Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2005

Open Access 01-12-2005 | Research

Mathematical models use varying parameter strategies to represent paralyzed muscle force properties: a sensitivity analysis

Authors: Laura A Frey Law, Richard K Shields

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2005

Login to get access

Abstract

Background

Mathematical muscle models may be useful for the determination of appropriate musculoskeletal stresses that will safely maintain the integrity of muscle and bone following spinal cord injury. Several models have been proposed to represent paralyzed muscle, but there have not been any systematic comparisons of modelling approaches to better understand the relationships between model parameters and muscle contractile properties. This sensitivity analysis of simulated muscle forces using three currently available mathematical models provides insight into the differences in modelling strategies as well as any direct parameter associations with simulated muscle force properties.

Methods

Three mathematical muscle models were compared: a traditional linear model with 3 parameters and two contemporary nonlinear models each with 6 parameters. Simulated muscle forces were calculated for two stimulation patterns (constant frequency and initial doublet trains) at three frequencies (5, 10, and 20 Hz). A sensitivity analysis of each model was performed by altering a single parameter through a range of 8 values, while the remaining parameters were kept at baseline values. Specific simulated force characteristics were determined for each stimulation pattern and each parameter increment. Significant parameter influences for each simulated force property were determined using ANOVA and Tukey's follow-up tests (α ≤ 0.05), and compared to previously reported parameter definitions.

Results

Each of the 3 linear model's parameters most clearly influence either simulated force magnitude or speed properties, consistent with previous parameter definitions. The nonlinear models' parameters displayed greater redundancy between force magnitude and speed properties. Further, previous parameter definitions for one of the nonlinear models were consistently supported, while the other was only partially supported by this analysis.

