Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2012

Open Access 01-12-2012 | Research

IOP induces upregulation of GFAP and MHC-II and microglia reactivity in mice retina contralateral to experimental glaucoma

Authors: Beatriz I Gallego, Juan J Salazar, Rosa de Hoz, Blanca Rojas, Ana I Ramírez, Manuel Salinas-Navarro, Arturo Ortín-Martínez, Francisco J Valiente-Soriano, Marcelino Avilés-Trigueros, Maria P Villegas-Perez, Manuel Vidal-Sanz, Alberto Triviño, Jose M Ramírez

Published in: Journal of Neuroinflammation | Issue 1/2012

Login to get access

Abstract

Background

Ocular hypertension is a major risk factor for glaucoma, a neurodegenerative disease characterized by an irreversible decrease in ganglion cells and their axons. Macroglial and microglial cells appear to play an important role in the pathogenic mechanisms of the disease. Here, we study the effects of laser-induced ocular hypertension (OHT) in the macroglia, microglia and retinal ganglion cells (RGCs) of eyes with OHT (OHT-eyes) and contralateral eyes two weeks after lasering.

Methods

Two groups of adult Swiss mice were used: age-matched control (naïve, n = 9); and lasered (n = 9). In the lasered animals, both OHT-eyes and contralateral eyes were analyzed. Retinal whole-mounts were immunostained with antibodies against glial fibrillary acid protein (GFAP), neurofilament of 200kD (NF-200), ionized calcium binding adaptor molecule (Iba-1) and major histocompatibility complex class II molecule (MHC-II). The GFAP-labeled retinal area (GFAP-RA), the intensity of GFAP immunoreaction (GFAP-IR), and the number of astrocytes and NF-200 + RGCs were quantified.

Results

In comparison with naïve: i) astrocytes were more robust in contralateral eyes. In OHT-eyes, the astrocyte population was not homogeneous, given that astrocytes displaying only primary processes coexisted with astrocytes in which primary and secondary processes could be recognized, the former having less intense GFAP-IR (P < 0.001); ii) GFAP-RA was increased in contralateral (P <0.05) and decreased in OHT-eyes (P <0.001); iii) the mean intensity of GFAP-IR was higher in OHT-eyes (P < 0.01), and the percentage of the retinal area occupied by GFAP+ cells with higher intensity levels was increased in contralateral (P = 0.05) and in OHT-eyes (P < 0.01); iv) both in contralateral and in OHT-eyes, GFAP was upregulated in Müller cells and microglia was activated; v) MHC-II was upregulated on macroglia and microglia. In microglia, it was similarly expressed in contralateral and OHT-eyes. By contrast, in macroglia, MHC-II upregulation was observed mainly in astrocytes in contralateral eyes and in Müller cells in OHT-eyes; vi) NF-200+RGCs (degenerated cells) appeared in OHT-eyes with a trend for the GFAP-RA to decrease and for the NF-200+RGC number to increase from the center to the periphery (r = −0.45).

Conclusion

The use of the contralateral eye as an internal control in experimental induction of unilateral IOP should be reconsidered. The gliotic behavior in contralateral eyes could be related to the immune response. The absence of NF-200+RGCs (sign of RGC degeneration) leads us to postulate that the MHC-II upregulation in contralateral eyes could favor neuroprotection.
Literature
1.
go back to reference Quigley HA, Green WR: The histology of human glaucoma cupping and optic nerve damage: clinicopathologic correlation in 21 eyes. Ophthalmology 1979, 86:1803–1830.CrossRefPubMed Quigley HA, Green WR: The histology of human glaucoma cupping and optic nerve damage: clinicopathologic correlation in 21 eyes. Ophthalmology 1979, 86:1803–1830.CrossRefPubMed
2.
go back to reference Quigley HA, Addicks EM, Green WR, Maumenee AE: Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Arch Ophthalmol 1981, 99:635–649.CrossRefPubMed Quigley HA, Addicks EM, Green WR, Maumenee AE: Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Arch Ophthalmol 1981, 99:635–649.CrossRefPubMed
3.
go back to reference Quigley HA, Dunkelberger GR, Green WR: Chronic human glaucoma causing selectively greater loss of large optic nerve fibers. Ophthalmology 1988, 95:357–363.CrossRefPubMed Quigley HA, Dunkelberger GR, Green WR: Chronic human glaucoma causing selectively greater loss of large optic nerve fibers. Ophthalmology 1988, 95:357–363.CrossRefPubMed
4.
go back to reference Quigley HA, Dunkelberger GR, Green WR: Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol 1989, 107:453–464.CrossRefPubMed Quigley HA, Dunkelberger GR, Green WR: Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol 1989, 107:453–464.CrossRefPubMed
5.
go back to reference Quigley HA: Selective citation of evidence regarding photoreceptor loss in glaucoma. Arch Ophthalmol 2001, 119:1390–1391.CrossRefPubMed Quigley HA: Selective citation of evidence regarding photoreceptor loss in glaucoma. Arch Ophthalmol 2001, 119:1390–1391.CrossRefPubMed
6.
go back to reference Kerrigan-Baumrind LA, Quigley HA, Pease ME, Kerrigan DF, Mitchell RS: Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Invest Ophthalmol Vis Sci 2000, 41:741–748.PubMed Kerrigan-Baumrind LA, Quigley HA, Pease ME, Kerrigan DF, Mitchell RS: Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Invest Ophthalmol Vis Sci 2000, 41:741–748.PubMed
7.
go back to reference Nork TM, Ver Hoeve JN, Poulsen GL, Nickells RW, Davis MD, Weber AJ, Vaegan , Sarks SH, Lemley HL, Millecchia LL: Swelling and loss of photoreceptors in chronic human and experimental glaucomas. Arch Ophthalmol 2000, 118:235–245.CrossRefPubMed Nork TM, Ver Hoeve JN, Poulsen GL, Nickells RW, Davis MD, Weber AJ, Vaegan , Sarks SH, Lemley HL, Millecchia LL: Swelling and loss of photoreceptors in chronic human and experimental glaucomas. Arch Ophthalmol 2000, 118:235–245.CrossRefPubMed
9.
go back to reference Hernandez MR, Miao H, Lukas T: Astrocytes in glaucomatous optic neuropathy. Prog Brain Res 2008, 173:353–373.CrossRefPubMed Hernandez MR, Miao H, Lukas T: Astrocytes in glaucomatous optic neuropathy. Prog Brain Res 2008, 173:353–373.CrossRefPubMed
10.
go back to reference Tezel G, the Fourth ARVO/Pfizer Ophthalmics Research Institute Conference Working Group: The role of glia, mitochondria, and the immune system in glaucoma. Invest Ophthalmol Vis Sci 2009, 50:1001–1012.CrossRefPubMed Tezel G, the Fourth ARVO/Pfizer Ophthalmics Research Institute Conference Working Group: The role of glia, mitochondria, and the immune system in glaucoma. Invest Ophthalmol Vis Sci 2009, 50:1001–1012.CrossRefPubMed
11.
go back to reference Prasanna G, Krishnamoorthy R, Yorio T: Endothelin, astrocytes and glaucoma. Exp Eye Res 2011, 93:170–177.CrossRefPubMed Prasanna G, Krishnamoorthy R, Yorio T: Endothelin, astrocytes and glaucoma. Exp Eye Res 2011, 93:170–177.CrossRefPubMed
13.
go back to reference Ramírez JM, Triviño A, Ramírez AI, Salazar JJ, Garcia-Sanchez J: Structural specializations of human retinal glial cells. Vision Res 1996, 36:2029–2036.CrossRefPubMed Ramírez JM, Triviño A, Ramírez AI, Salazar JJ, Garcia-Sanchez J: Structural specializations of human retinal glial cells. Vision Res 1996, 36:2029–2036.CrossRefPubMed
14.
go back to reference Bringmann A, Pannicke T, Grosche J, Francke M, Wiedemann P, Skatchkov SN, Osborne NN, Reichenbach A: Muller cells in the healthy and diseased retina. Prog Retin Eye Res 2006, 25:397–424.CrossRefPubMed Bringmann A, Pannicke T, Grosche J, Francke M, Wiedemann P, Skatchkov SN, Osborne NN, Reichenbach A: Muller cells in the healthy and diseased retina. Prog Retin Eye Res 2006, 25:397–424.CrossRefPubMed
15.
go back to reference Kumpulainen T, Dahl D, Korhonen LK, Nystrom SH: Immunolabeling of carbonic anhydrase isoenzyme C and glial fibrillary acidic protein in paraffin-embedded tissue sections of human brain and retina. J Histochem Cytochem 1983, 31:879–886.CrossRefPubMed Kumpulainen T, Dahl D, Korhonen LK, Nystrom SH: Immunolabeling of carbonic anhydrase isoenzyme C and glial fibrillary acidic protein in paraffin-embedded tissue sections of human brain and retina. J Histochem Cytochem 1983, 31:879–886.CrossRefPubMed
16.
19.
go back to reference Tout S, Chan-Ling T, Hollander H, Stone J: The role of Muller cells in the formation of the blood-retinal barrier. Neuroscience 1993, 55:291–301.CrossRefPubMed Tout S, Chan-Ling T, Hollander H, Stone J: The role of Muller cells in the formation of the blood-retinal barrier. Neuroscience 1993, 55:291–301.CrossRefPubMed
21.
go back to reference Varela HJ, Hernandez MR: Astrocyte responses in human optic nerve head with primary open-angle glaucoma. J Glaucoma 1997, 6:303–313.CrossRefPubMed Varela HJ, Hernandez MR: Astrocyte responses in human optic nerve head with primary open-angle glaucoma. J Glaucoma 1997, 6:303–313.CrossRefPubMed
22.
go back to reference Asahara H, Taniwaki T, Ohyagi Y, Yamada T, Kira J: Glutamate enhances phosphorylation of neurofilaments in cerebellar granule cell culture. J Neurol Sci 1999, 171:84–87.CrossRefPubMed Asahara H, Taniwaki T, Ohyagi Y, Yamada T, Kira J: Glutamate enhances phosphorylation of neurofilaments in cerebellar granule cell culture. J Neurol Sci 1999, 171:84–87.CrossRefPubMed
23.
go back to reference Ackerley S, Grierson AJ, Brownlees J, Thornhill P, Anderton BH, Leigh PN, Shaw CE, Miller CC: Glutamate slows axonal transport of neurofilaments in transfected neurons. J Cell Biol 2000, 150:165–176.CrossRefPubMedPubMedCentral Ackerley S, Grierson AJ, Brownlees J, Thornhill P, Anderton BH, Leigh PN, Shaw CE, Miller CC: Glutamate slows axonal transport of neurofilaments in transfected neurons. J Cell Biol 2000, 150:165–176.CrossRefPubMedPubMedCentral
24.
go back to reference Julien JP, Mushynski WE: Neurofilaments in health and disease. Prog Nucleic Acid Res Mol Biol 1998, 61:1–23.CrossRefPubMed Julien JP, Mushynski WE: Neurofilaments in health and disease. Prog Nucleic Acid Res Mol Biol 1998, 61:1–23.CrossRefPubMed
25.
go back to reference Di Polo A, Aigner LJ, Dunn RJ, Bray GM, Aguayo AJ: Prolonged delivery of brain-derived neurotrophic factor by adenovirus-infected Muller cells temporarily rescues injured retinal ganglion cells. Proc Natl Acad Sci U S A 1998, 95:3978–3983.CrossRefPubMedPubMedCentral Di Polo A, Aigner LJ, Dunn RJ, Bray GM, Aguayo AJ: Prolonged delivery of brain-derived neurotrophic factor by adenovirus-infected Muller cells temporarily rescues injured retinal ganglion cells. Proc Natl Acad Sci U S A 1998, 95:3978–3983.CrossRefPubMedPubMedCentral
26.
go back to reference Dreyer EB, Zurakowski D, Schumer RA, Podos SM, Lipton SA: Elevated glutamate levels in the vitreous body of humans and monkeys with glaucoma. Arch Ophthalmol 1996, 114:299–305.CrossRefPubMed Dreyer EB, Zurakowski D, Schumer RA, Podos SM, Lipton SA: Elevated glutamate levels in the vitreous body of humans and monkeys with glaucoma. Arch Ophthalmol 1996, 114:299–305.CrossRefPubMed
27.
go back to reference Kawasaki A, Otori Y, Barnstable CJ: Muller cell protection of rat retinal ganglion cells from glutamate and nitric oxide neurotoxicity. Invest Ophthalmol Vis Sci 2000, 41:3444–3450.PubMed Kawasaki A, Otori Y, Barnstable CJ: Muller cell protection of rat retinal ganglion cells from glutamate and nitric oxide neurotoxicity. Invest Ophthalmol Vis Sci 2000, 41:3444–3450.PubMed
28.
go back to reference Wang L, Cioffi GA, Cull G, Dong J, Fortune B: Immunohistologic evidence for retinal glial cell changes in human glaucoma. Invest Ophthalmol Vis Sci 2002, 43:1088–1094.PubMed Wang L, Cioffi GA, Cull G, Dong J, Fortune B: Immunohistologic evidence for retinal glial cell changes in human glaucoma. Invest Ophthalmol Vis Sci 2002, 43:1088–1094.PubMed
29.
go back to reference Johnson EC, Jia L, Cepurna WO, Doser TA, Morrison JC: Global changes in optic nerve head gene expression after exposure to elevated intraocular pressure in a rat glaucoma model. Invest Ophthalmol Vis Sci 2007, 48:3161–3177.CrossRefPubMedPubMedCentral Johnson EC, Jia L, Cepurna WO, Doser TA, Morrison JC: Global changes in optic nerve head gene expression after exposure to elevated intraocular pressure in a rat glaucoma model. Invest Ophthalmol Vis Sci 2007, 48:3161–3177.CrossRefPubMedPubMedCentral
30.
go back to reference Wang X, Ng YK, Tay SS: Factors contributing to neuronal degeneration in retinas of experimental glaucomatous rats. J Neurosci Res 2005, 82:674–689.CrossRefPubMed Wang X, Ng YK, Tay SS: Factors contributing to neuronal degeneration in retinas of experimental glaucomatous rats. J Neurosci Res 2005, 82:674–689.CrossRefPubMed
31.
go back to reference Tezel G, Wax MB: Increased production of tumor necrosis factor-alpha by glial cells exposed to simulated ischemia or elevated hydrostatic pressure induces apoptosis in cocultured retinal ganglion cells. J Neurosci 2000, 20:8693–8700.PubMed Tezel G, Wax MB: Increased production of tumor necrosis factor-alpha by glial cells exposed to simulated ischemia or elevated hydrostatic pressure induces apoptosis in cocultured retinal ganglion cells. J Neurosci 2000, 20:8693–8700.PubMed
32.
go back to reference Dahl D, Björklund H, Bignami A: Immunological markers in astrocytes. In Astrocytes: Cell Biology and Pathology of Astrocytes. Volume III. Edited by: Federoff S, Vernadakis A. Academic, London; 1986:1–25.CrossRef Dahl D, Björklund H, Bignami A: Immunological markers in astrocytes. In Astrocytes: Cell Biology and Pathology of Astrocytes. Volume III. Edited by: Federoff S, Vernadakis A. Academic, London; 1986:1–25.CrossRef
33.
go back to reference Drager UC, Hofbauer A: Antibodies to heavy neurofilament subunit detect a subpopulation of damaged ganglion cells in retina. Nature 1984, 309:624–626.CrossRefPubMed Drager UC, Hofbauer A: Antibodies to heavy neurofilament subunit detect a subpopulation of damaged ganglion cells in retina. Nature 1984, 309:624–626.CrossRefPubMed
34.
go back to reference Inman DM, Horner PJ: Reactive nonproliferative gliosis predominates in a chronic mouse model of glaucoma. Glia 2007, 55:942–953.CrossRefPubMed Inman DM, Horner PJ: Reactive nonproliferative gliosis predominates in a chronic mouse model of glaucoma. Glia 2007, 55:942–953.CrossRefPubMed
35.
go back to reference Imai Y, Ibata I, Ito D, Ohsawa K, Kohsaka S: A novel gene Iba1 in the major histocompatibility complex class III region encoding an EF hand protein expressed in a monocytic lineage. Biochem Biophys Res Commun 1996, 224:855–862.CrossRefPubMed Imai Y, Ibata I, Ito D, Ohsawa K, Kohsaka S: A novel gene Iba1 in the major histocompatibility complex class III region encoding an EF hand protein expressed in a monocytic lineage. Biochem Biophys Res Commun 1996, 224:855–862.CrossRefPubMed
36.
go back to reference Kaneko H, Nishiguchi KM, Nakamura M, Kachi S, Terasaki H: Characteristics of bone marrow-derived microglia in the normal and injured retina. Invest Ophthalmol Vis Sci 2008, 49:4162–4168.CrossRefPubMed Kaneko H, Nishiguchi KM, Nakamura M, Kachi S, Terasaki H: Characteristics of bone marrow-derived microglia in the normal and injured retina. Invest Ophthalmol Vis Sci 2008, 49:4162–4168.CrossRefPubMed
37.
go back to reference Danias J, Kontiola AI, Filippopoulos T, Mittag T: Method for the noninvasive measurement of intraocular pressure in mice. Invest Ophthalmol Vis Sci 2003, 44:1138–1141.CrossRefPubMed Danias J, Kontiola AI, Filippopoulos T, Mittag T: Method for the noninvasive measurement of intraocular pressure in mice. Invest Ophthalmol Vis Sci 2003, 44:1138–1141.CrossRefPubMed
38.
go back to reference Aihara M, Lindsey JD, Weinreb RN: Twenty-four-hour pattern of mouse intraocular pressure. Exp Eye Res 2003, 77:681–686.CrossRefPubMed Aihara M, Lindsey JD, Weinreb RN: Twenty-four-hour pattern of mouse intraocular pressure. Exp Eye Res 2003, 77:681–686.CrossRefPubMed
39.
go back to reference Drouyer E, Dkhissi-Benyahya O, Chiquet C, WoldeMussie E, Ruiz G, Wheeler LA, Denis P, Cooper HM: Glaucoma alters the circadian timing system. PLoS One 2008, 3:e3931.CrossRefPubMedPubMedCentral Drouyer E, Dkhissi-Benyahya O, Chiquet C, WoldeMussie E, Ruiz G, Wheeler LA, Denis P, Cooper HM: Glaucoma alters the circadian timing system. PLoS One 2008, 3:e3931.CrossRefPubMedPubMedCentral
40.
go back to reference Salinas-Navarro M, Alarcon-Martinez L, Valiente-Soriano FJ, Ortin-Martinez A, Jimenez-Lopez M, Aviles-Trigueros M, Villegas-Perez MP, de la Villa P, Vidal-Sanz M: Functional and morphological effects of laser-induced ocular hypertension in retinas of adult albino Swiss mice. Mol Vis 2009, 15:2578–2598.PubMedPubMedCentral Salinas-Navarro M, Alarcon-Martinez L, Valiente-Soriano FJ, Ortin-Martinez A, Jimenez-Lopez M, Aviles-Trigueros M, Villegas-Perez MP, de la Villa P, Vidal-Sanz M: Functional and morphological effects of laser-induced ocular hypertension in retinas of adult albino Swiss mice. Mol Vis 2009, 15:2578–2598.PubMedPubMedCentral
41.
go back to reference Ramírez JM, Triviño A, Ramírez AI, Salazar JJ, Garcia-Sanchez J: Immunohistochemical study of human retinal astroglia. Vision Res 1994, 34:1935–1946.CrossRefPubMed Ramírez JM, Triviño A, Ramírez AI, Salazar JJ, Garcia-Sanchez J: Immunohistochemical study of human retinal astroglia. Vision Res 1994, 34:1935–1946.CrossRefPubMed
42.
go back to reference Triviño A, de Hoz R, Salazar JJ, Ramirez AI, Rojas B, Ramirez JM: Distribution and organization of the nerve fiber and ganglion cells of the human choroid. Anat Embryol (Berl) 2002, 205:417–430.CrossRef Triviño A, de Hoz R, Salazar JJ, Ramirez AI, Rojas B, Ramirez JM: Distribution and organization of the nerve fiber and ganglion cells of the human choroid. Anat Embryol (Berl) 2002, 205:417–430.CrossRef
43.
go back to reference Ramirez AI, Salazar JJ, de Hoz R, Rojas B, Gallego BI, Salinas-Navarro M, Alarcon-Martinez L, Ortin-Martinez A, Aviles-Trigueros M, Vidal-Sanz M, Trivino A, Ramirez JM: Quantification of the effect of different levels of IOP in the astroglia of the rat retina ipsilateral and contralateral to experimental glaucoma. Invest Ophthalmol Vis Sci 2010, 51:5690–5696.CrossRefPubMed Ramirez AI, Salazar JJ, de Hoz R, Rojas B, Gallego BI, Salinas-Navarro M, Alarcon-Martinez L, Ortin-Martinez A, Aviles-Trigueros M, Vidal-Sanz M, Trivino A, Ramirez JM: Quantification of the effect of different levels of IOP in the astroglia of the rat retina ipsilateral and contralateral to experimental glaucoma. Invest Ophthalmol Vis Sci 2010, 51:5690–5696.CrossRefPubMed
44.
go back to reference McKinnon SJ, Schlamp CL, Nickells RW: Mouse models of retinal ganglion cell death and glaucoma. Exp Eye Res 2009, 88:816–824.CrossRefPubMed McKinnon SJ, Schlamp CL, Nickells RW: Mouse models of retinal ganglion cell death and glaucoma. Exp Eye Res 2009, 88:816–824.CrossRefPubMed
45.
go back to reference Kanamori A, Nakamura M, Nakanishi Y, Yamada Y, Negi A: Long-term glial reactivity in rat retinas ipsilateral and contralateral to experimental glaucoma. Exp Eye Res 2005, 81:48–56.CrossRefPubMed Kanamori A, Nakamura M, Nakanishi Y, Yamada Y, Negi A: Long-term glial reactivity in rat retinas ipsilateral and contralateral to experimental glaucoma. Exp Eye Res 2005, 81:48–56.CrossRefPubMed
46.
go back to reference Rungger-Brandle E, Dosso AA, Leuenberger PM: Glial reactivity, an early feature of diabetic retinopathy. Invest Ophthalmol Vis Sci 2000, 41:1971–1980.PubMed Rungger-Brandle E, Dosso AA, Leuenberger PM: Glial reactivity, an early feature of diabetic retinopathy. Invest Ophthalmol Vis Sci 2000, 41:1971–1980.PubMed
47.
go back to reference Barber AJ, Antonetti DA, Gardner TW: Altered expression of retinal occludin and glial fibrillary acidic protein in experimental diabetes. The Penn State Retina Research Group. Invest Ophthalmol Vis Sci 2000, 41:3561–3568.PubMed Barber AJ, Antonetti DA, Gardner TW: Altered expression of retinal occludin and glial fibrillary acidic protein in experimental diabetes. The Penn State Retina Research Group. Invest Ophthalmol Vis Sci 2000, 41:3561–3568.PubMed
48.
go back to reference Xue LP, Lu J, Cao Q, Hu S, Ding P, Ling EA: Müller glial cells express nestin coupled with glial fibrillary acidic protein in experimentally induced glaucoma in the rat retina. Neuroscience 2006, 139:723–732.CrossRefPubMed Xue LP, Lu J, Cao Q, Hu S, Ding P, Ling EA: Müller glial cells express nestin coupled with glial fibrillary acidic protein in experimentally induced glaucoma in the rat retina. Neuroscience 2006, 139:723–732.CrossRefPubMed
49.
go back to reference Hernandez MR: The optic nerve head in glaucoma: role of astrocytes in tissue remodeling. Prog Retin Eye Res 2000, 19:297–321.CrossRefPubMed Hernandez MR: The optic nerve head in glaucoma: role of astrocytes in tissue remodeling. Prog Retin Eye Res 2000, 19:297–321.CrossRefPubMed
50.
go back to reference Ramírez JM, Ramírez AI, Salazar JJ, de Hoz R, Triviño A: Changes of astrocytes in retinal ageing and age-related macular degeneration. Exp Eye Res 2001, 73:601–615.CrossRefPubMed Ramírez JM, Ramírez AI, Salazar JJ, de Hoz R, Triviño A: Changes of astrocytes in retinal ageing and age-related macular degeneration. Exp Eye Res 2001, 73:601–615.CrossRefPubMed
51.
go back to reference Reichenbach A, Bringmann A: Müller cells in the diseased retina. In Müller Cells in the Healthy and Diseased Retina. Edited by: Reichenbach A, Bringmann A. Springer, New York; 2010:215.CrossRef Reichenbach A, Bringmann A: Müller cells in the diseased retina. In Müller Cells in the Healthy and Diseased Retina. Edited by: Reichenbach A, Bringmann A. Springer, New York; 2010:215.CrossRef
53.
go back to reference Perez-Alvarez MJ, Isiegas C, Santano C, Salazar JJ, Ramírez AI, Triviño A, Ramírez JM, Albar JP, de la Rosa EJ, Prada C: Vimentin isoform expression in the human retina characterized with the monoclonal antibody 3CB2. J Neurosci Res 2008, 86:1871–1883.CrossRefPubMed Perez-Alvarez MJ, Isiegas C, Santano C, Salazar JJ, Ramírez AI, Triviño A, Ramírez JM, Albar JP, de la Rosa EJ, Prada C: Vimentin isoform expression in the human retina characterized with the monoclonal antibody 3CB2. J Neurosci Res 2008, 86:1871–1883.CrossRefPubMed
54.
go back to reference Lorber B, Guidi A, Fawcett JW, Martin KR: Activated retinal glia mediated axon regeneration in experimental glaucoma. Neurobiol Dis 2012, 45:243–252.CrossRefPubMed Lorber B, Guidi A, Fawcett JW, Martin KR: Activated retinal glia mediated axon regeneration in experimental glaucoma. Neurobiol Dis 2012, 45:243–252.CrossRefPubMed
55.
go back to reference Bolz S, Schuettauf F, Fries JE, Thaler S, Reichenbach A, Pannicke T: K(+) currents fail to change in reactive retinal glial cells in a mouse model of glaucoma. Graefes Arch Clin Exp Ophthalmol 2008, 246:1249–1254.CrossRefPubMed Bolz S, Schuettauf F, Fries JE, Thaler S, Reichenbach A, Pannicke T: K(+) currents fail to change in reactive retinal glial cells in a mouse model of glaucoma. Graefes Arch Clin Exp Ophthalmol 2008, 246:1249–1254.CrossRefPubMed
56.
go back to reference Soto I, Oglesby E, Buckingham BP, Son JL, Roberson ED, Steele MR, Inman DM, Vetter ML, Horner PJ, Marsh-Armstrong N: Retinal ganglion cells downregulate gene expression and lose their axons within the optic nerve head in a mouse glaucoma model. J Neurosci 2008, 28:548–561.CrossRefPubMed Soto I, Oglesby E, Buckingham BP, Son JL, Roberson ED, Steele MR, Inman DM, Vetter ML, Horner PJ, Marsh-Armstrong N: Retinal ganglion cells downregulate gene expression and lose their axons within the optic nerve head in a mouse glaucoma model. J Neurosci 2008, 28:548–561.CrossRefPubMed
57.
go back to reference Bizzi A, Schaetzle B, Patton A, Gambetti P, Autilio-Gambetti L: Axonal transport of two major components of the ubiquitin system: free ubiquitin and ubiquitin carboxyl-terminal hydrolase PGP 9.5. Brain Res 1991, 548:292–299.CrossRefPubMed Bizzi A, Schaetzle B, Patton A, Gambetti P, Autilio-Gambetti L: Axonal transport of two major components of the ubiquitin system: free ubiquitin and ubiquitin carboxyl-terminal hydrolase PGP 9.5. Brain Res 1991, 548:292–299.CrossRefPubMed
58.
go back to reference Mabuchi F, Aihara M, Mackey MR, Lindsey JD, Weinreb RN: Regional optic nerve damage in experimental mouse glaucoma. Invest Ophthalmol Vis Sci 2004, 45:4352–4358.CrossRefPubMed Mabuchi F, Aihara M, Mackey MR, Lindsey JD, Weinreb RN: Regional optic nerve damage in experimental mouse glaucoma. Invest Ophthalmol Vis Sci 2004, 45:4352–4358.CrossRefPubMed
59.
go back to reference Pease ME, McKinnon SJ, Quigley HA, Kerrigan-Baumrind LA, Zack DJ: Obstructed axonal transport of BDNF and its receptor TrkB in experimental glaucoma. Invest Ophthalmol Vis Sci 2000, 41:764–774.PubMed Pease ME, McKinnon SJ, Quigley HA, Kerrigan-Baumrind LA, Zack DJ: Obstructed axonal transport of BDNF and its receptor TrkB in experimental glaucoma. Invest Ophthalmol Vis Sci 2000, 41:764–774.PubMed
60.
go back to reference Quigley HA, Anderson DR: Distribution of axonal transport blockade by acute intraocular pressure elevation in the primate optic nerve head. Invest Ophthalmol Vis Sci 1977, 16:640–644.PubMed Quigley HA, Anderson DR: Distribution of axonal transport blockade by acute intraocular pressure elevation in the primate optic nerve head. Invest Ophthalmol Vis Sci 1977, 16:640–644.PubMed
61.
go back to reference Minckler DS, Tso MO, Zimmerman LE: A light microscopic, autoradiographic study of axoplasmic transport in the optic nerve head during ocular hypotony, increased intraocular pressure, and papilledema. Am J Ophthalmol 1976, 82:741–757.CrossRefPubMed Minckler DS, Tso MO, Zimmerman LE: A light microscopic, autoradiographic study of axoplasmic transport in the optic nerve head during ocular hypotony, increased intraocular pressure, and papilledema. Am J Ophthalmol 1976, 82:741–757.CrossRefPubMed
62.
go back to reference Anderson DR, Hendrickson A: Effect of intraocular pressure on rapid axoplasmic transport in monkey optic nerve. Invest Ophthalmol Vis Sci 1974, 13:771–783. Anderson DR, Hendrickson A: Effect of intraocular pressure on rapid axoplasmic transport in monkey optic nerve. Invest Ophthalmol Vis Sci 1974, 13:771–783.
63.
64.
go back to reference Nixon RA, Sihag RK: Neurofilament phosphorylation: a new look at regulation and function. Trends Neurosci 1991, 14:501–506.CrossRefPubMed Nixon RA, Sihag RK: Neurofilament phosphorylation: a new look at regulation and function. Trends Neurosci 1991, 14:501–506.CrossRefPubMed
65.
66.
go back to reference Kashiwagi K, Ou B, Nakamura S, Tanaka Y, Suzuki M, Tsukahara S: Increase in dephosphorylation of the heavy neurofilament subunit in the monkey chronic glaucoma model. Invest Ophthalmol Vis Sci 2003, 44:154–159.CrossRefPubMed Kashiwagi K, Ou B, Nakamura S, Tanaka Y, Suzuki M, Tsukahara S: Increase in dephosphorylation of the heavy neurofilament subunit in the monkey chronic glaucoma model. Invest Ophthalmol Vis Sci 2003, 44:154–159.CrossRefPubMed
67.
go back to reference Morrison JC, Cepurna Ying Guo WO, Johnson EC: Pathophysiology of human glaucomatous optic nerve damage: insights from rodent models of glaucoma. Exp Eye Res 2011, 93:156–164.CrossRefPubMed Morrison JC, Cepurna Ying Guo WO, Johnson EC: Pathophysiology of human glaucomatous optic nerve damage: insights from rodent models of glaucoma. Exp Eye Res 2011, 93:156–164.CrossRefPubMed
68.
go back to reference Dibas A, Yang MH, He S, Bobich J, Yorio T: Changes in ocular aquaporin-4 (AQP4) expression following retinal injury. Mol Vis 2008, 14:1770–1783.PubMedPubMedCentral Dibas A, Yang MH, He S, Bobich J, Yorio T: Changes in ocular aquaporin-4 (AQP4) expression following retinal injury. Mol Vis 2008, 14:1770–1783.PubMedPubMedCentral
70.
go back to reference Conforti L, Adalbert R, Coleman MP: Neuronal death: where does the end begin? Trends Neurosci 2007, 30:159–166.CrossRefPubMed Conforti L, Adalbert R, Coleman MP: Neuronal death: where does the end begin? Trends Neurosci 2007, 30:159–166.CrossRefPubMed
71.
go back to reference Schlamp CL, Li Y, Dietz JA, Janssen KT, Nickells RW: Progressive ganglion cell loss and optic nerve degeneration in DBA/2J mice is variable and asymmetric. BMC Neurosci 2006, 7:66.CrossRefPubMedPubMedCentral Schlamp CL, Li Y, Dietz JA, Janssen KT, Nickells RW: Progressive ganglion cell loss and optic nerve degeneration in DBA/2J mice is variable and asymmetric. BMC Neurosci 2006, 7:66.CrossRefPubMedPubMedCentral
72.
go back to reference Buckingham BP, Inman DM, Lambert W, Oglesby E, Calkins DJ, Steele MR, Vetter ML, Marsh-Armstrong N, Horner PJ: Progressive ganglion cell degeneration precedes neuronal loss in a mouse model of glaucoma. J Neurosci 2008, 28:2735–2744.CrossRefPubMed Buckingham BP, Inman DM, Lambert W, Oglesby E, Calkins DJ, Steele MR, Vetter ML, Marsh-Armstrong N, Horner PJ: Progressive ganglion cell degeneration precedes neuronal loss in a mouse model of glaucoma. J Neurosci 2008, 28:2735–2744.CrossRefPubMed
73.
go back to reference Crish SD, Sappington RM, Inman DM, Horner PJ, Calkins DJ: Distal axonopathy with structural persistence in glaucomatous neurodegeneration. Proc Natl Acad Sci U S A 2010, 107:5196–5201.CrossRefPubMedPubMedCentral Crish SD, Sappington RM, Inman DM, Horner PJ, Calkins DJ: Distal axonopathy with structural persistence in glaucomatous neurodegeneration. Proc Natl Acad Sci U S A 2010, 107:5196–5201.CrossRefPubMedPubMedCentral
74.
go back to reference Howell GR, Libby RT, Jakobs TC, Smith RS, Phalan FC, Barter JW, Barbay JM, Marchant JK, Mahesh N, Porciatti V, Whitmore AV, Masland RH, John SW: Axons of retinal ganglion cells are insulted in the optic nerve early in DBA/2J glaucoma. J Cell Biol 2007, 179:1523–1537.CrossRefPubMedPubMedCentral Howell GR, Libby RT, Jakobs TC, Smith RS, Phalan FC, Barter JW, Barbay JM, Marchant JK, Mahesh N, Porciatti V, Whitmore AV, Masland RH, John SW: Axons of retinal ganglion cells are insulted in the optic nerve early in DBA/2J glaucoma. J Cell Biol 2007, 179:1523–1537.CrossRefPubMedPubMedCentral
75.
go back to reference Whitmore AV, Libby RT, John SW: Glaucoma: thinking in new ways-a role for autonomous axonal self-destruction and other compartmentalised processes? Prog Retin Eye Res 2005, 24:639–662.CrossRefPubMed Whitmore AV, Libby RT, John SW: Glaucoma: thinking in new ways-a role for autonomous axonal self-destruction and other compartmentalised processes? Prog Retin Eye Res 2005, 24:639–662.CrossRefPubMed
