for use in multicenter trials? Musculoskeletal Impairment (MSI) Study Group. J Gerontol A Biol Sci Med Sci 1999, 54: M3-M6.CrossRefPubMed
31.
go back to reference Perera S, Mody SH, Woodman RC, Studenski SA: Meaningful change and responsiveness in common physical performance measures in older adults. J Am Geriatr Soc 2006, 54: 743-749. 10.1111/j.1532-5415.2006.00701.xCrossRefPubMed Perera S, Mody SH, Woodman RC, Studenski SA: Meaningful change and responsiveness in common physical performance measures in older adults. J Am Geriatr Soc 2006, 54: 743-749. 10.1111/j.1532-5415.2006.00701.xCrossRefPubMed
32.
go back to reference Berg K, Wood-Dauphinee S, Williams JI: The Balance Scale: reliability assessment with elderly residents and patients with an acute stroke. Scand J Rehabil Med 1995, 27: 27-36.PubMed Berg K, Wood-Dauphinee S, Williams JI: The Balance Scale: reliability assessment with elderly residents and patients with an acute stroke. Scand J Rehabil Med 1995, 27: 27-36.PubMed
33.
go back to reference Stevenson TJ, Garland SJ: Standing balance during internally produced perturbations in subjects with hemiplegia: validation of the balance scale. Arch Phys Med Rehabil 1996, 77: 656-662. 10.1016/S0003-9993(96)90004-0CrossRefPubMed Stevenson TJ, Garland SJ: Standing balance during internally produced perturbations in subjects with hemiplegia: validation of the balance scale. Arch Phys Med Rehabil 1996, 77: 656-662. 10.1016/S0003-9993(96)90004-0CrossRefPubMed
34.
go back to reference Sayers SP, Jette AM, Haley SM, Heeren TC, Guralnik JM, Fielding RA: Validation of the Late-Life Function and Disability Instrument. J Am Geriatr Soc 2004, 52: 1554-1559. 10.1111/j.1532-5415.2004.52422.xCrossRefPubMed Sayers SP, Jette AM, Haley SM, Heeren TC, Guralnik JM, Fielding RA: Validation of the Late-Life Function and Disability Instrument. J Am Geriatr Soc 2004, 52: 1554-1559. 10.1111/j.1532-5415.2004.52422.xCrossRefPubMed
35.
go back to reference Jette AM, Haley SM, Coster WJ, Kooyoomjian JT, Levenson S, Heeren T, Ashba J: Late life function and disability instrument: I. Development and evaluation of the disability component. J Gerontol A Biol Sci Med Sci 2002, 57: M209-M216.CrossRefPubMed Jette AM, Haley SM, Coster WJ, Kooyoomjian JT, Levenson S, Heeren T, Ashba J: Late life function and disability instrument: I. Development and evaluation of the disability component. J Gerontol A Biol Sci Med Sci 2002, 57: M209-M216.CrossRefPubMed
36.
go back to reference Haley SM, Jette AM, Coster WJ, Kooyoomjian JT, Levenson S, Heeren T, Ashba J: Late Life Function and Disability Instrument: II. Development and evaluation of the function component. J Gerontol A Biol Sci Med Sci 2002, 57: M217-M222.CrossRefPubMed Haley SM, Jette AM, Coster WJ, Kooyoomjian JT, Levenson S, Heeren T, Ashba J: Late Life Function and Disability Instrument: II. Development and evaluation of the function component. J Gerontol A Biol Sci Med Sci 2002, 57: M217-M222.CrossRefPubMed
37.
go back to reference Cohen J: A power primer. Psych Bull 1992, 112: 155-159. 10.1037/0033-2909.112.1.155CrossRef Cohen J: A power primer. Psych Bull 1992, 112: 155-159. 10.1037/0033-2909.112.1.155CrossRef
38.
go back to reference Pang MY, Eng JJ, Dawson AS: Relationship between ambulatory capacity and cardiorespiratory fitness in chronic stroke: influence of stroke-specific impairments. Chest 2005, 127: 495-501. 10.1378/chest.127.2.495CrossRefPubMed Pang MY, Eng JJ, Dawson AS: Relationship between ambulatory capacity and cardiorespiratory fitness in chronic stroke: influence of stroke-specific impairments. Chest 2005, 127: 495-501. 10.1378/chest.127.2.495CrossRefPubMed
39.
go back to reference Fulk G, Echternach J: Test-retest reliability and minimal detectable change of gait speed in individuals undergoing rehabilitation after stroke. JNPT 2008, 32: 8-13.PubMed Fulk G, Echternach J: Test-retest reliability and minimal detectable change of gait speed in individuals undergoing rehabilitation after stroke. JNPT 2008, 32: 8-13.PubMed
40.
