Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2004

Open Access 01-12-2004 | Research

Reaching in reality and virtual reality: a comparison of movement kinematics in healthy subjects and in adults with hemiparesis

Authors: Antonin Viau, Anatol G Feldman, Bradford J McFadyen, Mindy F Levin

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2004

Login to get access

Abstract

Background

Virtual reality (VR) is an innovative tool for sensorimotor rehabilitation increasingly being employed in clinical and community settings. Despite the growing interest in VR, few studies have determined the validity of movements made in VR environments with respect to real physical environments. The goal of this study was to compare movements done in physical and virtual environments in adults with motor deficits to those in healthy individuals.

Methods

The participants were 8 healthy adults and 7 adults with mild left hemiparesis due to stroke. Kinematics of functional arm movements involving reaching, grasping and releasing made in physical and virtual environments were analyzed in two phases: 1) reaching and grasping the ball and 2) ball transport and release. The virtual environment included interaction with an object on a 2D computer screen and haptic force feedback from a virtual ball. Temporal and spatial parameters of reaching and grasping were determined for each phase.

Results

Individuals in both groups were able to reach, grasp, transport, place and release the virtual and real ball using similar movement strategies. In healthy subjects, reaching and grasping movements in both environments were similar but these subjects used less wrist extension and more elbow extension to place the ball on the virtual vertical surface. Participants with hemiparesis made slower movements in both environments compared to healthy subjects and during transport and placing of the ball, trajectories were more curved and interjoint coordination was altered. Despite these differences, patients with hemiparesis also tended to use less wrist extension during the whole movement and more elbow extension at the end of the placing phase.

Conclusion

Differences in movements made by healthy subjects in the two environments may be explained by the use of a 2D instead of a 3D virtual environment and the absence of haptic feedback from the VR target. Despite these differences, our findings suggest that both healthy subjects and individuals with motor deficits used similar movement strategies when grasping and placing a ball in the two reality conditions. This suggests that training of arm movements in VR environments may be a valid approach to the rehabilitation of patients with motor disorders.
Appendix
Available only for authorised users
Literature
1.
go back to reference Stanton D, Foreman N, Wilson P: Uses of virtual reality in clinical training: developing the spatial skills of children with mobility impairments. In In Virtual Environments in Clinical Psychology and Neuroscience: Methods and Techniques in Advanced Patient-Therapist Interaction. Edited by: Riva G, Wiederhold BK, Molinari E. Amsterdam: IOS Press; 1998:219-232. Stanton D, Foreman N, Wilson P: Uses of virtual reality in clinical training: developing the spatial skills of children with mobility impairments. In In Virtual Environments in Clinical Psychology and Neuroscience: Methods and Techniques in Advanced Patient-Therapist Interaction. Edited by: Riva G, Wiederhold BK, Molinari E. Amsterdam: IOS Press; 1998:219-232.
2.
go back to reference Deutsch JE, Merians AS, Burdea GC, Boian R, Adamovich SV, Poizner H: Haptics and virtual reality used to increase strength and improve function in chronic individuals post-stroke: two case reports. Neurol Rep 2002, 26: 72-86.CrossRef Deutsch JE, Merians AS, Burdea GC, Boian R, Adamovich SV, Poizner H: Haptics and virtual reality used to increase strength and improve function in chronic individuals post-stroke: two case reports. Neurol Rep 2002, 26: 72-86.CrossRef
3.
go back to reference Merians AS, Jack D, Boian R, Tremaine M, Burdea GC, Adamovich SV, Recce M, Poizner H: Virtual reality-augmented rehabilitation for patients following stroke. Phys Ther 2002, 82: 898-915.PubMed Merians AS, Jack D, Boian R, Tremaine M, Burdea GC, Adamovich SV, Recce M, Poizner H: Virtual reality-augmented rehabilitation for patients following stroke. Phys Ther 2002, 82: 898-915.PubMed
4.
go back to reference Sveistrup H, McComas J, Thornton M, Marshall S, Finestone H, McCormick A, Babulic K, Mayhew A: Environmental studies of virtual reality-delivered compared to conventional exercise programs for rehabilitation. Cyberpsychol Behav 2003, 6: 245-249. 10.1089/109493103322011524CrossRefPubMed Sveistrup H, McComas J, Thornton M, Marshall S, Finestone H, McCormick A, Babulic K, Mayhew A: Environmental studies of virtual reality-delivered compared to conventional exercise programs for rehabilitation. Cyberpsychol Behav 2003, 6: 245-249. 10.1089/109493103322011524CrossRefPubMed
5.
go back to reference Holden MK, Dyar T: Virtual environment training: a new tool for neurorehabilitation. Neurol Rep 2002, 26: 62-71.CrossRef Holden MK, Dyar T: Virtual environment training: a new tool for neurorehabilitation. Neurol Rep 2002, 26: 62-71.CrossRef
6.
go back to reference Piron L, Tonin P, Atzori A, Trivello E, Dam M: A virtual-reality based motor tele-rehabilitation system [abstract]. In Proceedings of the Second International Workshop on Virtual Rehab 2003, 21-26. Piron L, Tonin P, Atzori A, Trivello E, Dam M: A virtual-reality based motor tele-rehabilitation system [abstract]. In Proceedings of the Second International Workshop on Virtual Rehab 2003, 21-26.
7.
go back to reference Riva G, Gamberini L: Virtual reality in telemedicine. Telemed J E Health 2000, 6: 327-340. 10.1089/153056200750040183CrossRefPubMed Riva G, Gamberini L: Virtual reality in telemedicine. Telemed J E Health 2000, 6: 327-340. 10.1089/153056200750040183CrossRefPubMed
8.
go back to reference Rizzo A: A SWOT analysis of the field of virtual rehabilitation [abstract]. In Proceedings of the Second International Workshop on Virtual Rehab 2003, 1-2. Rizzo A: A SWOT analysis of the field of virtual rehabilitation [abstract]. In Proceedings of the Second International Workshop on Virtual Rehab 2003, 1-2.
9.
go back to reference Bütefisch C, Hummelsheim H, Denzler P, Mauritz KH: Repetitive training of isolated movements improves the outcome of motor rehabilitation of the centrally paretic hand. J Neurol Sci 1995, 130: 59-68. 10.1016/0022-510X(95)00003-KCrossRefPubMed Bütefisch C, Hummelsheim H, Denzler P, Mauritz KH: Repetitive training of isolated movements improves the outcome of motor rehabilitation of the centrally paretic hand. J Neurol Sci 1995, 130: 59-68. 10.1016/0022-510X(95)00003-KCrossRefPubMed
10.
go back to reference Kwakkel G, Wagenaar RC, Twisk JW, Lankhorst GJ, Koetsier JC: Intensity of leg and arm training after primary middle-cerebral-artery stroke: a randomized trial. Lancet 1999, 354: 191-196. 10.1016/S0140-6736(98)09477-XCrossRefPubMed Kwakkel G, Wagenaar RC, Twisk JW, Lankhorst GJ, Koetsier JC: Intensity of leg and arm training after primary middle-cerebral-artery stroke: a randomized trial. Lancet 1999, 354: 191-196. 10.1016/S0140-6736(98)09477-XCrossRefPubMed
11.
go back to reference Nudo RJ, Milliken GW: Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys. J Neurophysiol 1996, 75: 2144-2149.PubMed Nudo RJ, Milliken GW: Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys. J Neurophysiol 1996, 75: 2144-2149.PubMed
12.
go back to reference Wu C, Wong M, Lin K, Chen H: Effects of task goal and personal preference on seated reaching kinematics after stroke. Stroke 2001, 32: 70-76.CrossRefPubMed Wu C, Wong M, Lin K, Chen H: Effects of task goal and personal preference on seated reaching kinematics after stroke. Stroke 2001, 32: 70-76.CrossRefPubMed
13.