Conclusion

These three mathematical models use substantially different strategies to represent simulated muscle force. The two contemporary nonlinear models' parameters have the least distinct associations with simulated muscle force properties, and the greatest parameter role redundancy compared to the traditional linear model.
Appendix
Available only for authorised users
Literature
1.
go back to reference Castro MJ, Apple DFJ, Hillegass EA, Dudley GA: Influence of complete spinal cord injury on skeletal muscle cross-sectional area within the first 6 months of injury. European Journal of Applied Physiology & Occupational Physiology 1999, 80: 373-378. 10.1007/s004210050606CrossRef Castro MJ, Apple DFJ, Hillegass EA, Dudley GA: Influence of complete spinal cord injury on skeletal muscle cross-sectional area within the first 6 months of injury. European Journal of Applied Physiology & Occupational Physiology 1999, 80: 373-378. 10.1007/s004210050606CrossRef
2.
go back to reference Shields RK: Fatigability, relaxation properties, and electromyographic responses of the human paralyzed soleus muscle. Journal of Neurophysiology 1995, 73: 2195-2206.PubMed Shields RK: Fatigability, relaxation properties, and electromyographic responses of the human paralyzed soleus muscle. Journal of Neurophysiology 1995, 73: 2195-2206.PubMed
3.
go back to reference Talmadge RJ, Castro MJ, Apple DFJ, Dudley GA: Phenotypic adaptations in human muscle fibers 6 and 24 wk after spinal cord injury. Journal of Applied Physiology 2002, 92: 147-154.CrossRefPubMed Talmadge RJ, Castro MJ, Apple DFJ, Dudley GA: Phenotypic adaptations in human muscle fibers 6 and 24 wk after spinal cord injury. Journal of Applied Physiology 2002, 92: 147-154.CrossRefPubMed
4.
go back to reference Scelsi R, Marchetti C, Poggi P, Lotta S, Lommi G: Muscle fiber type morphology and distribution in paraplegic patients with traumatic cord lesion. Histochemical and ultrastructural aspects of rectus femoris muscle. Acta Neuropathologica 1982, 57: 243-248. 10.1007/BF00692178CrossRefPubMed Scelsi R, Marchetti C, Poggi P, Lotta S, Lommi G: Muscle fiber type morphology and distribution in paraplegic patients with traumatic cord lesion. Histochemical and ultrastructural aspects of rectus femoris muscle. Acta Neuropathologica 1982, 57: 243-248. 10.1007/BF00692178CrossRefPubMed
5.
go back to reference Round JM, Barr FM, Moffat B, Jones DA: Fibre areas and histochemical fibre types in the quadriceps muscle of paraplegic subjects. Journal of the Neurological Sciences 1993, 116: 207-211. 10.1016/0022-510X(93)90327-UCrossRefPubMed Round JM, Barr FM, Moffat B, Jones DA: Fibre areas and histochemical fibre types in the quadriceps muscle of paraplegic subjects. Journal of the Neurological Sciences 1993, 116: 207-211. 10.1016/0022-510X(93)90327-UCrossRefPubMed
6.
go back to reference Demirel G, Yilmaz H, Paker N, Onel S: Osteoporosis after spinal cord injury. Spinal Cord 1998, 36: 822-825. 10.1038/sj.sc.3100704CrossRefPubMed Demirel G, Yilmaz H, Paker N, Onel S: Osteoporosis after spinal cord injury. Spinal Cord 1998, 36: 822-825. 10.1038/sj.sc.3100704CrossRefPubMed
7.
go back to reference Lee TQ, Shapiro TA, Bell DM: Biomechanical properties of human tibias in long-term spinal cord injury. Journal of Rehabilitation Research & Development 1997, 34: 295-302. Lee TQ, Shapiro TA, Bell DM: Biomechanical properties of human tibias in long-term spinal cord injury. Journal of Rehabilitation Research & Development 1997, 34: 295-302.
8.
go back to reference Szollar SM, Martin EM, Sartoris DJ, Parthemore JG, Deftos LJ: Bone mineral density and indexes of bone metabolism in spinal cord injury. American Journal of Physical Medicine & Rehabilitation 1998, 77: 28-35. 10.1097/00002060-199801000-00005CrossRef Szollar SM, Martin EM, Sartoris DJ, Parthemore JG, Deftos LJ: Bone mineral density and indexes of bone metabolism in spinal cord injury. American Journal of Physical Medicine & Rehabilitation 1998, 77: 28-35. 10.1097/00002060-199801000-00005CrossRef