go back to reference Israel JF, Campbell DD, Kahn JH, Hornby TG: Metabolic costs and muscle activity patterns during robotic- and therapist-assisted treadmill walking in individuals with incomplete spinal cord injury. Phys Ther 2006, 86: 1466-1478. 10.2522/ptj.20050266CrossRefPubMed Israel JF, Campbell DD, Kahn JH, Hornby TG: Metabolic costs and muscle activity patterns during robotic- and therapist-assisted treadmill walking in individuals with incomplete spinal cord injury. Phys Ther 2006, 86: 1466-1478. 10.2522/ptj.20050266CrossRefPubMed
41.
go back to reference Turns LJ, Neptune RR, Kautz SA: Relationships between muscle activity and anteroposterior ground reaction forces in hemiparetic walking. Arch Phys Med Rehabil 2007, 88: 1127-1135. 10.1016/j.apmr.2007.05.027PubMedCentralCrossRefPubMed Turns LJ, Neptune RR, Kautz SA: Relationships between muscle activity and anteroposterior ground reaction forces in hemiparetic walking. Arch Phys Med Rehabil 2007, 88: 1127-1135. 10.1016/j.apmr.2007.05.027PubMedCentralCrossRefPubMed
42.
go back to reference Neptune RR, Kautz SA, Zajac FE: Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking. J Biomech 2001, 34: 1387-1398. 10.1016/S0021-9290(01)00105-1CrossRefPubMed Neptune RR, Kautz SA, Zajac FE: Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking. J Biomech 2001, 34: 1387-1398. 10.1016/S0021-9290(01)00105-1CrossRefPubMed
43.
go back to reference Shumway-Cook A, Baldwin M, Polissar NL, Gruber W: Predicting the probability for falls in community-dwelling older adults. Phys Ther 1997, 77: 812-819.PubMed Shumway-Cook A, Baldwin M, Polissar NL, Gruber W: Predicting the probability for falls in community-dwelling older adults. Phys Ther 1997, 77: 812-819.PubMed
44.
go back to reference Bohannon RW: Comfortable and maximum walking speed of adults aged 20–79 years: reference values and determinants. Age Ageing 1997, 26: 15-19. 10.1093/ageing/26.1.15CrossRefPubMed Bohannon RW: Comfortable and maximum walking speed of adults aged 20–79 years: reference values and determinants. Age Ageing 1997, 26: 15-19. 10.1093/ageing/26.1.15CrossRefPubMed
45.
go back to reference Lo AC, Triche EW: Improving gait in multiple sclerosis using robot-assisted, body weight supported treadmill training. Neurorehabil Neural Repair 2008, 22: 661-671. 10.1177/1545968308318473CrossRefPubMed Lo AC, Triche EW: Improving gait in multiple sclerosis using robot-assisted, body weight supported treadmill training. Neurorehabil Neural Repair 2008, 22: 661-671. 10.1177/1545968308318473CrossRefPubMed
46.
go back to reference Hidler J, Wisman W, Neckel N: Kinematic trajectories while walking within the Lokomat robotic gait-orthosis. Clin Biomech (Bristol, Avon) 2008, 23: 1251-1259. 10.1016/j.clinbiomech.2008.08.004CrossRef Hidler J, Wisman W, Neckel N: Kinematic trajectories while walking within the Lokomat robotic gait-orthosis. Clin Biomech (Bristol, Avon) 2008, 23: 1251-1259. 10.1016/j.clinbiomech.2008.08.004CrossRef
47.
go back to reference Plummer P, Behrman AL, Duncan PW, Spigel P, Saracino D, Martin J, Fox E, Thigpen M, Kautz SA: Effects of stroke severity and training duration on locomotor recovery after stroke: a pilot study. Neurorehabil Neural Repair 2007, 21: 137-151. 10.1177/1545968306295559CrossRefPubMed Plummer P, Behrman AL, Duncan PW, Spigel P, Saracino D, Martin J, Fox E, Thigpen M, Kautz SA: Effects of stroke severity and training duration on locomotor recovery after stroke: a pilot study. Neurorehabil Neural Repair 2007, 21: 137-151. 10.1177/1545968306295559CrossRefPubMed
48.
go back to reference Morrison SA, Backus D: Locomotor training: is translating evidence into practice financially feasible? J Neurol Phys Ther 2007, 31: 50-54.CrossRefPubMed Morrison SA, Backus D: Locomotor training: is translating evidence into practice financially feasible? J Neurol Phys Ther 2007, 31: 50-54.CrossRefPubMed
Metadata
Title
Pilot study of Lokomat versus manual-assisted treadmill training for locomotor recovery post-stroke
Authors
Kelly P Westlake
Carolynn Patten
Publication date
01-12-2009
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2009
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-6-18

Other articles of this Issue 1/2009

Journal of NeuroEngineering and Rehabilitation 1/2009 Go to the issue