Skip to main content
Top
Published in: Immunity & Ageing 1/2006

Open Access 01-12-2006 | Research

Ageing is associated with a decline in peripheral blood CD56bright NK cells

Authors: Shivani M Chidrawar, Naeem Khan, Y L Tracey Chan, Laxman Nayak, Paul AH Moss

Published in: Immunity & Ageing | Issue 1/2006

Login to get access

Abstract

Background

Natural killer (NK) cells are cytotoxic lymphocytes that lack CD3 and express variable levels of CD16, CD56 and CD57. In recent years NK cells have been categorised into two major groups based on the level of CD56 expression. This phenotypic classification correlates with functional activity as CD56bright NK cells are the major cytokine producing subset whereas CD56dim NK cells exhibit greater cytotoxic activity. Previous studies have revealed a reduction in total NK cell numbers in association with ageing and this study sought to determine the potential influence of ageing on the number of NK cell subsets within peripheral blood.

Results

The number of NK (CD56+CD3-) cells within peripheral blood did not change with increasing age. The number of CD56dim NK cells also remained stable with ageing. In contrast the absolute number of CD56bright NK cells within peripheral blood declined by 48% with ageing from a mean of 15.6/μl in individuals aged 20–40 years to 8.1/μl in those aged 60+ years (p = 0.0004).