9.
go back to reference Biering-Sorensen F, Bohr HH, Schaadt OP: Longitudinal study of bone mineral content in the lumbar spine, the forearm and the lower extremities after spinal cord injury. Eur J Clin Invest 1990, 20: 330-335.CrossRefPubMed Biering-Sorensen F, Bohr HH, Schaadt OP: Longitudinal study of bone mineral content in the lumbar spine, the forearm and the lower extremities after spinal cord injury. Eur J Clin Invest 1990, 20: 330-335.CrossRefPubMed
10.
go back to reference Shields RK: Muscular, skeletal, and neural adaptations following spinal cord injury. Journal of Orthopaedic & Sports Physical Therapy 2002, 32: 65-74.CrossRef Shields RK: Muscular, skeletal, and neural adaptations following spinal cord injury. Journal of Orthopaedic & Sports Physical Therapy 2002, 32: 65-74.CrossRef
11.
go back to reference Shields RK, Dudley-Javoroski S, Deshpande P: Long term electrical stimulation training prevents soleus muscle adaptation after spinal cord injury: ; New Orleans, LA. ; 2003. Shields RK, Dudley-Javoroski S, Deshpande P: Long term electrical stimulation training prevents soleus muscle adaptation after spinal cord injury: ; New Orleans, LA. ; 2003.
12.
go back to reference Frey Law LA, Shields RK: Femoral loads during passive, active, and active-resistive stance after spinal cord injury: a mathematical model. Clinical Biomechanics 2004, 19: 313-321. 10.1016/j.clinbiomech.2003.12.005PubMedCentralCrossRefPubMed Frey Law LA, Shields RK: Femoral loads during passive, active, and active-resistive stance after spinal cord injury: a mathematical model. Clinical Biomechanics 2004, 19: 313-321. 10.1016/j.clinbiomech.2003.12.005PubMedCentralCrossRefPubMed
13.
go back to reference Rochester L, Barron MJ, Chandler CS, Sutton RA, Miller S, Johnson MA: Influence of electrical stimulation of the tibialis anterior muscle in paraplegic subjects. 2. Morphological and histochemical properties. Paraplegia 1995, 33: 514-522.CrossRefPubMed Rochester L, Barron MJ, Chandler CS, Sutton RA, Miller S, Johnson MA: Influence of electrical stimulation of the tibialis anterior muscle in paraplegic subjects. 2. Morphological and histochemical properties. Paraplegia 1995, 33: 514-522.CrossRefPubMed
14.
go back to reference Mohr T, Andersen JL, Biering-Sorensen F, Galbo H, Bangsbo J, Wagner A, Kjaer M: Long-term adaptation to electrically induced cycle training in severe spinal cord injured individuals.[erratum appears in Spinal Cord 1997 Apr;35(4):262]. Spinal Cord 1997, 35: 1-16. 10.1038/sj.sc.3100343CrossRefPubMed Mohr T, Andersen JL, Biering-Sorensen F, Galbo H, Bangsbo J, Wagner A, Kjaer M: Long-term adaptation to electrically induced cycle training in severe spinal cord injured individuals.[erratum appears in Spinal Cord 1997 Apr;35(4):262]. Spinal Cord 1997, 35: 1-16. 10.1038/sj.sc.3100343CrossRefPubMed
15.
go back to reference Gerrits HL, Hopman MT, Sargeant AJ, Jones DA, De Haan A: Effects of training on contractile properties of paralyzed quadriceps muscle. Muscle & Nerve 2002, 25: 559-567. 10.1002/mus.10071CrossRef Gerrits HL, Hopman MT, Sargeant AJ, Jones DA, De Haan A: Effects of training on contractile properties of paralyzed quadriceps muscle. Muscle & Nerve 2002, 25: 559-567. 10.1002/mus.10071CrossRef
16.
go back to reference Chilibeck PD, Bell G, Jeon J, Weiss CB, Murdoch G, MacLean I, Ryan E, Burnham R: Functional electrical stimulation exercise increases GLUT-1 and GLUT-4 in paralyzed skeletal muscle. Metabolism: Clinical & Experimental 1999, 48: 1409-1413.CrossRef Chilibeck PD, Bell G, Jeon J, Weiss CB, Murdoch G, MacLean I, Ryan E, Burnham R: Functional electrical stimulation exercise increases GLUT-1 and GLUT-4 in paralyzed skeletal muscle. Metabolism: Clinical & Experimental 1999, 48: 1409-1413.CrossRef
