Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2013

Open Access 01-12-2013 | Research

A crossover pilot study evaluating the functional outcomes of two different types of robotic movement training in chronic stroke survivors using the arm exoskeleton BONES

Authors: Marie-Hélène Milot, Steven J Spencer, Vicky Chan, James P Allington, Julius Klein, Cathy Chou, James E Bobrow, Steven C Cramer, David J Reinkensmeyer

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2013

Login to get access

Abstract

Background

To date, the limited degrees of freedom (DOF) of most robotic training devices hinders them from providing functional training following stroke. We developed a 6-DOF exoskeleton (“BONES”) that allows movement of the upper limb to assist in rehabilitation. The objectives of this pilot study were to evaluate the impact of training with BONES on function of the affected upper limb, and to assess whether multijoint functional robotic training would translate into greater gains in arm function than single joint robotic training also conducted with BONES.

Methods

Twenty subjects with mild to moderate chronic stroke participated in this crossover study. Each subject experienced multijoint functional training and single joint training three sessions per week, for four weeks, with the order of presentation randomized. The primary outcome measure was the change in Box and Block Test (BBT). The secondary outcome measures were the changes in Fugl-Meyer Arm Motor Scale (FMA), Wolf Motor Function Test (WMFT), Motor Activity Log (MAL), and quantitative measures of strength and speed of reaching. These measures were assessed at baseline, after each training period, and at a 3-month follow-up evaluation session.

Results

Training with the robotic exoskeleton resulted in significant improvements in the BBT, FMA, WMFT, MAL, shoulder and elbow strength, and reaching speed (p < 0.05); these improvements were sustained at the 3 month follow-up. When comparing the effect of type of training on the gains obtained, no significant difference was noted between multijoint functional and single joint robotic training programs. However, for the BBT, WMFT and MAL, inequality of carryover effects were noted; subsequent analysis on the change in score between the baseline and first period of training again revealed no difference in the gains obtained between the types of training.

Conclusions

Training with the 6 DOF arm exoskeleton improved motor function after chronic stroke, challenging the idea that robotic therapy is only useful for impairment reduction. The pilot results presented here also suggest that multijoint functional robotic training is not decisively superior to single joint robotic training. This challenges the idea that functionally-oriented games during training is a key element for improving behavioral outcomes.