Conclusion

The number of CD56bright NK cells within peripheral blood declines with age. As this population plays a central role in cytokine secretion during the innate immune response this decline may contribute to impaired immune regulation in elderly individuals
Appendix
Available only for authorised users
Literature
1.
go back to reference Robertson MJ, Ritz J: Biology and Clinical Relevance of Human Natural Killer Cells. Blood. 1990, 76 (12): 2421-2438.PubMed Robertson MJ, Ritz J: Biology and Clinical Relevance of Human Natural Killer Cells. Blood. 1990, 76 (12): 2421-2438.PubMed
2.
go back to reference Papamichail M, Perez SO, Gritzapis AD, Baxevevanis CN: Natural Killer Lymphocytes: Biology, Development and Function. Cancer Immunology Immunotherapy. 2004, 53: 176-186. 10.1007/s00262-003-0478-4.CrossRefPubMed Papamichail M, Perez SO, Gritzapis AD, Baxevevanis CN: Natural Killer Lymphocytes: Biology, Development and Function. Cancer Immunology Immunotherapy. 2004, 53: 176-186. 10.1007/s00262-003-0478-4.CrossRefPubMed
3.
go back to reference Lanier LL, Corliss B, Phillips JH: Arousal and inhibition of human NK cells. Immunology Reviews. 1997, 155: 145-154. 10.1111/j.1600-065X.1997.tb00947.x.CrossRef Lanier LL, Corliss B, Phillips JH: Arousal and inhibition of human NK cells. Immunology Reviews. 1997, 155: 145-154. 10.1111/j.1600-065X.1997.tb00947.x.CrossRef
4.
go back to reference Whiteside TL, Herberman RB: The role of natural killer cells in immune surveillance of cancer. Current Opinion in Immunology. 1995, 7 (5): 704-710. 10.1016/0952-7915(95)80080-8.CrossRefPubMed Whiteside TL, Herberman RB: The role of natural killer cells in immune surveillance of cancer. Current Opinion in Immunology. 1995, 7 (5): 704-710. 10.1016/0952-7915(95)80080-8.CrossRefPubMed
5.
go back to reference Miller GM, Andres ML, Gridley DS: NK cell depletion results in accelerated tumor growth and attenuates the antitumor effect of total body irradiation. International Journal of Oncology. 2003, 6: 1585-1592. Miller GM, Andres ML, Gridley DS: NK cell depletion results in accelerated tumor growth and attenuates the antitumor effect of total body irradiation. International Journal of Oncology. 2003, 6: 1585-1592.
6.
go back to reference Kijima M, Saio M, Oyang GF, Suwa T, Miyauchi R, Kojima Y, Imai H, Nakagawa J, Nonaka K, Umemura N, Nishimura T, Takami T: Natural killer cells play a role in MHC class I in vivo induction in tumor cells that are MHC negative in vitro. International Journal of Oncology. 2005, 26 (3): 679-84.PubMed Kijima M, Saio M, Oyang GF, Suwa T, Miyauchi R, Kojima Y, Imai H, Nakagawa J, Nonaka K, Umemura N, Nishimura T, Takami T: Natural killer cells play a role in MHC class I in vivo induction in tumor cells that are MHC negative in vitro. International Journal of Oncology. 2005, 26 (3): 679-84.PubMed
7.
go back to reference Cerwenka A, Lanier LL: Natural Killer Cells, Viruses and Cancer. Nature Reviews Immunology. 2001, 1: 41-49. 10.1038/35095564.CrossRefPubMed Cerwenka A, Lanier LL: Natural Killer Cells, Viruses and Cancer. Nature Reviews Immunology. 2001, 1: 41-49. 10.1038/35095564.CrossRefPubMed
8.
go back to reference Bukowski JF, Woda BA, Welsh RM: Pathogenesis of Murine Cytomegalovirus Infection in Natural Killer Depleted Mice. Journal of Virology. 1984, 52 (1): 119-128.PubMedCentralPubMed Bukowski JF, Woda BA, Welsh RM: Pathogenesis of Murine Cytomegalovirus Infection in Natural Killer Depleted Mice. Journal of Virology. 1984, 52 (1): 119-128.PubMedCentralPubMed
9.
go back to reference Burkowski JF, Warner JF, Deenert D, Welsh RM: Adoptive transfer studies demonstrating the anti-viral effect of natural killer cells in vivo. Journal of Experimental Medicine. 1985, 161 (1): 40-52. 10.1084/jem.161.1.40.CrossRef Burkowski JF, Warner JF, Deenert D, Welsh RM: Adoptive transfer studies demonstrating the anti-viral effect of natural killer cells in vivo. Journal of Experimental Medicine. 1985, 161 (1): 40-52. 10.1084/jem.161.1.40.CrossRef
10.