go back to reference Kizony R, Raz L, Katz N, Weingarden H, Weiss PL: Using a video projected VR system for patients with spinal cord injury [abstract]. In Proceedings of the Second International Workshop on Virtual Rehab 2003, 82-88. Kizony R, Raz L, Katz N, Weingarden H, Weiss PL: Using a video projected VR system for patients with spinal cord injury [abstract]. In Proceedings of the Second International Workshop on Virtual Rehab 2003, 82-88.
14.
go back to reference Todorov E, Shadmehr R, Bizzi E: Augmented feedback presented in a virtual environment accelerates learning of a difficult motor task. J Motor Behav 1997, 29: 147-158.CrossRef Todorov E, Shadmehr R, Bizzi E: Augmented feedback presented in a virtual environment accelerates learning of a difficult motor task. J Motor Behav 1997, 29: 147-158.CrossRef
15.
go back to reference Cirstea M, Levin MF: Compensatory strategies for reaching in stroke. Brain 2000, 123: 940-953. 10.1093/brain/123.5.940CrossRefPubMed Cirstea M, Levin MF: Compensatory strategies for reaching in stroke. Brain 2000, 123: 940-953. 10.1093/brain/123.5.940CrossRefPubMed
16.
go back to reference Levin MF: Interjoint coordination during pointing movements is disrupted in spastic hemiparesis. Brain 1996, 119: 281-293. 10.1093/brain/119.1.281CrossRefPubMed Levin MF: Interjoint coordination during pointing movements is disrupted in spastic hemiparesis. Brain 1996, 119: 281-293. 10.1093/brain/119.1.281CrossRefPubMed
17.
go back to reference Michaelsen SM, Levin MF: Short-term effects of practice with trunk restraint on reaching movements in patients with chronic stroke: a controlled trial. Stroke 2004, 35: 1914-1919. 10.1161/01.STR.0000132569.33572.75CrossRefPubMed Michaelsen SM, Levin MF: Short-term effects of practice with trunk restraint on reaching movements in patients with chronic stroke: a controlled trial. Stroke 2004, 35: 1914-1919. 10.1161/01.STR.0000132569.33572.75CrossRefPubMed
18.
go back to reference Viau A, Levin MF, McFadyen BJ, Feldman AG: Reaching in reality and in virtual reality: A comparison of movement kinematics [abstract]. ISEK, Boston 2004. Viau A, Levin MF, McFadyen BJ, Feldman AG: Reaching in reality and in virtual reality: A comparison of movement kinematics [abstract]. ISEK, Boston 2004.
19.
go back to reference Gowland C, Stratford P, Ward M, Moreland J, Torresin W, Van Hullenaar S, Sanford J, Barreca S, Vanspall B, Plews N: Measuring physical impairment and disability with the Chedoke-McMaster stroke assessment. Stroke 1983, 24: 58-63.CrossRef Gowland C, Stratford P, Ward M, Moreland J, Torresin W, Van Hullenaar S, Sanford J, Barreca S, Vanspall B, Plews N: Measuring physical impairment and disability with the Chedoke-McMaster stroke assessment. Stroke 1983, 24: 58-63.CrossRef
20.
go back to reference Archambault P, Pigeon P, Feldman AG, Levin MF: Recruitment and sequencing of different degrees of freedom during pointing movements involving the trunk in healthy and hemiparetic subjects. Exp Brain Res 1999, 126: 55-67. 10.1007/s002210050716CrossRefPubMed Archambault P, Pigeon P, Feldman AG, Levin MF: Recruitment and sequencing of different degrees of freedom during pointing movements involving the trunk in healthy and hemiparetic subjects. Exp Brain Res 1999, 126: 55-67. 10.1007/s002210050716CrossRefPubMed
21.
go back to reference Cumming BG, DeAngelis GC: The physiology of stereopsis. Annu Rev Neurosci 2001, 24: 203-238. 10.1146/annurev.neuro.24.1.203CrossRefPubMed Cumming BG, DeAngelis GC: The physiology of stereopsis. Annu Rev Neurosci 2001, 24: 203-238. 10.1146/annurev.neuro.24.1.203CrossRefPubMed
22.
go back to reference Bradshaw MF, Elliott KM: The role of binocular information in the 'on-line' control of prehension. Spatial Vision 2003, 16: 295-309. 10.1163/156856803322467545CrossRefPubMed Bradshaw MF, Elliott KM: The role of binocular information in the 'on-line' control of prehension. Spatial Vision 2003, 16: 295-309. 10.1163/156856803322467545CrossRefPubMed
23.
go back to reference Seidler R, Stelmach GE: Trunk-assisted prehension: specification of body segments with imposed temporal constraints. J Mot Behav 2000, 32: 379-388.CrossRefPubMed Seidler R, Stelmach GE: Trunk-assisted prehension: specification of body segments with imposed temporal constraints. J Mot Behav 2000, 32: 379-388.CrossRefPubMed
24.
go back to reference Bioan RF, Kourtev H, Deutsch JE, Lewis JA, Burdea GC: Dual stewart-platform gait rehabilitation system for individuals post-stroke [abstract]. In Proceedings of the Second International Workshop on Virtual Rehab 2003, 93. Bioan RF, Kourtev H, Deutsch JE, Lewis JA, Burdea GC: Dual stewart-platform gait rehabilitation system for individuals post-stroke [abstract]. In Proceedings of the Second International Workshop on Virtual Rehab 2003, 93.
25.
go back to reference Comeau F, Chapdelaine S, McFayden BJ, Malouin F, Lamontagne A, Galiana L, Laurendeau D, Richards CL, Fung J: Development of increasingly complex virtual environments for locomotor training after stroke [abstract]. In Proceedings of the Second International Workshop on Virtual Rehab 2003, 90. Comeau F, Chapdelaine S, McFayden BJ, Malouin F, Lamontagne A, Galiana L, Laurendeau D, Richards CL, Fung J: Development of increasingly complex virtual environments for locomotor training after stroke [abstract]. In Proceedings of the Second International Workshop on Virtual Rehab 2003, 90.
Metadata
Title
Reaching in reality and virtual reality: a comparison of movement kinematics in healthy subjects and in adults with hemiparesis
Authors
Antonin Viau
Anatol G Feldman
Bradford J McFadyen
Mindy F Levin
Publication date
01-12-2004
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2004
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-1-11

Other articles of this Issue 1/2004

Journal of NeuroEngineering and Rehabilitation 1/2004 Go to the issue