Trial registration

Appendix
Available only for authorised users
Literature
1.
go back to reference Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, Ferguson TB, Ford E, Furie K, Gillespie C, et al: Heart disease and stroke statistics–2010 update: a report from the American heart association. Circulation. 2010, 121: e46-e215.CrossRefPubMed Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, Ferguson TB, Ford E, Furie K, Gillespie C, et al: Heart disease and stroke statistics–2010 update: a report from the American heart association. Circulation. 2010, 121: e46-e215.CrossRefPubMed
2.
go back to reference Lo AC, Guarino PD, Richards LG, Haselkorn JK, Wittenberg GF, Federman DG, Ringer RJ, Wagner TH, Krebs HI, Volpe BT, et al: Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med. 2010, 362: 1772-1783. 10.1056/NEJMoa0911341.CrossRefPubMed Lo AC, Guarino PD, Richards LG, Haselkorn JK, Wittenberg GF, Federman DG, Ringer RJ, Wagner TH, Krebs HI, Volpe BT, et al: Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med. 2010, 362: 1772-1783. 10.1056/NEJMoa0911341.CrossRefPubMed
3.
go back to reference Reinkensmeyer DJ, Maier MA, Guigon E, Chan V, Akoner O, Wolbrecht ET, Cramer SC, Bobrow JE: Do robotic and non-robotic arm movement training drive motor recovery after stroke by a common neural mechanism? Experimental evidence and a computational model. Conf Proc IEEE Eng Med Biol Soc. 2009, 2009: 2439-2441.PubMed Reinkensmeyer DJ, Maier MA, Guigon E, Chan V, Akoner O, Wolbrecht ET, Cramer SC, Bobrow JE: Do robotic and non-robotic arm movement training drive motor recovery after stroke by a common neural mechanism? Experimental evidence and a computational model. Conf Proc IEEE Eng Med Biol Soc. 2009, 2009: 2439-2441.PubMed
4.
5.
go back to reference Kwakkel G, Kollen B, Lindeman E: Understanding the pattern of functional recovery after stroke: facts and theories. Restor Neurol Neurosci. 2004, 22: 281-299.PubMed Kwakkel G, Kollen B, Lindeman E: Understanding the pattern of functional recovery after stroke: facts and theories. Restor Neurol Neurosci. 2004, 22: 281-299.PubMed
6.
go back to reference Pignolo L: Robotics in neuro-rehabilitation. J Rehabil Med. 2009, 41: 955-960. 10.2340/16501977-0434.CrossRefPubMed Pignolo L: Robotics in neuro-rehabilitation. J Rehabil Med. 2009, 41: 955-960. 10.2340/16501977-0434.CrossRefPubMed
7.
go back to reference Kahn LE, Zygman ML, Rymer WZ, Reinkensmeyer DJ: Robot-assisted reaching exercise promotes arm movement recovery in chronic hemiparetic stroke: a randomized controlled pilot study. J Neuroeng Rehabil. 2006, 3: 12-10.1186/1743-0003-3-12.PubMedCentralCrossRefPubMed Kahn LE, Zygman ML, Rymer WZ, Reinkensmeyer DJ: Robot-assisted reaching exercise promotes arm movement recovery in chronic hemiparetic stroke: a randomized controlled pilot study. J Neuroeng Rehabil. 2006, 3: 12-10.1186/1743-0003-3-12.PubMedCentralCrossRefPubMed
8.
go back to reference Krebs HI, Mernoff S, Fasoli SE, Hughes R, Stein J, Hogan N: A comparison of functional and impairment-based robotic training in severe to moderate chronic stroke: a pilot study. Neuro Rehabilitation. 2008, 23: 81-87.PubMed Krebs HI, Mernoff S, Fasoli SE, Hughes R, Stein J, Hogan N: A comparison of functional and impairment-based robotic training in severe to moderate chronic stroke: a pilot study. Neuro Rehabilitation. 2008, 23: 81-87.PubMed
9.
go back to reference Lum PS, Burgar CG, Shor PC, Majmundar M, Van der Loos M: Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch Phys Med Rehabil. 2002, 83: 952-959. 10.1053/apmr.2001.33101.CrossRefPubMed Lum PS, Burgar CG, Shor PC, Majmundar M, Van der Loos M: Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch Phys Med Rehabil. 2002, 83: 952-959. 10.1053/apmr.2001.33101.CrossRefPubMed
10.
go back to reference Reinkensmeyer DJ, Wolbrecht ET, Chan V, Chou C, Cramer SC, Bobrow JE: Comparison of three-dimensional, assist-as-needed robotic arm/hand movement training provided with Pneu-WREX to conventional tabletop therapy after chronic stroke. Am J Phys Med Rehabil. 2012, 91: S232-241.PubMedCentralCrossRefPubMed Reinkensmeyer DJ, Wolbrecht ET, Chan V, Chou C, Cramer SC, Bobrow JE: Comparison of three-dimensional, assist-as-needed robotic arm/hand movement training provided with Pneu-WREX to conventional tabletop therapy after chronic stroke. Am J Phys Med Rehabil. 2012, 91: S232-241.PubMedCentralCrossRefPubMed
11.
go back to reference Staubli P, Nef T, Klamroth-Marganska V, Riener R: Effects of intensive arm training with the rehabilitation robot ARMin II in chronic stroke patients: four single-cases. J Neuroeng Rehabil. 2009, 6: 46-10.1186/1743-0003-6-46.PubMedCentralCrossRefPubMed Staubli P, Nef T, Klamroth-Marganska V, Riener R: Effects of intensive arm training with the rehabilitation robot ARMin II in chronic stroke patients: four single-cases. J Neuroeng Rehabil. 2009, 6: 46-10.1186/1743-0003-6-46.PubMedCentralCrossRefPubMed
12.
go back to reference Takahashi CD, Der-Yeghiaian L, Le V, Motiwala RR, Cramer SC: Robot-based hand motor therapy after stroke. Brain. 2008, 131: 425-437. 10.1093/brain/awm311.CrossRefPubMed Takahashi CD, Der-Yeghiaian L, Le V, Motiwala RR, Cramer SC: Robot-based hand motor therapy after stroke. Brain. 2008, 131: 425-437. 10.1093/brain/awm311.CrossRefPubMed
13.
go back to reference Schmidt R, Lee T: Motor control and learning: a behavioral emphasis. 2005, Champaign, IL: United States Human Kinetics Schmidt R, Lee T: Motor control and learning: a behavioral emphasis. 2005, Champaign, IL: United States Human Kinetics
14.
go back to reference Balasubramanian S, Klein J, Burdet E: Robot-assisted rehabilitation of hand function. Curr Opin Neurol. 2010, 23: 661-670. 10.1097/WCO.0b013e32833e99a4.CrossRefPubMed Balasubramanian S, Klein J, Burdet E: Robot-assisted rehabilitation of hand function. Curr Opin Neurol. 2010, 23: 661-670. 10.1097/WCO.0b013e32833e99a4.CrossRefPubMed
15.
go back to reference Housman SJ, Scott KM, Reinkensmeyer DJ: A randomized controlled trial of gravity-supported, computer-enhanced arm exercise for individuals with severe hemiparesis. Neurorehabil Neural Repair. 2009, 23: 505-514. 10.1177/1545968308331148.CrossRefPubMed Housman SJ, Scott KM, Reinkensmeyer DJ: A randomized controlled trial of gravity-supported, computer-enhanced arm exercise for individuals with severe hemiparesis. Neurorehabil Neural Repair. 2009, 23: 505-514. 10.1177/1545968308331148.CrossRefPubMed
16.
17.
go back to reference Alexander MP, Baker E, Naeser MA, Kaplan E, Palumbo C: Neuropsychological and neuroanatomical dimensions of ideomotor apraxia. Brain. 1992, 115 (Pt 1): 87-107.CrossRefPubMed Alexander MP, Baker E, Naeser MA, Kaplan E, Palumbo C: Neuropsychological and neuroanatomical dimensions of ideomotor apraxia. Brain. 1992, 115 (Pt 1): 87-107.CrossRefPubMed
18.
go back to reference Lincoln NB, Jackson JM, Adams SA: Reliability and revision of the nottingham sensory assessment for stroke patients. Physiother. 1998, 84: 358-365. 10.1016/S0031-9406(05)61454-X.CrossRef Lincoln NB, Jackson JM, Adams SA: Reliability and revision of the nottingham sensory assessment for stroke patients. Physiother. 1998, 84: 358-365. 10.1016/S0031-9406(05)61454-X.CrossRef
19.
go back to reference Brott T, Adams HP, Olinger CP, Marler JR, Barsan WG, Biller J, Spilker J, Holleran R, Eberle R, Hertzberg V, et al: Measurements of acute cerebral infarction: a clinical examination scale. Stroke. 1989, 20: 864-870. 10.1161/01.STR.20.7.864.CrossRefPubMed Brott T, Adams HP, Olinger CP, Marler JR, Barsan WG, Biller J, Spilker J, Holleran R, Eberle R, Hertzberg V, et al: Measurements of acute cerebral infarction: a clinical examination scale. Stroke. 1989, 20: 864-870. 10.1161/01.STR.20.7.864.CrossRefPubMed
20.
go back to reference Nelson ME, Rejeski WJ, Blair SN, Duncan PW, Judge JO, King AC, Macera CA, Castaneda-Sceppa C: Physical activity and public health in older adults: recommendation from the american college of sports medicine and the american heart association. Med Sci Sports Exerc. 2007, 39: 1435-1445. 10.1249/mss.0b013e3180616aa2.CrossRefPubMed Nelson ME, Rejeski WJ, Blair SN, Duncan PW, Judge JO, King AC, Macera CA, Castaneda-Sceppa C: Physical activity and public health in older adults: recommendation from the american college of sports medicine and the american heart association. Med Sci Sports Exerc. 2007, 39: 1435-1445. 10.1249/mss.0b013e3180616aa2.CrossRefPubMed
21.
go back to reference Klein J, Spencer S, Allington J, Bobrow JE, Reinkensmeyer DJ: Optimization of a parallel shoulder mechanism to achieve a high-force, low-mass, robotic-arm exoskeleton. IEEE Trans Robot. 2010, 26: 710-715.CrossRef Klein J, Spencer S, Allington J, Bobrow JE, Reinkensmeyer DJ: Optimization of a parallel shoulder mechanism to achieve a high-force, low-mass, robotic-arm exoskeleton. IEEE Trans Robot. 2010, 26: 710-715.CrossRef
22.
go back to reference Allington J, Spencer SJ, Klein J, Buell M, Reinkensmeyer DJ, Bobrow J: Supinator extender (SUE): a pneumatically actuated robot for forearm/wrist rehabilitation after stroke. Conf Proc IEEE Eng Med Biol Soc. 2011, 2011: 1579-1582.PubMed Allington J, Spencer SJ, Klein J, Buell M, Reinkensmeyer DJ, Bobrow J: Supinator extender (SUE): a pneumatically actuated robot for forearm/wrist rehabilitation after stroke. Conf Proc IEEE Eng Med Biol Soc. 2011, 2011: 1579-1582.PubMed
23.
go back to reference Wolbrecht ET, Chan V, Reinkensmeyer DJ, Bobrow JE: Optimizing compliant, model-based robotic assistance to promote neurorehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2008, 16: 286-297.CrossRefPubMed Wolbrecht ET, Chan V, Reinkensmeyer DJ, Bobrow JE: Optimizing compliant, model-based robotic assistance to promote neurorehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2008, 16: 286-297.CrossRefPubMed
24.
go back to reference Mathiowetz V, Volland G, Kashman N, Weber K: Adult norms for the box and block test of manual dexterity. Am J Occup Ther. 1985, 39: 386-391. 10.5014/ajot.39.6.386.CrossRefPubMed Mathiowetz V, Volland G, Kashman N, Weber K: Adult norms for the box and block test of manual dexterity. Am J Occup Ther. 1985, 39: 386-391. 10.5014/ajot.39.6.386.CrossRefPubMed
25.
go back to reference See J, Dodakian L, Chou C, Chan V, McKenzie A, Reinkensmeyer DJ, Cramer SC: A standardized approach to the fugl-meyer assessment and its implications for clinical trials. Neurorehabil Neural Repair. 2013, 27: 732-741. 10.1177/1545968313491000.CrossRefPubMed See J, Dodakian L, Chou C, Chan V, McKenzie A, Reinkensmeyer DJ, Cramer SC: A standardized approach to the fugl-meyer assessment and its implications for clinical trials. Neurorehabil Neural Repair. 2013, 27: 732-741. 10.1177/1545968313491000.CrossRefPubMed
26.
go back to reference Wolf SL, Thompson PA, Morris DM, Rose DK, Winstein CJ, Taub E, Giuliani C, Pearson SL: The EXCITE trial: attributes of the wolf motor function test in patients with subacute stroke. Neurorehabil Neural Repair. 2005, 19: 194-205. 10.1177/1545968305276663.CrossRefPubMed Wolf SL, Thompson PA, Morris DM, Rose DK, Winstein CJ, Taub E, Giuliani C, Pearson SL: The EXCITE trial: attributes of the wolf motor function test in patients with subacute stroke. Neurorehabil Neural Repair. 2005, 19: 194-205. 10.1177/1545968305276663.CrossRefPubMed
27.
go back to reference Uswatte G, Taub E, Morris D, Light K, Thompson PA: The motor activity Log-28: assessing daily use of the hemiparetic arm after stroke. Neurology. 2006, 67: 1189-1194. 10.1212/01.wnl.0000238164.90657.c2.CrossRefPubMed Uswatte G, Taub E, Morris D, Light K, Thompson PA: The motor activity Log-28: assessing daily use of the hemiparetic arm after stroke. Neurology. 2006, 67: 1189-1194. 10.1212/01.wnl.0000238164.90657.c2.CrossRefPubMed
28.
go back to reference Katz RT, Rovai GP, Brait C, Rymer WZ: Objective quantification of spastic hypertonia: correlation with clinical findings. Arch Phys Med Rehabil. 1992, 73: 339-347. 10.1016/0003-9993(92)90007-J.CrossRefPubMed Katz RT, Rovai GP, Brait C, Rymer WZ: Objective quantification of spastic hypertonia: correlation with clinical findings. Arch Phys Med Rehabil. 1992, 73: 339-347. 10.1016/0003-9993(92)90007-J.CrossRefPubMed
29.
go back to reference Schmid A, Duncan PW, Studenski S, Lai SM, Richards L, Perera S, Wu SS: Improvements in speed-based gait classifications are meaningful. Stroke. 2007, 38: 2096-2100. 10.1161/STROKEAHA.106.475921.CrossRefPubMed Schmid A, Duncan PW, Studenski S, Lai SM, Richards L, Perera S, Wu SS: Improvements in speed-based gait classifications are meaningful. Stroke. 2007, 38: 2096-2100. 10.1161/STROKEAHA.106.475921.CrossRefPubMed
30.
go back to reference Dewald JP, Beer RF: Abnormal joint torque patterns in the paretic upper limb of subjects with hemiparesis. Muscle Nerve. 2001, 24: 273-283. 10.1002/1097-4598(200102)24:2<273::AID-MUS130>3.0.CO;2-Z.CrossRefPubMed Dewald JP, Beer RF: Abnormal joint torque patterns in the paretic upper limb of subjects with hemiparesis. Muscle Nerve. 2001, 24: 273-283. 10.1002/1097-4598(200102)24:2<273::AID-MUS130>3.0.CO;2-Z.CrossRefPubMed
31.
go back to reference Dromerick AW, Lang CE, Birkenmeier R, Hahn MG, Sahrmann SA, Edwards DF: Relationships between upper-limb functional limitation and self-reported disability 3 months after stroke. J Rehabil Res Dev. 2006, 43: 401-408. 10.1682/JRRD.2005.04.0075.CrossRefPubMed Dromerick AW, Lang CE, Birkenmeier R, Hahn MG, Sahrmann SA, Edwards DF: Relationships between upper-limb functional limitation and self-reported disability 3 months after stroke. J Rehabil Res Dev. 2006, 43: 401-408. 10.1682/JRRD.2005.04.0075.CrossRefPubMed
32.
go back to reference Cirstea MC, Levin MF: Compensatory strategies for reaching in stroke. Brain. 2000, 123 (Pt 5): 940-953.CrossRefPubMed Cirstea MC, Levin MF: Compensatory strategies for reaching in stroke. Brain. 2000, 123 (Pt 5): 940-953.CrossRefPubMed
33.
go back to reference Demain S, Wiles R, Roberts L, McPherson K: Recovery plateau following stroke: fact or fiction?. Disabil Rehabil. 2006, 28: 815-821. 10.1080/09638280500534796.CrossRefPubMed Demain S, Wiles R, Roberts L, McPherson K: Recovery plateau following stroke: fact or fiction?. Disabil Rehabil. 2006, 28: 815-821. 10.1080/09638280500534796.CrossRefPubMed
34.
go back to reference Hubbard IJ, Parsons MW, Neilson C, Carey LM: Task-specific training: evidence for and translation to clinical practice. Occup Ther Int. 2009, 16: 175-189. 10.1002/oti.275.CrossRefPubMed Hubbard IJ, Parsons MW, Neilson C, Carey LM: Task-specific training: evidence for and translation to clinical practice. Occup Ther Int. 2009, 16: 175-189. 10.1002/oti.275.CrossRefPubMed
35.
go back to reference Schaefer SY, Patterson CB, Lang CE: Transfer of training between distinct motor tasks after stroke: implications for task-specific approaches to upper-extremity neurorehabilitation. Neurorehabil Neural Repair. 2013, 27: 602-612. 10.1177/1545968313481279.PubMedCentralCrossRefPubMed Schaefer SY, Patterson CB, Lang CE: Transfer of training between distinct motor tasks after stroke: implications for task-specific approaches to upper-extremity neurorehabilitation. Neurorehabil Neural Repair. 2013, 27: 602-612. 10.1177/1545968313481279.PubMedCentralCrossRefPubMed
36.
go back to reference Zondervan DK, Palafox L, Hernandez J, Reinkensmeyer DJ: The resonating arm exerciser: design and pilot testing of a mechanically passive rehabilitation device that mimics robotic active assistance. J Neuroeng Rehabil. 2013, 10: 39-10.1186/1743-0003-10-39.PubMedCentralCrossRefPubMed Zondervan DK, Palafox L, Hernandez J, Reinkensmeyer DJ: The resonating arm exerciser: design and pilot testing of a mechanically passive rehabilitation device that mimics robotic active assistance. J Neuroeng Rehabil. 2013, 10: 39-10.1186/1743-0003-10-39.PubMedCentralCrossRefPubMed
37.
go back to reference Milot M, Nadeau S, Gravel D, Bourbonnais D: Gait performance and lower-limb muscle strength improved in both upper-limb and lower-limb isokinetic training programs in individuals with chronic stroke. ISRN Rehabilitation. 2013, 2013: 10-CrossRef Milot M, Nadeau S, Gravel D, Bourbonnais D: Gait performance and lower-limb muscle strength improved in both upper-limb and lower-limb isokinetic training programs in individuals with chronic stroke. ISRN Rehabilitation. 2013, 2013: 10-CrossRef
38.
go back to reference Klein J, Spencer SJ, Reinkensmeyer DJ: Breaking it down is better: haptic decomposition of complex movements aids in robot-assisted motor learning. IEEE Trans Neural Syst Rehabil Eng. 2012, 20: 268-275.PubMedCentralCrossRefPubMed Klein J, Spencer SJ, Reinkensmeyer DJ: Breaking it down is better: haptic decomposition of complex movements aids in robot-assisted motor learning. IEEE Trans Neural Syst Rehabil Eng. 2012, 20: 268-275.PubMedCentralCrossRefPubMed
Metadata
Title
A crossover pilot study evaluating the functional outcomes of two different types of robotic movement training in chronic stroke survivors using the arm exoskeleton BONES
Authors
Marie-Hélène Milot
Steven J Spencer
Vicky Chan
James P Allington
Julius Klein
Cathy Chou
James E Bobrow
Steven C Cramer
David J Reinkensmeyer
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2013
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-10-112

Other articles of this Issue 1/2013

Journal of NeuroEngineering and Rehabilitation 1/2013 Go to the issue