go back to reference Biron CA, Byron KS, Sullivan JL: Medical Intelligence. Severe herpesvirus infections in a adolescent girl without natural killer cells. New England Journal of Medicine. 1989, 320 (26): 1731-1735.CrossRefPubMed Biron CA, Byron KS, Sullivan JL: Medical Intelligence. Severe herpesvirus infections in a adolescent girl without natural killer cells. New England Journal of Medicine. 1989, 320 (26): 1731-1735.CrossRefPubMed
11.
go back to reference Cooper MA, Fehniger TA, Caligiuri MA: The biology of human natural-killer subsets. Trends in immunology. 2001, 22 (11): 633-640. 10.1016/S1471-4906(01)02060-9.CrossRefPubMed Cooper MA, Fehniger TA, Caligiuri MA: The biology of human natural-killer subsets. Trends in immunology. 2001, 22 (11): 633-640. 10.1016/S1471-4906(01)02060-9.CrossRefPubMed
12.
go back to reference Castle SC: Clinical relevance of age-related immune dysfunction. Clinical Infectious Diseases. 2000, 31: 578-585. 10.1086/313947.CrossRefPubMed Castle SC: Clinical relevance of age-related immune dysfunction. Clinical Infectious Diseases. 2000, 31: 578-585. 10.1086/313947.CrossRefPubMed
13.
go back to reference Ramos-Casals M, Garcia-Carrasco M, Brito MP, Lopez-Soto A, Font J: Autoimmunity and geriatrics: clinical significance of autoimmune manifestations in the elderly. Lupus. 2003, 12: 341-355. 10.1191/0961203303lu383ed.CrossRefPubMed Ramos-Casals M, Garcia-Carrasco M, Brito MP, Lopez-Soto A, Font J: Autoimmunity and geriatrics: clinical significance of autoimmune manifestations in the elderly. Lupus. 2003, 12: 341-355. 10.1191/0961203303lu383ed.CrossRefPubMed
14.
go back to reference Denduluri N, Ershler WB: Ageing biology and cancer. Seminars in Oncology. 2004, 31: 137-148. 10.1053/j.seminoncol.2003.12.025.CrossRefPubMed Denduluri N, Ershler WB: Ageing biology and cancer. Seminars in Oncology. 2004, 31: 137-148. 10.1053/j.seminoncol.2003.12.025.CrossRefPubMed
15.
go back to reference Simonsen L, Reichert TA, Viboud C, Blackwelder WC, Taylor RJ, Miller MA: Impact of influenza vaccination on seasonal mortality in the US elderly population. Archives of Internal Medicine. 2005, 165: 265-272. 10.1001/archinte.165.3.265.CrossRefPubMed Simonsen L, Reichert TA, Viboud C, Blackwelder WC, Taylor RJ, Miller MA: Impact of influenza vaccination on seasonal mortality in the US elderly population. Archives of Internal Medicine. 2005, 165: 265-272. 10.1001/archinte.165.3.265.CrossRefPubMed
16.
go back to reference Remarque E, Pawelec P: T cell immunosensescence and its clinical relevance in man. Reviews in Clinical Gerontology. 1998, 8: 5-14. 10.1017/S0959259898008028.CrossRef Remarque E, Pawelec P: T cell immunosensescence and its clinical relevance in man. Reviews in Clinical Gerontology. 1998, 8: 5-14. 10.1017/S0959259898008028.CrossRef
17.
go back to reference Facchini A, Mariani E, Mariani AR, Papa S, Vitale M, Manzoli FA: Increased number of circulating Leu11+(CD16) large granular lymphocytes and decreased NK activity during human ageing. Clinical Experimental Immunology. 1987, 68 (2): 340-347.PubMedCentralPubMed Facchini A, Mariani E, Mariani AR, Papa S, Vitale M, Manzoli FA: Increased number of circulating Leu11+(CD16) large granular lymphocytes and decreased NK activity during human ageing. Clinical Experimental Immunology. 1987, 68 (2): 340-347.PubMedCentralPubMed
18.
go back to reference Sansoni P, Cossarizza A, Brianti V, Fagoni F, Snelli G, Monti D, Marcarto A, Passeri G, Ortolani C, Forti E: Lymphocyte subsets and natural killer cell activity in health people and centarians. Blood. 1993, 82: 2762773- Sansoni P, Cossarizza A, Brianti V, Fagoni F, Snelli G, Monti D, Marcarto A, Passeri G, Ortolani C, Forti E: Lymphocyte subsets and natural killer cell activity in health people and centarians. Blood. 1993, 82: 2762773-
19.
go back to reference Krishnaraj R: Senescence and cytokines modulate the NK cell expression. Mechanisms of ageing and development. 1997, 96 (1–3): 89-101. 10.1016/S0047-6374(97)00045-6.CrossRefPubMed Krishnaraj R: Senescence and cytokines modulate the NK cell expression. Mechanisms of ageing and development. 1997, 96 (1–3): 89-101. 10.1016/S0047-6374(97)00045-6.CrossRefPubMed
20.