17.
go back to reference Shields RK, Dudley-Javoroski S: Musculoskeletal adaptations after spinal cord injury are prevented with a minimal dose of daily electrical stimulation exercise. 2004, abstract. Shields RK, Dudley-Javoroski S: Musculoskeletal adaptations after spinal cord injury are prevented with a minimal dose of daily electrical stimulation exercise. 2004, abstract.
18.
go back to reference Hartkopp A, Murphy RJ, Mohr T, Kjaer M, Biering-Sorensen F: Bone fracture during electrical stimulation of the quadriceps in a spinal cord injured subject. Arch Phys Med Rehabil 1998, 79: 1133-1136. 10.1016/S0003-9993(98)90184-8CrossRefPubMed Hartkopp A, Murphy RJ, Mohr T, Kjaer M, Biering-Sorensen F: Bone fracture during electrical stimulation of the quadriceps in a spinal cord injured subject. Arch Phys Med Rehabil 1998, 79: 1133-1136. 10.1016/S0003-9993(98)90184-8CrossRefPubMed
19.
go back to reference Bobet J, Stein RB: A simple model of force generation by skeletal muscle during dynamic isometric contractions. IEEE Transactions on Biomedical Engineering 1998, 45: 1010-1016. 10.1109/10.704869CrossRefPubMed Bobet J, Stein RB: A simple model of force generation by skeletal muscle during dynamic isometric contractions. IEEE Transactions on Biomedical Engineering 1998, 45: 1010-1016. 10.1109/10.704869CrossRefPubMed
20.
go back to reference Ding J, Binder-Macleod SA, Wexler AS: Two-step, predictive, isometric force model tested on data from human and rat muscles. J Appl Physiol 1998, 85: 2176-2189.PubMed Ding J, Binder-Macleod SA, Wexler AS: Two-step, predictive, isometric force model tested on data from human and rat muscles. J Appl Physiol 1998, 85: 2176-2189.PubMed
21.
go back to reference Dorgan SJ, O'Malley MJ: A nonlinear mathematical model of electrically stimulated skeletal muscle. IEEE Transactions on Rehabilitation Engineering 1997, 5: 179-194. 10.1109/86.593289CrossRefPubMed Dorgan SJ, O'Malley MJ: A nonlinear mathematical model of electrically stimulated skeletal muscle. IEEE Transactions on Rehabilitation Engineering 1997, 5: 179-194. 10.1109/86.593289CrossRefPubMed
22.
go back to reference Durfee WK, Palmer KI: Estimation of force-activation, force-length, and force-velocity properties in isolated, electrically stimulated muscle. IEEE Transactions on Biomedical Engineering 1994, 41: 205-216. 10.1109/10.284939CrossRefPubMed Durfee WK, Palmer KI: Estimation of force-activation, force-length, and force-velocity properties in isolated, electrically stimulated muscle. IEEE Transactions on Biomedical Engineering 1994, 41: 205-216. 10.1109/10.284939CrossRefPubMed
23.
go back to reference Gollee H, Murray-Smith DJ, Jarvis JC: A nonlinear approach to modeling of electrically stimulated skeletal muscle. IEEE Transactions on Biomedical Engineering 2001, 48: 406-415. 10.1109/10.915705CrossRefPubMed Gollee H, Murray-Smith DJ, Jarvis JC: A nonlinear approach to modeling of electrically stimulated skeletal muscle. IEEE Transactions on Biomedical Engineering 2001, 48: 406-415. 10.1109/10.915705CrossRefPubMed
24.
go back to reference Bawa P, Stein RB: Frequency response of human soleus muscle. Journal of Neurophysiology 1976, 39: 788-793.PubMed Bawa P, Stein RB: Frequency response of human soleus muscle. Journal of Neurophysiology 1976, 39: 788-793.PubMed
25.
go back to reference Zahalak GI, Ma SP: Muscle activation and contraction: constitutive relations based directly on cross-bridge kinetics. Journal of Biomechanical Engineering 1990, 112: 52-62.CrossRefPubMed Zahalak GI, Ma SP: Muscle activation and contraction: constitutive relations based directly on cross-bridge kinetics. Journal of Biomechanical Engineering 1990, 112: 52-62.CrossRefPubMed
26.
go back to reference Wexler AS, Ding J, Binder-Macleod SA: A mathematical model that predicts skeletal muscle force. IEEE Transactions on Biomedical Engineering 1997, 44: 337-348. 10.1109/10.568909CrossRefPubMed Wexler AS, Ding J, Binder-Macleod SA: A mathematical model that predicts skeletal muscle force. IEEE Transactions on Biomedical Engineering 1997, 44: 337-348. 10.1109/10.568909CrossRefPubMed
27.
go back to reference Ding J, Wexler AS, Binder-Macleod SA: A predictive model of fatigue in human skeletal muscles. Journal of Applied Physiology 2000, 89: 1322-1332.PubMed Ding J, Wexler AS, Binder-Macleod SA: A predictive model of fatigue in human skeletal muscles. Journal of Applied Physiology 2000, 89: 1322-1332.PubMed
28.
go back to reference Ding J, Wexler AS, Binder-Macleod SA: A mathematical model that predicts the force-frequency relationship of human skeletal muscle. Muscle & Nerve 2002, 26: 477-485. 10.1002/mus.10198CrossRef Ding J, Wexler AS, Binder-Macleod SA: A mathematical model that predicts the force-frequency relationship of human skeletal muscle. Muscle & Nerve 2002, 26: 477-485. 10.1002/mus.10198CrossRef
29.
go back to reference Ding J, Wexler AS, Binder-Macleod SA: Development of a mathematical model that predicts optimal muscle activation patterns by using brief trains. J Appl Physiol 2000, 88: 917-925.PubMed Ding J, Wexler AS, Binder-Macleod SA: Development of a mathematical model that predicts optimal muscle activation patterns by using brief trains. J Appl Physiol 2000, 88: 917-925.PubMed
30.
go back to reference Ding J, Wexler AS, Binder-Macleod SA: Mathematical models for fatigue minimization during functional electrical stimulation. Journal of Electromyography & Kinesiology 2003, 13: 575-588. 10.1016/S1050-6411(03)00102-0CrossRef Ding J, Wexler AS, Binder-Macleod SA: Mathematical models for fatigue minimization during functional electrical stimulation. Journal of Electromyography & Kinesiology 2003, 13: 575-588. 10.1016/S1050-6411(03)00102-0CrossRef
31.
go back to reference Perumal R, Wexler AS, Ding J, Binder-Macleod SA: Modeling the length dependence of isometric force in human quadriceps muscles. Journal of Biomechanics 2002, 35: 919-930. 10.1016/S0021-9290(02)00049-0CrossRefPubMed Perumal R, Wexler AS, Ding J, Binder-Macleod SA: Modeling the length dependence of isometric force in human quadriceps muscles. Journal of Biomechanics 2002, 35: 919-930. 10.1016/S0021-9290(02)00049-0CrossRefPubMed
32.
go back to reference Close CM, Frederick DK: Modeling and Analysis of Dynamic Systems. 2nd Edition edition. New York, John Wiley & Sons; 1995:681. Close CM, Frederick DK: Modeling and Analysis of Dynamic Systems. 2nd Edition edition. New York, John Wiley & Sons; 1995:681.
33.
go back to reference Baratta RV, Zhou BH, Solomonow M: Frequency response model of skeletal muscle: effect of perturbation level, and control strategy. Medical & Biological Engineering & Computing 1989, 27: 337-345.CrossRef Baratta RV, Zhou BH, Solomonow M: Frequency response model of skeletal muscle: effect of perturbation level, and control strategy. Medical & Biological Engineering & Computing 1989, 27: 337-345.CrossRef
34.
go back to reference Bobet J, Stein RB, Oguztoreli MN: A linear time-varying model of force generation in skeletal muscle. IEEE Transactions on Biomedical Engineering 1993, 40: 1000-1006. 10.1109/10.247798CrossRefPubMed Bobet J, Stein RB, Oguztoreli MN: A linear time-varying model of force generation in skeletal muscle. IEEE Transactions on Biomedical Engineering 1993, 40: 1000-1006. 10.1109/10.247798CrossRefPubMed
35.
go back to reference Frey Law LA: Predicting human paralyzed muscle force properties: an assessment of three mathematical muscle models. In Physical Rehabilitation Science. Iowa City, The University of Iowa; 2004:138. Frey Law LA: Predicting human paralyzed muscle force properties: an assessment of three mathematical muscle models. In Physical Rehabilitation Science. Iowa City, The University of Iowa; 2004:138.
36.
go back to reference Lazo MG, Shirazi P, Sam M, Giobbie-Hurder A, Blacconiere MJ, Muppidi M: Osteoporosis and risk of fracture in men with spinal cord injury. Spinal Cord 2001, 39: 208-214. 10.1038/sj.sc.3101139CrossRefPubMed Lazo MG, Shirazi P, Sam M, Giobbie-Hurder A, Blacconiere MJ, Muppidi M: Osteoporosis and risk of fracture in men with spinal cord injury. Spinal Cord 2001, 39: 208-214. 10.1038/sj.sc.3101139CrossRefPubMed
37.
go back to reference Vestergaard P, Krogh K, Rejnmark L, Mosekilde L: Fracture rates and risk factors for fractures in patients with spinal cord injury. Spinal Cord 1998, 36: 790-796. 10.1038/sj.sc.3100648CrossRefPubMed Vestergaard P, Krogh K, Rejnmark L, Mosekilde L: Fracture rates and risk factors for fractures in patients with spinal cord injury. Spinal Cord 1998, 36: 790-796. 10.1038/sj.sc.3100648CrossRefPubMed
38.
go back to reference Shields RK, Law LF, Reiling B, Sass K, Wilwert J: Effects of electrically induced fatigue on the twitch and tetanus of paralyzed soleus muscle in humans. Journal of Applied Physiology 1997, 82: 1499-1507.PubMed Shields RK, Law LF, Reiling B, Sass K, Wilwert J: Effects of electrically induced fatigue on the twitch and tetanus of paralyzed soleus muscle in humans. Journal of Applied Physiology 1997, 82: 1499-1507.PubMed
39.
go back to reference Mannard A, Stein RB: Determination of the frequency response of isometric soleus muscle in the cat using random nerve stimulation. Journal of Physiology 1973, 229: 275-296.PubMedCentralCrossRefPubMed Mannard A, Stein RB: Determination of the frequency response of isometric soleus muscle in the cat using random nerve stimulation. Journal of Physiology 1973, 229: 275-296.PubMedCentralCrossRefPubMed
40.
go back to reference Ding J, Wexler AS, Binder-Macleod SA: A predictive fatigue model--II: Predicting the effect of resting times on fatigue. IEEE Transactions on Neural Systems & Rehabilitation Engineering 2002, 10: 59-67. 10.1109/TNSRE.2002.1021587CrossRef Ding J, Wexler AS, Binder-Macleod SA: A predictive fatigue model--II: Predicting the effect of resting times on fatigue. IEEE Transactions on Neural Systems & Rehabilitation Engineering 2002, 10: 59-67. 10.1109/TNSRE.2002.1021587CrossRef
41.
go back to reference Ding J, Wexler AS, Binder-Macleod SA: A predictive fatigue model--I: Predicting the effect of stimulation frequency and pattern on fatigue.[erratum appears in IEEE Trans Neural Syst Rehabil Eng. 2003 Mar;11(1):86]. IEEE Transactions on Neural Systems & Rehabilitation Engineering 2002, 10: 48-58. 10.1109/TNSRE.2002.1021586CrossRef Ding J, Wexler AS, Binder-Macleod SA: A predictive fatigue model--I: Predicting the effect of stimulation frequency and pattern on fatigue.[erratum appears in IEEE Trans Neural Syst Rehabil Eng. 2003 Mar;11(1):86]. IEEE Transactions on Neural Systems & Rehabilitation Engineering 2002, 10: 48-58. 10.1109/TNSRE.2002.1021586CrossRef
Metadata
Title
Mathematical models use varying parameter strategies to represent paralyzed muscle force properties: a sensitivity analysis
Authors
Laura A Frey Law
Richard K Shields
Publication date
01-12-2005
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2005
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-2-12

Other articles of this Issue 1/2005

Journal of NeuroEngineering and Rehabilitation 1/2005 Go to the issue