Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2004

Open Access 01-12-2004 | Review

Motor rehabilitation using virtual reality

Author: Heidi Sveistrup

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2004

Login to get access

Abstract

Virtual Reality (VR) provides a unique medium suited to the achievement of several requirements for effective rehabilitation intervention. Specifically, therapy can be provided within a functional, purposeful and motivating context. Many VR applications present opportunities for individuals to participate in experiences, which are engaging and rewarding. In addition to the value of the rehabilitation experience for the user, both therapists and users benefit from the ability to readily grade and document the therapeutic intervention using various systems. In VR, advanced technologies are used to produce simulated, interactive and multi-dimensional environments. Visual interfaces including desktop monitors and head-mounted displays (HMDs), haptic interfaces, and real-time motion tracking devices are used to create environments allowing users to interact with images and virtual objects in real-time through multiple sensory modalities. Opportunities for object manipulation and body movement through virtual space provide frameworks that, in varying degrees, are perceived as comparable to similar opportunities in the real world. This paper reviews current work on motor rehabilitation using virtual environments and virtual reality and where possible, compares outcomes with those achieved in real-world applications.
Literature
1.
go back to reference Malouin F, Richards CL, McFadyen B, Doyon J: New perspectives of locomotor rehabilitation after stroke. Med Sci (Paris) 2003, 19: 994-998.CrossRef Malouin F, Richards CL, McFadyen B, Doyon J: New perspectives of locomotor rehabilitation after stroke. Med Sci (Paris) 2003, 19: 994-998.CrossRef
2.
go back to reference Carr JH, Shepherd RB: A motor relearning programme for stroke. 2nd edition. Oxford: Butterworth Heinemann; 1987. Carr JH, Shepherd RB: A motor relearning programme for stroke. 2nd edition. Oxford: Butterworth Heinemann; 1987.
3.
go back to reference Keshner EA, Kenyon RV: Using immersive technology for postural research and rehabilitation. Assist Technol 2004, 16: 54-62.CrossRefPubMed Keshner EA, Kenyon RV: Using immersive technology for postural research and rehabilitation. Assist Technol 2004, 16: 54-62.CrossRefPubMed
4.
go back to reference Keshner EA, Kenyon RV, Dhaher Y: Postural research and rehabilitation in an immersive environment. Proceedings of the 26th Annual International Conference of the IEEE EMBS 2004, 4862-4865. Keshner EA, Kenyon RV, Dhaher Y: Postural research and rehabilitation in an immersive environment. Proceedings of the 26th Annual International Conference of the IEEE EMBS 2004, 4862-4865.
5.
go back to reference Keshner EA, Kenyon RV, Langston JL: Postural responses exhibit multisensory dependencies with discordant visual and support motion. J Vestib Res 2004, 14: 307-319.PubMed Keshner EA, Kenyon RV, Langston JL: Postural responses exhibit multisensory dependencies with discordant visual and support motion. J Vestib Res 2004, 14: 307-319.PubMed
6.
go back to reference Riva G, Bolzoni M, Carella F, Galimberti C, Griffin MJ, Lewis CH, Luongo R, Mrdegan P, Melis L, Molinari-Tosatti L, Poerschmann C, Rovetta A, Rushton S, Selis C, Wann J: Virtual reality environments for psycho-neuro-physiological assessment and rehabilitation. In In Medicine Meets Virtual Reality: Global Healthcare Grid. Edited by: Morgan KS, Weghorst SJ, Hoffman HM, Stredney D. Amsterdam: IOS Press; 1997:34-45. Riva G, Bolzoni M, Carella F, Galimberti C, Griffin MJ, Lewis CH, Luongo R, Mrdegan P, Melis L, Molinari-Tosatti L, Poerschmann C, Rovetta A, Rushton S, Selis C, Wann J: Virtual reality environments for psycho-neuro-physiological assessment and rehabilitation. In In Medicine Meets Virtual Reality: Global Healthcare Grid. Edited by: Morgan KS, Weghorst SJ, Hoffman HM, Stredney D. Amsterdam: IOS Press; 1997:34-45.