go back to reference Borrego F, Alonso MC, Galiani MD, Carracedo J, Ramirez R, Ostos B, Pena J, Solana R: NK Phenotypic markers and IL2 response in NK cells from elderly people. Experimental Gerontology. 1999, 34: 253-265. 10.1016/S0531-5565(98)00076-X.CrossRefPubMed Borrego F, Alonso MC, Galiani MD, Carracedo J, Ramirez R, Ostos B, Pena J, Solana R: NK Phenotypic markers and IL2 response in NK cells from elderly people. Experimental Gerontology. 1999, 34: 253-265. 10.1016/S0531-5565(98)00076-X.CrossRefPubMed
21.
go back to reference Lanier LL, Le AM, Civin CI, Loken MR, Phillips JH: The relationship of CD16 (Leu-11) and Leu-19 (NKH-1) antigen expression on human peripheral blood NK cells and cytotoxic T lymphocytes. Journal of Immunology. 1989, 136: 4480-4486. Lanier LL, Le AM, Civin CI, Loken MR, Phillips JH: The relationship of CD16 (Leu-11) and Leu-19 (NKH-1) antigen expression on human peripheral blood NK cells and cytotoxic T lymphocytes. Journal of Immunology. 1989, 136: 4480-4486.
22.
go back to reference Cooper MA, Fehniger TA, Turner SC, Kenneth S, Chen S, Bobak A, Shaheri TG, Carson WE, Caligiuri MA: Human natural killer cells; a unique innate immunoregulatory role for the CD56bright subset. Blood. 2001, 97 (10): 3146-3151. 10.1182/blood.V97.10.3146.CrossRefPubMed Cooper MA, Fehniger TA, Turner SC, Kenneth S, Chen S, Bobak A, Shaheri TG, Carson WE, Caligiuri MA: Human natural killer cells; a unique innate immunoregulatory role for the CD56bright subset. Blood. 2001, 97 (10): 3146-3151. 10.1182/blood.V97.10.3146.CrossRefPubMed
23.
go back to reference Nagler A: Comparative studies of human FcRIII- positive and -negative natural killer cells. Journal of Immunology. 1989, 143: 3183-3191. Nagler A: Comparative studies of human FcRIII- positive and -negative natural killer cells. Journal of Immunology. 1989, 143: 3183-3191.
24.
go back to reference Vitale M, Della Chiesa M, Carlomagno S, Romagnani C, Thiel A, Moretta L, Moretta A: The small subset of CD56brightCD16- natural killer cells is selectively responsible for both cell proliferation and interferon-gamma production upon interaction with dendritic cells. European Journal of Immunology. 2004, 34 (6): 1715-1722. 10.1002/eji.200425100.CrossRefPubMed Vitale M, Della Chiesa M, Carlomagno S, Romagnani C, Thiel A, Moretta L, Moretta A: The small subset of CD56brightCD16- natural killer cells is selectively responsible for both cell proliferation and interferon-gamma production upon interaction with dendritic cells. European Journal of Immunology. 2004, 34 (6): 1715-1722. 10.1002/eji.200425100.CrossRefPubMed
25.
go back to reference Dalbeth N, Grundle R, Davies RJO, Lee YCG, McMichael AJ, Callan MFC: CD56bright NK Cells are Enriched at Inflammatory Sites and Can Engage with Monocytes in a Reciprocal Programme of Activation. The Journal of Immunology. 2004, 173: 6418-6426.CrossRefPubMed Dalbeth N, Grundle R, Davies RJO, Lee YCG, McMichael AJ, Callan MFC: CD56bright NK Cells are Enriched at Inflammatory Sites and Can Engage with Monocytes in a Reciprocal Programme of Activation. The Journal of Immunology. 2004, 173: 6418-6426.CrossRefPubMed
26.
go back to reference Fehniger TA, Cooper MA, Nuovo GJ, Cella M, Faccetti F, Colonna M, Caligiuri MA: CD56bright natural killer cells are present in human lymph nodes and are activated by T cell derived IL-2: a potential new link between adaptive and innate immunity. Blood. 2003, 101 (8): 3052-7. 10.1182/blood-2002-09-2876.CrossRefPubMed Fehniger TA, Cooper MA, Nuovo GJ, Cella M, Faccetti F, Colonna M, Caligiuri MA: CD56bright natural killer cells are present in human lymph nodes and are activated by T cell derived IL-2: a potential new link between adaptive and innate immunity. Blood. 2003, 101 (8): 3052-7. 10.1182/blood-2002-09-2876.CrossRefPubMed
Metadata
Title
Ageing is associated with a decline in peripheral blood CD56bright NK cells
Authors
Shivani M Chidrawar
Naeem Khan
Y L Tracey Chan
Laxman Nayak
Paul AH Moss
Publication date
01-12-2006
Publisher
BioMed Central
Published in
Immunity & Ageing / Issue 1/2006
Electronic ISSN: 1742-4933
DOI
https://doi.org/10.1186/1742-4933-3-10

Other articles of this Issue 1/2006

Immunity & Ageing 1/2006 Go to the issue

Short report

Age and immunity

Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine