Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2012

Open Access 01-12-2012 | Research

Lipopolysaccharide-induced neuroinflammation leads to the accumulation of ubiquitinated proteins and increases susceptibility to neurodegeneration induced by proteasome inhibition in rat hippocampus

Authors: Cristina Pintado, María P Gavilán, Elena Gavilán, Luisa García-Cuervo, Antonia Gutiérrez, Javier Vitorica, Angélica Castaño, Rosa M Ríos, Diego Ruano

Published in: Journal of Neuroinflammation | Issue 1/2012

Login to get access

Abstract

Background

Neuroinflammation and protein accumulation are characteristic hallmarks of both normal aging and age-related neurodegenerative diseases. However, the relationship between these factors in neurodegenerative processes is poorly understood. We have previously shown that proteasome inhibition produced higher neurodegeneration in aged than in young rats, suggesting that other additional age-related events could be involved in neurodegeneration. We evaluated the role of lipopolysaccharide (LPS)-induced neuroinflammation as a potential synergic risk factor for hippocampal neurodegeneration induced by proteasome inhibition.

Methods

Young male Wistar rats were injected with 1 μL of saline or LPS (5 mg/mL) into the hippocampus to evaluate the effect of LPS-induced neuroinflammation on protein homeostasis. The synergic effect of LPS and proteasome inhibition was analyzed in young rats that first received 1 μL of LPS and 24 h later 1 μL (5 mg/mL) of the proteasome inhibitor lactacystin. Animals were sacrificed at different times post-injection and hippocampi isolated and processed for gene expression analysis by real-time polymerase chain reaction; protein expression analysis by western blots; proteasome activity by fluorescence spectroscopy; immunofluorescence analysis by confocal microscopy; and degeneration assay by Fluoro-Jade B staining.

Results

LPS injection produced the accumulation of ubiquitinated proteins in hippocampal neurons, increased expression of the E2 ubiquitin-conjugating enzyme UB2L6, decreased proteasome activity and increased immunoproteasome content. However, LPS injection was not sufficient to produce neurodegeneration. The combination of neuroinflammation and proteasome inhibition leads to higher neuronal accumulation of ubiquitinated proteins, predominant expression of pro-apoptotic markers and increased neurodegeneration, when compared with LPS or lactacystin (LT) injection alone.

Conclusions

Our results identify neuroinflammation as a risk factor that increases susceptibility to neurodegeneration induced by proteasome inhibition. These results highlight the modulation of neuroinflammation as a mechanism for neuronal protection that could be relevant in situations where both factors are present, such as aging and neurodegenerative diseases.
Literature
1.
go back to reference Ruano D, Revilla E, Gavilán MP, Vizuete ML, Pintado C, Vitorica J, Castaño A: Role of p38 and inducible nitric oxide synthase in the in vivo dopaminergic cells’ degeneration induced by inflammatory processes after lipopolysaccharide injection. Neuroscience 2006, 140:1157–1168.CrossRefPubMed Ruano D, Revilla E, Gavilán MP, Vizuete ML, Pintado C, Vitorica J, Castaño A: Role of p38 and inducible nitric oxide synthase in the in vivo dopaminergic cells’ degeneration induced by inflammatory processes after lipopolysaccharide injection. Neuroscience 2006, 140:1157–1168.CrossRefPubMed
2.
go back to reference Gavilán MP, Revilla E, Pintado C, Castaño A, Vizuete ML, Moreno-González I, Baglietto-Vargas D, Sánchez-Varo R, Vitorica J, Gutiérrez A, Ruano D: Molecular and cellular characterization of the age-related neuroinflammatory processes occurring in normal rat hippocampus: potential relation with the loss of somatostatin GABAergic neurons. J Neurochem 2007, 103:984–996.CrossRefPubMed Gavilán MP, Revilla E, Pintado C, Castaño A, Vizuete ML, Moreno-González I, Baglietto-Vargas D, Sánchez-Varo R, Vitorica J, Gutiérrez A, Ruano D: Molecular and cellular characterization of the age-related neuroinflammatory processes occurring in normal rat hippocampus: potential relation with the loss of somatostatin GABAergic neurons. J Neurochem 2007, 103:984–996.CrossRefPubMed
3.
go back to reference Jiménez S, Baglietto-Vargas D, Caballero C, Moreno-González I, Torres M, Sanchez-Varo R, Ruano D, Vizuete M, Gutierrez A, Vitorica J: Inflammatory response in the hippocampus of PS1M146L/APP751sl mouse model of Alzheimer’s disease: age-dependent switch in the microglial phenotype from alternative to classic. J Neurosci 2008, 28:11650–11661.CrossRefPubMed Jiménez S, Baglietto-Vargas D, Caballero C, Moreno-González I, Torres M, Sanchez-Varo R, Ruano D, Vizuete M, Gutierrez A, Vitorica J: Inflammatory response in the hippocampus of PS1M146L/APP751sl mouse model of Alzheimer’s disease: age-dependent switch in the microglial phenotype from alternative to classic. J Neurosci 2008, 28:11650–11661.CrossRefPubMed
5.
go back to reference Pintado C, Revilla E, Vizuete ML, Jiménez S, García-Cuervo L, Vitorica J, Ruano D, Castaño A: Regional difference in inflammatory response to LPS-injection in the brain: role of microglia cell density. J Neuroimmunol 2011, 238:44–51.CrossRefPubMed Pintado C, Revilla E, Vizuete ML, Jiménez S, García-Cuervo L, Vitorica J, Ruano D, Castaño A: Regional difference in inflammatory response to LPS-injection in the brain: role of microglia cell density. J Neuroimmunol 2011, 238:44–51.CrossRefPubMed
6.
go back to reference Kiefer R, Streit WJ, Toyka KV, Kreutzberg GW, Hartung HP: Transforming growth factor-beta 1: a lesion-associated cytokine of the nervous system. Int J Dev Neurosci 1995, 13:331–339.CrossRefPubMed Kiefer R, Streit WJ, Toyka KV, Kreutzberg GW, Hartung HP: Transforming growth factor-beta 1: a lesion-associated cytokine of the nervous system. Int J Dev Neurosci 1995, 13:331–339.CrossRefPubMed
7.
go back to reference Imai F, Suzuki H, Oda J, Ninomiya T, Ono K, Sano H, Sawada M: Neuroprotective effect of exogenous microglia in global brain ischemia. J Cereb Blood Flow Metab 2007, 27:488–500.CrossRefPubMed Imai F, Suzuki H, Oda J, Ninomiya T, Ono K, Sano H, Sawada M: Neuroprotective effect of exogenous microglia in global brain ischemia. J Cereb Blood Flow Metab 2007, 27:488–500.CrossRefPubMed
8.
go back to reference Lambertsen KL, Clausen BH, Babcock AA, Gregersen R, Fenger C, Nielsen HH, Haugaard LS, Wirenfeldt M, Nielsen M, Dagnaes-Hansen F, Bluethmann H, Faergeman NJ, Meldgaard M, Deierborg T, Finsen B: Microglia protect neurons against ischemia by synthesis of tumor necrosis factor. J Neurosci 2009, 29:1319–1330.CrossRefPubMed Lambertsen KL, Clausen BH, Babcock AA, Gregersen R, Fenger C, Nielsen HH, Haugaard LS, Wirenfeldt M, Nielsen M, Dagnaes-Hansen F, Bluethmann H, Faergeman NJ, Meldgaard M, Deierborg T, Finsen B: Microglia protect neurons against ischemia by synthesis of tumor necrosis factor. J Neurosci 2009, 29:1319–1330.CrossRefPubMed
9.
go back to reference Kraft AD, Harry GJ: Features of microglia and neuroinflammation relevant to environmental exposure and neurotoxicity. Int J Environ Res Public Health 2011, 8:2980–3018.CrossRefPubMedPubMedCentral Kraft AD, Harry GJ: Features of microglia and neuroinflammation relevant to environmental exposure and neurotoxicity. Int J Environ Res Public Health 2011, 8:2980–3018.CrossRefPubMedPubMedCentral
10.
go back to reference Harry GJ, Kraft AD: Neuroinflammation and microglia: considerations and approaches for neurotoxicity assessment. Expert Opin Drug Metab Toxicol 2008, 4:1265–1277.CrossRefPubMedPubMedCentral Harry GJ, Kraft AD: Neuroinflammation and microglia: considerations and approaches for neurotoxicity assessment. Expert Opin Drug Metab Toxicol 2008, 4:1265–1277.CrossRefPubMedPubMedCentral
11.
go back to reference Bose S, Brooks P, Mason GG, Rivett AJ: gamma-Interferon decreases the level of 26 S proteasomes and changes the pattern of phosphorylation. Biochem J 2001, 15:291–297. Bose S, Brooks P, Mason GG, Rivett AJ: gamma-Interferon decreases the level of 26 S proteasomes and changes the pattern of phosphorylation. Biochem J 2001, 15:291–297.
12.
go back to reference Rivett AJ, Bose S, Brooks P, Broadfoot KI: Regulation of proteasome complexes by gamma-interferon and phosphorylation. Biochimie 2001, 83:363–366.CrossRefPubMed Rivett AJ, Bose S, Brooks P, Broadfoot KI: Regulation of proteasome complexes by gamma-interferon and phosphorylation. Biochimie 2001, 83:363–366.CrossRefPubMed
13.
14.
go back to reference Hochstrasser M: Ubiquitin, proteasomes, and the regulation of intracellular protein degradation. Curr Opin Cell Biol 1995, 7:215–223.CrossRefPubMed Hochstrasser M: Ubiquitin, proteasomes, and the regulation of intracellular protein degradation. Curr Opin Cell Biol 1995, 7:215–223.CrossRefPubMed
15.
go back to reference Rechsteiner M, Hill CP: Mobilizing the proteolytic machine: cell biological roles of proteasome activators and inhibitors. Trends Cell Biol 2005, 15:27–33.CrossRefPubMed Rechsteiner M, Hill CP: Mobilizing the proteolytic machine: cell biological roles of proteasome activators and inhibitors. Trends Cell Biol 2005, 15:27–33.CrossRefPubMed
16.
go back to reference Gaczynska M, Rock KL, Goldberg AL: Gamma-interferon and expression of MHC genes regulate peptide hydrolysis by proteasomes. Nature 1993, 365:264–267.CrossRefPubMed Gaczynska M, Rock KL, Goldberg AL: Gamma-interferon and expression of MHC genes regulate peptide hydrolysis by proteasomes. Nature 1993, 365:264–267.CrossRefPubMed
17.
go back to reference Preckel T, Fung-Leung WP, Cai Z, Vitiello A, Salter-Cid L, Winqvist O, Wolfe TG, von Herrath M, Angulo A, Ghazal P, Lee JD, Fourie AM, Wu Y, Pang J, Ngo K, Peterson PA, Früh K, Yang Y: Impaired immunoproteasome assembly and immune responses in PA28−/− mice. Science 1999, 286:2162–2165.CrossRefPubMed Preckel T, