Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2013

Open Access 01-12-2013 | Research

Monitoring motor capacity changes of children during rehabilitation using body-worn sensors

Authors: Christina Strohrmann, Rob Labruyère, Corinna N Gerber, Hubertus J van Hedel, Bert Arnrich, Gerhard Tröster

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2013

Login to get access

Abstract

Background

Rehabilitation services use outcome measures to track motor performance of their patients over time. State-of-the-art approaches use mainly patients’ feedback and experts’ observations for this purpose. We aim at continuously monitoring children in daily life and assessing normal activities to close the gap between movements done as instructed by caregivers and natural movements during daily life. To investigate the applicability of body-worn sensors for motor assessment in children, we investigated changes in movement capacity during defined motor tasks longitudinally.

Methods

We performed a longitudinal study over four weeks with 4 children (2 girls; 2 diagnosed with Cerebral Palsy and 2 with stroke, on average 10.5 years old) undergoing rehabilitation. Every week, the children performed 10 predefined motor tasks. Capacity in terms of quality and quantity was assessed by experts and movement was monitored using 10 ETH Orientation Sensors (ETHOS), a small and unobtrusive inertial measurement unit. Features such as smoothness of movement were calculated from the sensor data and a regression was used to estimate the capacity from the features and their relation to clinical data. Therefore, the target and features were normalized to range from 0 to 1.

Results

We achieved a mean RMS-error of 0.15 and a mean correlation value of 0.86 (p<0.05 for all tasks) between our regression estimate of motor task capacity and experts’ ratings across all tasks. We identified the most important features and were able to reduce the sensor setup from 10 to 3 sensors. We investigated features that provided a good estimate of the motor capacity independently of the task performed, e.g. smoothness of the movement.

Conclusions

We found that children’s task capacity can be assessed from wearable sensors and that some of the calculated features provide a good estimate of movement capacity over different tasks. This indicates the potential of using the sensors in daily life, when little or no information on the task performed is available. For the assessment, the use of three sensors on both wrists and the hip suffices. With the developed algorithms, we plan to assess children’s motor performance in daily life with a follow-up study.
Appendix
Available only for authorised users
Literature
1.
go back to reference Law M, King G, Russell D, MacKinnon E, Hurley P, Murphy C: Measuring outcomes in children’s rehabilitation: a decision protocol. Arch Phys Med Rehabil 1999,80(6):629-636. 10.1016/S0003-9993(99)90164-8CrossRefPubMed Law M, King G, Russell D, MacKinnon E, Hurley P, Murphy C: Measuring outcomes in children’s rehabilitation: a decision protocol. Arch Phys Med Rehabil 1999,80(6):629-636. 10.1016/S0003-9993(99)90164-8CrossRefPubMed
2.
go back to reference Majnemer A: Benefits of using outcome measures in pediatric rehabilitation. Phys Occup Ther Pediatr 2010,30(3):165-167. 10.3109/01942638.2010.484353CrossRefPubMed Majnemer A: Benefits of using outcome measures in pediatric rehabilitation. Phys Occup Ther Pediatr 2010,30(3):165-167. 10.3109/01942638.2010.484353CrossRefPubMed
3.
go back to reference Russell D, Avery L, Rosenbaum P, Raina P, Walter S, Palisano R: Improved scaling of the gross motor function measure for children with cerebral palsy: evidence of reliability and validity. Phys Ther 2000,80(9):873-885.PubMed Russell D, Avery L, Rosenbaum P, Raina P, Walter S, Palisano R: Improved scaling of the gross motor function measure for children with cerebral palsy: evidence of reliability and validity. Phys Ther 2000,80(9):873-885.PubMed
4.
go back to reference Haley S, Coster W, Faas R: A content validity study of the pediatric evaluation of disability inventory. Pediatr Phys Ther 1991,3(4):177-184.CrossRef Haley S, Coster W, Faas R: A content validity study of the pediatric evaluation of disability inventory. Pediatr Phys Ther 1991,3(4):177-184.CrossRef
5.
go back to reference Msall M, DiGaudio K, Rogers B, LaForest S, Catanzaro N, Campbell J, Wilczenski F, Duffy L: The functional independence measure for children (WeeFIM). Conceptual basis and pilot use in children with developmental disabilities. Clin Pediatr 1994,33(7):421-430. 10.1177/000992289403300708CrossRef Msall M, DiGaudio K, Rogers B, LaForest S, Catanzaro N, Campbell J, Wilczenski F, Duffy L: The functional independence measure for children (WeeFIM). Conceptual basis and pilot use in children with developmental disabilities. Clin Pediatr 1994,33(7):421-430. 10.1177/000992289403300708CrossRef
6.
go back to reference Croce RV, Horvat M, McCarthy E: Reliability and concurrent validity of the movement assessment battery for children. Percept Motor Skills 2001, 93: 275-280.CrossRefPubMed Croce RV, Horvat M, McCarthy E: Reliability and concurrent validity of the movement assessment battery for children. Percept Motor Skills 2001, 93: 275-280.CrossRefPubMed
7.
go back to reference Grieve D, Ruth J: The relationships between length of stride, step frequency, time of swing and speed of walking for children and adults. Ergonomics 1966,9(5):379-399. 10.1080/00140136608964399CrossRefPubMed Grieve D, Ruth J: The relationships between length of stride, step frequency, time of swing and speed of walking for children and adults. Ergonomics 1966,9(5):379-399. 10.1080/00140136608964399CrossRefPubMed
8.
go back to reference Majnemer A, Limperopoulos C: Importance of outcome determination in pediatric rehabilitation. Dev Med Child Neurol 2002,44(11):773-777.CrossRefPubMed Majnemer A, Limperopoulos C: Importance of outcome determination in pediatric rehabilitation. Dev Med Child Neurol 2002,44(11):773-777.CrossRefPubMed
9.
go back to reference Labruyère R, Agarwala A, Curt A: Rehabilitation in spine and spinal cord trauma. Spine 2010,35(21S):S259.CrossRefPubMed Labruyère R, Agarwala A, Curt A: Rehabilitation in spine and spinal cord trauma. Spine 2010,35(21S):S259.CrossRefPubMed
10.
go back to reference Tieman B, Palisano R, Gracely E, Rosenbaum P: Gross motor capability and performance of mobility in children with cerebral palsy: a comparison across home, school, and outdoors/community settings. Phys Ther 2004,84(5):419-429.PubMed Tieman B, Palisano R, Gracely E, Rosenbaum P: Gross motor capability and performance of mobility in children with cerebral palsy: a comparison across home, school, and outdoors/community settings. Phys Ther 2004,84(5):419-429.PubMed
11.
go back to reference Harvey A, Baker R, Morris M, Hough J, Hughes M, Graham H: Does parent report measure performance? A study of the construct validity of the Functional Mobility Scale. Dev Med Child Neurol 2010,52(2):181-185. 10.1111/j.1469-8749.2009.03354.xCrossRefPubMed Harvey A, Baker R, Morris M, Hough J, Hughes M, Graham H: Does parent report measure performance? A study of the construct validity of the Functional Mobility Scale. Dev Med Child Neurol 2010,52(2):181-185. 10.1111/j.1469-8749.2009.03354.xCrossRefPubMed
12.
go back to reference Holsbeeke L, Ketelaar M, Schoemaker M, Gorter J: Capacity, capability, and performance: different constructs or three of a kind? Arch Phys Med Rehabil 2009,90(5):849-855. 10.1016/j.apmr.2008.11.015CrossRefPubMed Holsbeeke L, Ketelaar M, Schoemaker M, Gorter J: Capacity, capability, and performance: different constructs or three of a kind? Arch Phys Med Rehabil 2009,90(5):849-855. 10.1016/j.apmr.2008.11.015CrossRefPubMed
13.
go back to reference Bonato P: Advances in wearable technology and applications in physical medicine and rehabilitation. J NeuroEng Rehabil 2005, 2: 2. 10.1186/1743-0003-2-2PubMedCentralCrossRefPubMed Bonato P: Advances in wearable technology and applications in physical medicine and rehabilitation. J NeuroEng Rehabil 2005, 2: 2. 10.1186/1743-0003-2-2PubMedCentralCrossRefPubMed
14.
go back to reference Bonato P, Mork P, Sherrill D, Westgaard R: Data mining of motor patterns recorded with wearable technology. Eng Med Biol Mag, IEEE 2003,22(3):110-119. 10.1109/MEMB.2003.1213634CrossRef Bonato P, Mork P, Sherrill D, Westgaard R: Data mining of motor patterns recorded with wearable technology. Eng Med Biol Mag, IEEE 2003,22(3):110-119. 10.1109/MEMB.2003.1213634CrossRef
15.
go back to reference Patel S, Hughes R, Hester T, Stein J, Akay M, Dy J, Bonato P: Tracking motor recovery in stroke survivors undergoing rehabilitation using wearable technology. In Proceedings of the 32nd Annual International Conference of the IEEE EMBS. IEEE; 2010:6858-6861. Patel S, Hughes R, Hester T, Stein J, Akay M, Dy J, Bonato P: Tracking motor recovery in stroke survivors undergoing rehabilitation using wearable technology. In Proceedings of the 32nd Annual International Conference of the IEEE EMBS. IEEE; 2010:6858-6861.
16.
go back to reference Patel S, Hughes R, Hester T, Stein J, Akay M, Dy J, Bonato P: A novel approach to monitor rehabilitation outcomes in stroke survivors using wearable technology. Proc IEEE 2010, 98: 450-461.CrossRef Patel S, Hughes R, Hester T, Stein J, Akay M, Dy J, Bonato P: A novel approach to monitor rehabilitation outcomes in stroke survivors using wearable technology. Proc IEEE 2010, 98: 450-461.CrossRef
17.
go back to reference Hester T, Hughes R, Sherrill D, Knorr B, Akay M, Stein J, Bonato P: Using wearable sensors to measure motor abilities following stroke. In Wearable and Implantable Body Sensor Networks, 2006. BSN 2006. International Workshop on. IEEE Computer Society; 2006:. 4, pp. 5–8 Hester T, Hughes R, Sherrill D, Knorr B, Akay M, Stein J, Bonato P: Using wearable sensors to measure motor abilities following stroke. In Wearable and Implantable Body Sensor Networks, 2006. BSN 2006. International Workshop on. IEEE Computer Society; 2006:. 4, pp. 5–8
18.
go back to reference Del Din S, Patel S, Cobelli C, Bonato P: Estimating fugl-meyer clinical scores in stroke survivors using wearable sensors. In Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE. IEEE; 2011:5839-5842.CrossRef Del Din S, Patel S, Cobelli C, Bonato P: Estimating fugl-meyer clinical scores in stroke survivors using wearable sensors. In Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE. IEEE; 2011:5839-5842.CrossRef
19.
go back to reference Wade E, Parnandi A, Mataric M: Automated administration of the wolf motor function test for post-stroke assessment. In Pervasive Computing Technologies for Healthcare (PervasiveHealth) 2010 4th International Conference on. IEEE; 2010:1-7. Wade E, Parnandi A, Mataric M: Automated administration of the wolf motor function test for post-stroke assessment. In Pervasive Computing Technologies for Healthcare (PervasiveHealth) 2010 4th International Conference on. IEEE; 2010:1-7.
20.
go back to reference Taub E, Miller N, Novack T, Cook 3rd E, Fleming W, Nepomuceno C, Connell J, Crago J, et al.: Technique to improve chronic motor deficit after stroke. Arch Phys Med Rehabil 1993,74(4):347.PubMed Taub E, Miller N, Novack T, Cook 3rd E, Fleming W, Nepomuceno C, Connell J, Crago J, et al.: Technique to improve chronic motor deficit after stroke. Arch Phys Med Rehabil 1993,74(4):347.PubMed
21.
go back to reference Bento V, Cruz V, Ribeiro D, Cunha J: Towards a movement quantification system capable of automatic evaluation of upper limb motor function after neurological injury. In Engineering in Medicine and Biology Society,EMBC, 2011 Annual International Conference of the IEEE. IEEE; 2011:5456-5460.CrossRef Bento V, Cruz V, Ribeiro D, Cunha J: Towards a movement quantification system capable of automatic evaluation of upper limb motor function after neurological injury. In Engineering in Medicine and Biology Society,EMBC, 2011 Annual International Conference of the IEEE. IEEE; 2011:5456-5460.CrossRef
22.
go back to reference Parnandi A, Wade E, Mataric M: Motor function assessment using wearable inertial sensors. In Engineering in Medicine and Biology Society (EMBC), Annual International Conference on. IEEE; 2010:86-89. Parnandi A, Wade E, Mataric M: Motor function assessment using wearable inertial sensors. In Engineering in Medicine and Biology Society (EMBC), Annual International Conference on. IEEE; 2010:86-89.
23.
go back to reference Zhang M, Lange B, Chang CY, Sawchuk AA, Rizzo AA: Beyond the standard clinical rating scales: fine-grained assessment of post-stroke motor functionality using wearable inertial sensors. International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2012. Zhang M, Lange B, Chang CY, Sawchuk AA, Rizzo AA: Beyond the standard clinical rating scales: fine-grained assessment of post-stroke motor functionality using wearable inertial sensors. International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2012.
24.
go back to reference Nguyen K, Chen I, Luo Z, Yeo S, Duh H: A wearable sensing system for tracking and monitoring of functional arm movement. Mechatronics, IEEE/ASME Trans 2011,16(2):213-220.CrossRef Nguyen K, Chen I, Luo Z, Yeo S, Duh H: A wearable sensing system for tracking and monitoring of functional arm movement. Mechatronics, IEEE/ASME Trans 2011,16(2):213-220.CrossRef
25.
go back to reference Uswatte G, Foo W, Olmstead H, Lopez K, Holand A, Simms L: Ambulatory monitoring of arm movement using accelerometry: an objective measure of upper-extremity rehabilitation in persons with chronic stroke. Arch Phys Med Rehabil 2005,86(7):1498-1501. 10.1016/j.apmr.2005.01.010CrossRefPubMed Uswatte G, Foo W, Olmstead H, Lopez K, Holand A, Simms L: Ambulatory monitoring of arm movement using accelerometry: an objective measure of upper-extremity rehabilitation in persons with chronic stroke. Arch Phys Med Rehabil 2005,86(7):1498-1501. 10.1016/j.apmr.2005.01.010CrossRefPubMed
26.
go back to reference van der Pas S, Verbunt J, Breukelaar D, van Woerden R, Seelen H: Assessment of arm activity using triaxial accelerometry in patients with a stroke. Arch Phys Med Rehabil 2011,92(9):1437-1442. 10.1016/j.apmr.2011.02.021CrossRefPubMed van der Pas S, Verbunt J, Breukelaar D, van Woerden R, Seelen H: Assessment of arm activity using triaxial accelerometry in patients with a stroke. Arch Phys Med Rehabil 2011,92(9):1437-1442. 10.1016/j.apmr.2011.02.021CrossRefPubMed
27.
go back to reference Aminian K, Rezakhanlou K, De Andres E, Fritsch C, Leyvraz P, Robert P: Temporal feature estimation during walking using miniature accelerometers: an analysis of gait improvement after hip arthroplasty. Med Biol Eng Comput 1999,37(6):686-691. 10.1007/BF02513368CrossRefPubMed Aminian K, Rezakhanlou K, De Andres E, Fritsch C, Leyvraz P, Robert P: Temporal feature estimation during walking using miniature accelerometers: an analysis of gait improvement after hip arthroplasty. Med Biol Eng Comput 1999,37(6):686-691. 10.1007/BF02513368CrossRefPubMed
28.
go back to reference Mackey AH, Walt SE, Stott NS: Deficits in Upper-Limb Task Performance in Children With Hemiplegic Cerebral Palsy as Defined by 3-Dimensional Kinematics. Arch Phys Med Rehabil 2006, 87: 207-215. 10.1016/j.apmr.2005.10.023CrossRefPubMed Mackey AH, Walt SE, Stott NS: Deficits in Upper-Limb Task Performance in Children With Hemiplegic Cerebral Palsy as Defined by 3-Dimensional Kinematics. Arch Phys Med Rehabil 2006, 87: 207-215. 10.1016/j.apmr.2005.10.023CrossRefPubMed
29.
go back to reference Harms H, Amft O, Tröster G, Appert M, Müller R, Meyer-Heim A: Wearable therapist: sensing garments for supporting children improve posture. In Proceedings of the 11th international conference on Ubiquitous computing. ACM; 2009:85-88. Harms H, Amft O, Tröster G, Appert M, Müller R, Meyer-Heim A: Wearable therapist: sensing garments for supporting children improve posture. In Proceedings of the 11th international conference on Ubiquitous computing. ACM; 2009:85-88.
30.
go back to reference Mancinelli C, Patel S, Deming L, Schmid M, Patritti B, Chu J, Beckwith J, Greenwald R, Healey J, Bonato P: Assessing the feasibility of classifying toe-walking severity in children with cerebral palsy using a sensorized shoe. In Engineering in Medicine and Biology Society, 2009 EMBC 2009. Annual International Conference of the IEEE. IEEE; 2009:5163-5166.CrossRef Mancinelli C, Patel S, Deming L, Schmid M, Patritti B, Chu J, Beckwith J, Greenwald R, Healey J, Bonato P: Assessing the feasibility of classifying toe-walking severity in children with cerebral palsy using a sensorized shoe. In Engineering in Medicine and Biology Society, 2009 EMBC 2009. Annual International Conference of the IEEE. IEEE; 2009:5163-5166.CrossRef
31.
go back to reference Abu-Faraj Z, Harris G, Abler J, Wertsch J: A Holter-type, microprocessor-based, rehabilitation instrument for acquisition and storage of plantar pressure data. J Rehabil Res Dev 1997, 34: 187-194.PubMed Abu-Faraj Z, Harris G, Abler J, Wertsch J: A Holter-type, microprocessor-based, rehabilitation instrument for acquisition and storage of plantar pressure data. J Rehabil Res Dev 1997, 34: 187-194.PubMed
32.
go back to reference Taylor N, Sand P, Jebsen R: Evaluation of hand function in children. Arch Phys Med Rehabil 1973,54(3):129.PubMed Taylor N, Sand P, Jebsen R: Evaluation of hand function in children. Arch Phys Med Rehabil 1973,54(3):129.PubMed
33.
go back to reference Kalsi-Ryan S, Curt A, Fehlings MG, Verrier MC: Assessment of the hand in tetraplegia using the Graded Redefined Assessment of Strength, Sensibility and Prehension (GRASSP). Topics Spinal Cord Injury Rehabil 2009,14(4):34-46. 10.1310/sci1404-34CrossRef Kalsi-Ryan S, Curt A, Fehlings MG, Verrier MC: Assessment of the hand in tetraplegia using the Graded Redefined Assessment of Strength, Sensibility and Prehension (GRASSP). Topics Spinal Cord Injury Rehabil 2009,14(4):34-46. 10.1310/sci1404-34CrossRef
34.
go back to reference Mathiowetz V, Kashman N, Volland G, Weber K, Dowe M, Rogers S, et al.: Grip and pinch strength: normative data for adults. Arch Phys Med Rehabil 1985,66(2):69.PubMed Mathiowetz V, Kashman N, Volland G, Weber K, Dowe M, Rogers S, et al.: Grip and pinch strength: normative data for adults. Arch Phys Med Rehabil 1985,66(2):69.PubMed
35.
go back to reference Podsiadlo D, Richardson S, et al.: The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc 1991,39(2):142.CrossRefPubMed Podsiadlo D, Richardson S, et al.: The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc 1991,39(2):142.CrossRefPubMed
36.
go back to reference Harms H, Amft O, Winkler R, Schumm J, Kusserow M, Troester G: ETHOS: Miniature orientation sensor for wearable human motion analysis. In Sensors, 2010 IEEE. IEEE; 2010:1037-1042.CrossRef Harms H, Amft O, Winkler R, Schumm J, Kusserow M, Troester G: ETHOS: Miniature orientation sensor for wearable human motion analysis. In Sensors, 2010 IEEE. IEEE; 2010:1037-1042.CrossRef
37.
go back to reference Strohrmann C, Harms H, Tröster G, Hensler S, Müller R: Out of the Lab and Into the Woods: Kinematic Analysis in Running Using Wearable Sensors. In Proceedings of the 13th ACM International Conference on Ubiquitous Computing (UbiComp 2011). ACM; 2011:119-122.CrossRef Strohrmann C, Harms H, Tröster G, Hensler S, Müller R: Out of the Lab and Into the Woods: Kinematic Analysis in Running Using Wearable Sensors. In Proceedings of the 13th ACM International Conference on Ubiquitous Computing (UbiComp 2011). ACM; 2011:119-122.CrossRef
38.
go back to reference Strohrmann C, Harms H, Kappeler-Setz C, Tröster G: Monitoring kinematic changes with fatigue in running Using body-worn sensors. IEEE Trans Inf Technol Biomedicine 2012,16(15):983-990.CrossRef Strohrmann C, Harms H, Kappeler-Setz C, Tröster G: Monitoring kinematic changes with fatigue in running Using body-worn sensors. IEEE Trans Inf Technol Biomedicine 2012,16(15):983-990.CrossRef
39.
go back to reference Bao L, Intille S: Activity recognition from user-annotated acceleration data. Pervasive Comput 2004, 3001: 1-17. 10.1007/978-3-540-24646-6_1CrossRef Bao L, Intille S: Activity recognition from user-annotated acceleration data. Pervasive Comput 2004, 3001: 1-17. 10.1007/978-3-540-24646-6_1CrossRef
40.
go back to reference Hogan N, Sternad D: Sensitivity of smoothness measures to movement duration, amplitude, and arrests. J Motor Behav 2009,41(6):529-534. 10.3200/35-09-004-RCCrossRef Hogan N, Sternad D: Sensitivity of smoothness measures to movement duration, amplitude, and arrests. J Motor Behav 2009,41(6):529-534. 10.3200/35-09-004-RCCrossRef
41.
go back to reference Kojima M, Obuchi S, Mizuno K, Henmi O, Ikeda N: Power spectrum entropy of acceleration time-series during movement as an indicator of smoothness of movement. J Physiol Anthropol 2008,27(4):193-200. 10.2114/jpa2.27.193CrossRefPubMed Kojima M, Obuchi S, Mizuno K, Henmi O, Ikeda N: Power spectrum entropy of acceleration time-series during movement as an indicator of smoothness of movement. J Physiol Anthropol 2008,27(4):193-200. 10.2114/jpa2.27.193CrossRefPubMed
42.
go back to reference Keogh E, Chu S, Hart D, Pazzani M: An online algorithm for segmenting time series. In Data Mining, 2001. ICDM 2001, Proceedings IEEE International Conference on. IEEE; 2001:289-296.CrossRef Keogh E, Chu S, Hart D, Pazzani M: An online algorithm for segmenting time series. In Data Mining, 2001. ICDM 2001, Proceedings IEEE International Conference on. IEEE; 2001:289-296.CrossRef
43.
go back to reference Tura A, Raggi M, Rocchi L, Cutti A, Chiari L: Gait symmetry and regularity in transfemoral amputees assessed by trunk accelerations. J Neuroeng Rehabil 2010.,7(4): Tura A, Raggi M, Rocchi L, Cutti A, Chiari L: Gait symmetry and regularity in transfemoral amputees assessed by trunk accelerations. J Neuroeng Rehabil 2010.,7(4):
44.
go back to reference Bishop CM: Pattern Recognition and Machine Learning. Springer; 2006. Bishop CM: Pattern Recognition and Machine Learning. Springer; 2006.
Metadata
Title
Monitoring motor capacity changes of children during rehabilitation using body-worn sensors
Authors
Christina Strohrmann
Rob Labruyère
Corinna N Gerber
Hubertus J van Hedel
Bert Arnrich
Gerhard Tröster
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2013
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-10-83

Other articles of this Issue 1/2013

Journal of NeuroEngineering and Rehabilitation 1/2013 Go to the issue