77.
go back to reference Soto I, Pease ME, Son JL, Shi X, Quigley HA, Marsh-Armstrong N: Retinal ganglion cell loss in a rat ocular hypertension model is sectorial and involves early optic nerve axon loss. Invest Ophthalmol Vis Sci 2011, 52:434–441.CrossRefPubMedPubMedCentral Soto I, Pease ME, Son JL, Shi X, Quigley HA, Marsh-Armstrong N: Retinal ganglion cell loss in a rat ocular hypertension model is sectorial and involves early optic nerve axon loss. Invest Ophthalmol Vis Sci 2011, 52:434–441.CrossRefPubMedPubMedCentral
78.
go back to reference Steele MR, Inman DM, Calkins DJ, Horner PJ, Vetter ML: Microarray analysis of retinal gene expression in the DBA/2J model of glaucoma. Invest Ophthalmol Vis Sci 2006, 47:977–985.CrossRefPubMed Steele MR, Inman DM, Calkins DJ, Horner PJ, Vetter ML: Microarray analysis of retinal gene expression in the DBA/2J model of glaucoma. Invest Ophthalmol Vis Sci 2006, 47:977–985.CrossRefPubMed
79.
go back to reference Yang J, Yang P, Tezel G, Patil RV, Hernandez MR, Wax MB: Induction of HLA-DR expression in human lamina cribrosa astrocytes by cytokines and simulated ischemia. Invest Ophthalmol Vis Sci 2001, 42:365–371.PubMed Yang J, Yang P, Tezel G, Patil RV, Hernandez MR, Wax MB: Induction of HLA-DR expression in human lamina cribrosa astrocytes by cytokines and simulated ischemia. Invest Ophthalmol Vis Sci 2001, 42:365–371.PubMed
80.
go back to reference Tezel G, Chauhan BC, LeBlanc RP, Wax MB: Immunohistochemical assessment of the glial mitogen-activated protein kinase activation in glaucoma. Invest Ophthalmol Vis Sci 2003, 44:3025–3033.CrossRefPubMed Tezel G, Chauhan BC, LeBlanc RP, Wax MB: Immunohistochemical assessment of the glial mitogen-activated protein kinase activation in glaucoma. Invest Ophthalmol Vis Sci 2003, 44:3025–3033.CrossRefPubMed
81.
go back to reference Neufeld AH: Microglia in the optic nerve head and the region of parapapillary chorioretinal atrophy in glaucoma. Arch Ophthalmol 1999, 117:1050–1056.CrossRefPubMed Neufeld AH: Microglia in the optic nerve head and the region of parapapillary chorioretinal atrophy in glaucoma. Arch Ophthalmol 1999, 117:1050–1056.CrossRefPubMed
82.
go back to reference Wang X, Tay SS, Ng YK: An immunohistochemical study of neuronal and glial cell reactions in retinae of rats with experimental glaucoma. Exp Brain Res 2000, 132:476–484.CrossRefPubMed Wang X, Tay SS, Ng YK: An immunohistochemical study of neuronal and glial cell reactions in retinae of rats with experimental glaucoma. Exp Brain Res 2000, 132:476–484.CrossRefPubMed
83.
go back to reference Naskar R, Wissing M, Thanos S: Detection of early neuron degeneration and accompanying microglial in the retina of a rat model of glaucoma. Invest Ophthalmol Vis Sci 2002, 43:2962–2968.PubMed Naskar R, Wissing M, Thanos S: Detection of early neuron degeneration and accompanying microglial in the retina of a rat model of glaucoma. Invest Ophthalmol Vis Sci 2002, 43:2962–2968.PubMed
84.
go back to reference Fan W, Li X, Wang W, Mo JS, Kaplan H, Cooper NG: Early involvement of immune/inflammatory response genes in retinal degeneration in DBA/2J Mice. Ophthalmol Eye Dis 2010, 1:23–41.PubMed Fan W, Li X, Wang W, Mo JS, Kaplan H, Cooper NG: Early involvement of immune/inflammatory response genes in retinal degeneration in DBA/2J Mice. Ophthalmol Eye Dis 2010, 1:23–41.PubMed
85.
go back to reference Shao H, Kaplan HJ, Sun D: Major histocompatibility complex molecules on parenchymal cells of the target organ protect against autoimmune disease. Chem Immunol Allergy 2007, 92:94–104.CrossRefPubMedPubMedCentral Shao H, Kaplan HJ, Sun D: Major histocompatibility complex molecules on parenchymal cells of the target organ protect against autoimmune disease. Chem Immunol Allergy 2007, 92:94–104.CrossRefPubMedPubMedCentral
Metadata
Title
IOP induces upregulation of GFAP and MHC-II and microglia reactivity in mice retina contralateral to experimental glaucoma
Authors
Beatriz I Gallego
Juan J Salazar
Rosa de Hoz
Blanca Rojas
Ana I Ramírez
Manuel Salinas-Navarro
Arturo Ortín-Martínez
Francisco J Valiente-Soriano
Marcelino Avilés-Trigueros
Maria P Villegas-Perez
Manuel Vidal-Sanz
Alberto Triviño
Jose M Ramírez
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2012
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-9-92

Other articles of this Issue 1/2012

Journal of Neuroinflammation 1/2012 Go to the issue