Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2005

Open Access 01-12-2005 | Research

Design considerations for a wearable monitor to measure finger posture

Authors: Lisa K Simone, Derek G Kamper

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2005

Login to get access

Abstract

Background

Objective measures of hand function as individuals participate in home and community activities are needed in order to better plan and evaluate rehabilitation treatments. Traditional measures collected in the clinical setting are often not reflective of actual functional performance. Recent advances in technology, however, enable the development of a lightweight, comfortable data collection monitor to measure hand kinematics.

Methods

This paper presents the design analysis of a wearable sensor glove with a specific focus on the sensors selected to measure bend. The most important requirement for the glove is easy donning and removal for individuals with significantly reduced range of motion in the hands and fingers. Additional requirements include comfort and durability, cost effectiveness, and measurement repeatability. These requirements eliminate existing measurement gloves from consideration. Glove construction is introduced, and the sensor selection and glove evaluation process are presented.

Results

Evaluation of commercial bend sensors shows that although most are not appropriate for repeatable measurements of finger flexion, one has been successfully identified. A case study for sensor glove repeatability using the final glove configuration and sensors does show a high degree of repeatability in both the gripped and flat hand positions (average coefficient of variability = 2.96% and 0.10%, respectively).

Conclusion

Measuring functional outcomes in a portable manner can provide a wealth of information important to clinicians for the evaluation and treatment of movement disorders in the hand and fingers. This device is an important step in that direction as both a research and an evaluation method.
Appendix
Available only for authorised users
Literature
1.
go back to reference Finch E, Brooks D, Stratford PW, Mayo NE: Physical Rehabilitation Ouctome Measures: A Guide to Enhanced Clinical Decision Making. Second edition. Hamilton, Ontario: BC Decker; 2002. Finch E, Brooks D, Stratford PW, Mayo NE: Physical Rehabilitation Ouctome Measures: A Guide to Enhanced Clinical Decision Making. Second edition. Hamilton, Ontario: BC Decker; 2002.
2.
go back to reference Dipietro L, Sabatini AM, Dario P: Evaluation of an instrumented glove for hand-movement acquisition. Journal of Rehabilitation Research and Development 2003, 40: 179-190. 10.1682/JRRD.2003.03.0181CrossRefPubMed Dipietro L, Sabatini AM, Dario P: Evaluation of an instrumented glove for hand-movement acquisition. Journal of Rehabilitation Research and Development 2003, 40: 179-190. 10.1682/JRRD.2003.03.0181CrossRefPubMed
4.
go back to reference Karlsson N, Karlsson B, Wide P: A glove equipped with finger flexion sensors as a command generator used in a fuzzy control system. In Proceedings of the IEEE Instrumentation & Measurement Technology Conference 18–21 May 1998. St Paul, Minnesota, USA; 1998:441-445. Karlsson N, Karlsson B, Wide P: A glove equipped with finger flexion sensors as a command generator used in a fuzzy control system. In Proceedings of the IEEE Instrumentation & Measurement Technology Conference 18–21 May 1998. St Paul, Minnesota, USA; 1998:441-445.
7.
go back to reference Jurgens J, Patterson PE: Development and evaluation of an inexpensive sensor system for use in measuring relative finger positions. Med Eng Phys 1997,19(1):1-6. 10.1016/S1350-4533(96)00037-9CrossRefPubMed Jurgens J, Patterson PE: Development and evaluation of an inexpensive sensor system for use in measuring relative finger positions. Med Eng Phys 1997,19(1):1-6. 10.1016/S1350-4533(96)00037-9CrossRefPubMed
8.
go back to reference Simone LK, Elovic EP, Kalambur U, Kamper DG: A low cost method to measure finger flexion in individuals with reduced hand and finger range of motion. In Proceedings of the 26th Annual International Conference of the IEEE EMBS 1–5 September 2002. San Francisco; 2004:4791-4794. Simone LK, Elovic EP, Kalambur U, Kamper DG: A low cost method to measure finger flexion in individuals with reduced hand and finger range of motion. In Proceedings of the 26th Annual International Conference of the IEEE EMBS 1–5 September 2002. San Francisco; 2004:4791-4794.
9.
go back to reference Wise S, Gardner W, Sabelman E, Valainis E, Wong Y, Glass K, Drace J, Rosen JM: Evaluation of a fiber optic glove for semi-automated goniometric measurements. Journal of Rehabilitation Research & Development 1990, 27: 411-424. 10.1682/JRRD.1990.10.0411CrossRef Wise S, Gardner W, Sabelman E, Valainis E, Wong Y, Glass K, Drace J, Rosen JM: Evaluation of a fiber optic glove for semi-automated goniometric measurements. Journal of Rehabilitation Research & Development 1990, 27: 411-424. 10.1682/JRRD.1990.10.0411CrossRef
11.
go back to reference Morris SJ, Paradiso JA: Shoe-integrated sensor system for wireless gait analysis and real-time feedback. In Proceedings of the Second Joint EMBS/BMES 23–26 October 2002. Houston Omnipress; 2002:2468-2469. Morris SJ, Paradiso JA: Shoe-integrated sensor system for wireless gait analysis and real-time feedback. In Proceedings of the Second Joint EMBS/BMES 23–26 October 2002. Houston Omnipress; 2002:2468-2469.
12.
go back to reference Cham JG, Stafford B, Cutkosky MR: See labs run: A design-oriented laboratory for teaching dynamic systems. Proceedings of the 2001 ASME International Mechanical Engineering Congress and Exposition: 11–16 November 2001 New York 2001, 1-8. Cham JG, Stafford B, Cutkosky MR: See labs run: A design-oriented laboratory for teaching dynamic systems. Proceedings of the 2001 ASME International Mechanical Engineering Congress and Exposition: 11–16 November 2001 New York 2001, 1-8.
Metadata
Title
Design considerations for a wearable monitor to measure finger posture
Authors
Lisa K Simone
Derek G Kamper
Publication date
01-12-2005
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2005
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-2-5

Other articles of this Issue 1/2005

Journal of NeuroEngineering and Rehabilitation 1/2005 Go to the issue