7.
go back to reference Schulteis MT, Rizzo AA: The application of virtual reality technology in rehabilitation. Rehabilitation Psychology 2001, 46: 296-311. 10.1037//0090-5550.46.3.296CrossRef Schulteis MT, Rizzo AA: The application of virtual reality technology in rehabilitation. Rehabilitation Psychology 2001, 46: 296-311. 10.1037//0090-5550.46.3.296CrossRef
8.
go back to reference Wilson RN, Foreman N, Tlauka M: Transfer of spatial information from a virtual to a real environment in physically disabled children. Disabil Rehabil 1996, 18: 633-637.CrossRefPubMed Wilson RN, Foreman N, Tlauka M: Transfer of spatial information from a virtual to a real environment in physically disabled children. Disabil Rehabil 1996, 18: 633-637.CrossRefPubMed
9.
go back to reference Sveistrup H, McComas J, Thornton M, Marshall S, Finestone H, McCormick A, Babulic K, Mayhew A: Experimental studies of virtual reality-delivered compared to conventional exercise programs for rehabilitation. Cyberpsychol Behav 2003, 6: 243-249. 10.1089/109493103322011524CrossRef Sveistrup H, McComas J, Thornton M, Marshall S, Finestone H, McCormick A, Babulic K, Mayhew A: Experimental studies of virtual reality-delivered compared to conventional exercise programs for rehabilitation. Cyberpsychol Behav 2003, 6: 243-249. 10.1089/109493103322011524CrossRef
10.
go back to reference Sveistrup H, Thornton M, Bryanton C, McComas J, Marshall S, Finestone H, McCormick A, McLean J, Brien M, Lajoie Y, Bisson Y: Outcomes of intervention programs using flat screen vitual reality. In Proceedings of th 26th Annual International Conference of IEEE/EMBS 2004, 4856-4858. Sveistrup H, Thornton M, Bryanton C, McComas J, Marshall S, Finestone H, McCormick A, McLean J, Brien M, Lajoie Y, Bisson Y: Outcomes of intervention programs using flat screen vitual reality. In Proceedings of th 26th Annual International Conference of IEEE/EMBS 2004, 4856-4858.
11.
go back to reference Weiss PL, Bialik P, Kizony R: Virtual reality provides leisure time opportunities for young adults with physical and intellectual disabilities. Cyberpsychol Behav 2003, 6: 335-342. 10.1089/109493103322011650CrossRefPubMed Weiss PL, Bialik P, Kizony R: Virtual reality provides leisure time opportunities for young adults with physical and intellectual disabilities. Cyberpsychol Behav 2003, 6: 335-342. 10.1089/109493103322011650CrossRefPubMed
12.
go back to reference Jack D, Boian R, Merians AS, Tremaine M, Burdea GC, Adamovich SV, Recce M, Poizner H: Virtual reality-enhanced stroke rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering 2001, 9: 308-318. 10.1109/7333.948460CrossRefPubMed Jack D, Boian R, Merians AS, Tremaine M, Burdea GC, Adamovich SV, Recce M, Poizner H: Virtual reality-enhanced stroke rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering 2001, 9: 308-318. 10.1109/7333.948460CrossRefPubMed
13.
go back to reference Shing CY, Fung CP, Chuang TY, Penn IW, Doong JL: The study of auditory and haptic signals in a virtual reality-based hand rehabilitation system. Robotica 2003, 21: 211-218. 10.1017/S0263574702004708CrossRef Shing CY, Fung CP, Chuang TY, Penn IW, Doong JL: The study of auditory and haptic signals in a virtual reality-based hand rehabilitation system. Robotica 2003, 21: 211-218. 10.1017/S0263574702004708CrossRef
14.
go back to reference Rheingold H: Virtual Reality. London: Secker and Warburg; 1991. Rheingold H: Virtual Reality. London: Secker and Warburg; 1991.
15.
go back to reference Witmer BG, Singer MJ: Measuring presence in virtual environments: a presence questionnaire. Presence 1998, 7: 225-240. 10.1162/105474698565686CrossRef Witmer BG, Singer MJ: Measuring presence in virtual environments: a presence questionnaire. Presence 1998, 7: 225-240. 10.1162/105474698565686CrossRef
17.
go back to reference Slater M, Brogni A, Steed A: Physiological responses to breaks in presence: a pilot study. Presence 2003: The 6th annual international workship on presence Slater M, Brogni A, Steed A: Physiological responses to breaks in presence: a pilot study. Presence 2003: The 6th annual international workship on presence
18.
go back to reference Viau A, Levin MF, McFadyen BJ, Feldman AG: Reaching in reality and in virtual reality: a comparison of movement kinematics. In Proceedings of the 15th International Society of Electrophysiology and Kinesiology Congress 2004, 51. Viau A, Levin MF, McFadyen BJ, Feldman AG: Reaching in reality and in virtual reality: a comparison of movement kinematics. In Proceedings of the 15th International Society of Electrophysiology and Kinesiology Congress 2004, 51.
19.
go back to reference Lott A, Bisson E, Lajoie Y, McComas J, Sveistrup H: The effect of two types of virtual reality on voluntary center of pressure displacement. Cyberpsychol Behav 2003, 6: 477-485. 10.1089/109493103769710505CrossRefPubMed Lott A, Bisson E, Lajoie Y, McComas J, Sveistrup H: The effect of two types of virtual reality on voluntary center of pressure displacement. Cyberpsychol Behav 2003, 6: 477-485. 10.1089/109493103769710505CrossRefPubMed
20.
go back to reference Rizzo AA, Buckwalkter JG, Neumann U: Virtual reality and cognitive rehabilitation: a brief review of the future. J Head Trauma Rehabil 1997, 12: 1-15. 10.1097/00001199-199712000-00002CrossRef Rizzo AA, Buckwalkter JG, Neumann U: Virtual reality and cognitive rehabilitation: a brief review of the future. J Head Trauma Rehabil 1997, 12: 1-15. 10.1097/00001199-199712000-00002CrossRef
21.
go back to reference Plautz EJ, Milliken GW, Nudo RJ: Effects of repetitive motor training on movement representations in adult squirrel monkeys: role of use versus learning. Neurobiol Learn Mem 2000, 74: 27-55. 10.1006/nlme.1999.3934CrossRefPubMed Plautz EJ, Milliken GW, Nudo RJ: Effects of repetitive motor training on movement representations in adult squirrel monkeys: role of use versus learning. Neurobiol Learn Mem 2000, 74: 27-55. 10.1006/nlme.1999.3934CrossRefPubMed
22.
go back to reference Rose FD, Attree EA, Brooks BM: Virtual environments in neuropsychological assessment and rehabilitation. In In Virtual Reality in Neuro-Psycho-Physiology. Edited by: Riva G. Amsterdam: IOS Press; 1997:147-155. Rose FD, Attree EA, Brooks BM: Virtual environments in neuropsychological assessment and rehabilitation. In In Virtual Reality in Neuro-Psycho-Physiology. Edited by: Riva G. Amsterdam: IOS Press; 1997:147-155.
23.
go back to reference Kim NG, Yoo CK, Im JJ: A new rehabilitation training system for postural balance control using virtual reality technology. IEEE Transactions on Rehabilitation Engineering 1999, 7: 482-485. 10.1109/86.808952CrossRefPubMed Kim NG, Yoo CK, Im JJ: A new rehabilitation training system for postural balance control using virtual reality technology. IEEE Transactions on Rehabilitation Engineering 1999, 7: 482-485. 10.1109/86.808952CrossRefPubMed
24.
go back to reference Bisson Y, Constant B, Sveistrup H, Lajoie Y: Balance training for elderly: comparison between virtual reality and visual biofeedback. In Proceedings of the 6th World Congress on Aging and Physical Activity: London 2004. Bisson Y, Constant B, Sveistrup H, Lajoie Y: Balance training for elderly: comparison between virtual reality and visual biofeedback. In Proceedings of the 6th World Congress on Aging and Physical Activity: London 2004.
25.
go back to reference Cunningham D, Krishack M: Virtual reality: a wholistic approach to rehabilitation. In In Medicine Meets Virtual Reality. Edited by: Westwood JD. Amsterdam: IOS Press; 1999:90-93. Cunningham D, Krishack M: Virtual reality: a wholistic approach to rehabilitation. In In Medicine Meets Virtual Reality. Edited by: Westwood JD. Amsterdam: IOS Press; 1999:90-93.
26.
go back to reference McComas J, Sveistrup H: Virtual reality applications for prevention, disability awareness, and physical therapy rehabilitation in neurology: our recent work. Neurology Report 2002, 26: 55-61.CrossRef McComas J, Sveistrup H: Virtual reality applications for prevention, disability awareness, and physical therapy rehabilitation in neurology: our recent work. Neurology Report 2002, 26: 55-61.CrossRef
27.
go back to reference Inness L, Howe J: The community balance and mobility scale (CB&M) – an overview of its development and measurement properties. Synapse 2002, 22: 2-6. Inness L, Howe J: The community balance and mobility scale (CB&M) – an overview of its development and measurement properties. Synapse 2002, 22: 2-6.
28.
go back to reference Reiss T, Weghorst S: Augmented reality in the treatment of Parkinson's Disease. In In Proceedings of Medicine Meets Virtual Reality 95: January 1995; San Diego. Edited by: Satava RM, Morgan K. IOS Press; 1995:298-302. Reiss T, Weghorst S: Augmented reality in the treatment of Parkinson's Disease. In In Proceedings of Medicine Meets Virtual Reality 95: January 1995; San Diego. Edited by: Satava RM, Morgan K. IOS Press; 1995:298-302.
29.
go back to reference Yano H, Kasai K, Saitou H, Iwata H: Development of a gait rehabilitation system using a locomotion interface. The Journal of Visualization and Computer Animation 2003, 14: 243-252. 10.1002/vis.321CrossRef Yano H, Kasai K, Saitou H, Iwata H: Development of a gait rehabilitation system using a locomotion interface. The Journal of Visualization and Computer Animation 2003, 14: 243-252. 10.1002/vis.321CrossRef
30.
go back to reference Riva G: Virtual Reality in paraplegia: a VR-enhanced orthopaedic appliance for walking and rehabilitation. In In Virtual Environments in Clinical Psychology and Neuroscience. Edited by: Riva G, Wiederhold BK, Molinari E. Amsterdam: IOS Press; 1998:209-218. Riva G: Virtual Reality in paraplegia: a VR-enhanced orthopaedic appliance for walking and rehabilitation. In In Virtual Environments in Clinical Psychology and Neuroscience. Edited by: Riva G, Wiederhold BK, Molinari E. Amsterdam: IOS Press; 1998:209-218.
31.
go back to reference Fung J, Malouin F, McFadyen BJ, Comeau F, Lamontagne A, Chapdelaine S, Beaudoin C, Laurendeau D, Hughey L, Richards CL: Locomotor rehabilitation in a complex virtual environment. In Proceedings of the 26th Annual International Conference of the IEEE EMBS 2004, 4859-4861. Fung J, Malouin F, McFadyen BJ, Comeau F, Lamontagne A, Chapdelaine S, Beaudoin C, Laurendeau D, Hughey L, Richards CL: Locomotor rehabilitation in a complex virtual environment. In Proceedings of the 26th Annual International Conference of the IEEE EMBS 2004, 4859-4861.
32.
go back to reference Kizony R, Katz N, Weiss PL: Adapting an immersive virtual reality system for rehabilitation. The Journal of Visualization and Computer Animation 2003, 14: 261-268. 10.1002/vis.323CrossRef Kizony R, Katz N, Weiss PL: Adapting an immersive virtual reality system for rehabilitation. The Journal of Visualization and Computer Animation 2003, 14: 261-268. 10.1002/vis.323CrossRef
33.
go back to reference Holden MK, Dyar T: Virtual environment training: a new tool for rehabilitation. Neurology Report 2002, 26: 62-71.CrossRef Holden MK, Dyar T: Virtual environment training: a new tool for rehabilitation. Neurology Report 2002, 26: 62-71.CrossRef
34.
go back to reference Piron L, Cenni F, Tonin P, Dam M: Virtual reality: as an assessment tool for arm motor deficits after brain lesions. In In Medicine Meets Virtual Reality. Edited by: Westwood JD. Amsterdam: IOS Press; 2001:386-392. Piron L, Cenni F, Tonin P, Dam M: Virtual reality: as an assessment tool for arm motor deficits after brain lesions. In In Medicine Meets Virtual Reality. Edited by: Westwood JD. Amsterdam: IOS Press; 2001:386-392.
35.
go back to reference Deutsch JE, Latonio J, Burdea GC, Boian R: Post-stroke rehabilitation with the Rutgers Ankle System: a case study. Presence 2001, 10: 416-430. 10.1162/1054746011470262CrossRef Deutsch JE, Latonio J, Burdea GC, Boian R: Post-stroke rehabilitation with the Rutgers Ankle System: a case study. Presence 2001, 10: 416-430. 10.1162/1054746011470262CrossRef
36.
go back to reference Merians AS, Jack D, Boian R, Tremaine M, Burdea GC, Adamovich SV, Recce M, Poizner H: Virtual reality – augmented rehabilitation for patients following stroke. Phys Ther 2002, 82: 898-915.PubMed Merians AS, Jack D, Boian R, Tremaine M, Burdea GC, Adamovich SV, Recce M, Poizner H: Virtual reality – augmented rehabilitation for patients following stroke. Phys Ther 2002, 82: 898-915.PubMed
37.
go back to reference Adamovich SV, Merians AS, Boian R, Tremaine M, Burdea GS, Recce M, Poizner H: A virtual reality based exercise system for hand rehabilitation post-stroke. In In Proceedings of the Second International Workshop on Virtual Rehabilitation: Piscataway. Edited by: Burdea GC, Thalmann D. Lewis JA: IWAR2003; 2003:74-81. September 21–22 2003 Adamovich SV, Merians AS, Boian R, Tremaine M, Burdea GS, Recce M, Poizner H: A virtual reality based exercise system for hand rehabilitation post-stroke. In In Proceedings of the Second International Workshop on Virtual Rehabilitation: Piscataway. Edited by: Burdea GC, Thalmann D. Lewis JA: IWAR2003; 2003:74-81. September 21–22 2003
38.
go back to reference Chuang T, Chen C, Chang H, Lee H, Chou C, Doong J: Virtual reality serves as a support technology in cardiopulmonary exercise testing. Presence 2003, 12: 326-331. 10.1162/105474603765879567CrossRef Chuang T, Chen C, Chang H, Lee H, Chou C, Doong J: Virtual reality serves as a support technology in cardiopulmonary exercise testing. Presence 2003, 12: 326-331. 10.1162/105474603765879567CrossRef
39.
go back to reference Steele E, Grimmer K, Thomas B, Mulley B, Fulton I, Hoffman H: Virtual reality as a pediatric pain modulation technique: a case study. Cyberpsychol Behav 2003, 6: 633-638. 10.1089/109493103322725405CrossRefPubMed Steele E, Grimmer K, Thomas B, Mulley B, Fulton I, Hoffman H: Virtual reality as a pediatric pain modulation technique: a case study. Cyberpsychol Behav 2003, 6: 633-638. 10.1089/109493103322725405CrossRefPubMed
40.
go back to reference Zhang L, Abreu B, Seale GS, Masel B, Christiansen C, Ottenbacher K: A virtual reality environment for evaluation of a daily living skill in brain injury rehabilitation: reliability and validity. Arch Phys Med Rehabil 1998, 79: 888-892. 10.1016/S0003-9993(98)90083-1CrossRef Zhang L, Abreu B, Seale GS, Masel B, Christiansen C, Ottenbacher K: A virtual reality environment for evaluation of a daily living skill in brain injury rehabilitation: reliability and validity. Arch Phys Med Rehabil 1998, 79: 888-892. 10.1016/S0003-9993(98)90083-1CrossRef
41.
go back to reference Grealy MA, Johnson DA, Rushton SK: Improving cognitive function after brain injury: the use of exercise and virtual reality. Arch Phys Med Rehabil 1999, 80: 661-67. 10.1016/S0003-9993(99)90169-7CrossRefPubMed Grealy MA, Johnson DA, Rushton SK: Improving cognitive function after brain injury: the use of exercise and virtual reality. Arch Phys Med Rehabil 1999, 80: 661-67. 10.1016/S0003-9993(99)90169-7CrossRefPubMed
42.
go back to reference Broeren J, Björkdahl A, Pascher R, Rydmark M: Virtual reality and haptics as an assessment device in the postacute phase after stroke. Cyberpsychol Behav 2002, 5: 207-211. 10.1089/109493102760147196CrossRefPubMed Broeren J, Björkdahl A, Pascher R, Rydmark M: Virtual reality and haptics as an assessment device in the postacute phase after stroke. Cyberpsychol Behav 2002, 5: 207-211. 10.1089/109493102760147196CrossRefPubMed
43.
go back to reference Broeren J, Lundberg M, Molen T, Samuelsson , Sunnerhagen KS, Bellner A, Rydmark M: Virtual reality and haptics as an assessment tool for patients with visuospatial neglect: a preliminary study. In In Proceedings of the Second International Workshop on Virtual Rehabilitation: Piscataway. Edited by: Burdea GC, Thalmann D. Lewis JA: IWAR2003; 2003:27-32. September 21–22 2003 Broeren J, Lundberg M, Molen T, Samuelsson , Sunnerhagen KS, Bellner A, Rydmark M: Virtual reality and haptics as an assessment tool for patients with visuospatial neglect: a preliminary study. In In Proceedings of the Second International Workshop on Virtual Rehabilitation: Piscataway. Edited by: Burdea GC, Thalmann D. Lewis JA: IWAR2003; 2003:27-32. September 21–22 2003
44.
go back to reference Bardorfer A, Munih M, Zupan A, Primozic A: Upper limb motion analysis using haptic interface. IEEE/ASME Transactions on Mechatronics 2001, 6: 253-260. 10.1109/3516.951363CrossRef Bardorfer A, Munih M, Zupan A, Primozic A: Upper limb motion analysis using haptic interface. IEEE/ASME Transactions on Mechatronics 2001, 6: 253-260. 10.1109/3516.951363CrossRef
45.
go back to reference Mackey F, Ada L, Heard R, Adams R: Stroke rehabilitation: are highly structured units more conducive to physical activity than less structured units. Arch Phys Med Rehabil 1996, 77: 1066-1070. 10.1016/S0003-9993(96)90070-2CrossRefPubMed Mackey F, Ada L, Heard R, Adams R: Stroke rehabilitation: are highly structured units more conducive to physical activity than less structured units. Arch Phys Med Rehabil 1996, 77: 1066-1070. 10.1016/S0003-9993(96)90070-2CrossRefPubMed
46.
go back to reference Tinson DJ: How stroke patients spend their days: an observational study of the treatment regime offered to patients with movement disorders in hospitals following stroke. Int Disabil Stud 1989, 11: 45-49.CrossRefPubMed Tinson DJ: How stroke patients spend their days: an observational study of the treatment regime offered to patients with movement disorders in hospitals following stroke. Int Disabil Stud 1989, 11: 45-49.CrossRefPubMed
47.
go back to reference Johnson DA, Rose FD, Ruston S, Pentland B, Attree EA: Virtual reality: a new prosthesis for brain injury rehabilitation. Scot Med J 1998, 43: 81-83.PubMed Johnson DA, Rose FD, Ruston S, Pentland B, Attree EA: Virtual reality: a new prosthesis for brain injury rehabilitation. Scot Med J 1998, 43: 81-83.PubMed
48.
go back to reference Rose FD, Atree EA, Brooks BM, Johnson DA: Virtual environments in brain damage rehabilitation: a rationale from basic neuroscience. In In Virtual Environments in Clinical Psychology and Neuroscience: Methods and Techniques in Advanced Patient-Therapist Interaction. Edited by: Riva G, Wiederhold BK, Molinari E. Amsterdam: IOS Press; 1998:233-242. Rose FD, Atree EA, Brooks BM, Johnson DA: Virtual environments in brain damage rehabilitation: a rationale from basic neuroscience. In In Virtual Environments in Clinical Psychology and Neuroscience: Methods and Techniques in Advanced Patient-Therapist Interaction. Edited by: Riva G, Wiederhold BK, Molinari E. Amsterdam: IOS Press; 1998:233-242.
49.
go back to reference Latash ML: Virtual reality: a fascinating tool for motor rehabilitation (to be used with caution). Disabil Rehabil 1998, 20: 104-105.CrossRefPubMed Latash ML: Virtual reality: a fascinating tool for motor rehabilitation (to be used with caution). Disabil Rehabil 1998, 20: 104-105.CrossRefPubMed
Metadata
Title
Motor rehabilitation using virtual reality
Author
Heidi Sveistrup
Publication date
01-12-2004
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2004
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-1-10

Other articles of this Issue 1/2004

Journal of NeuroEngineering and Rehabilitation 1/2004 Go to the issue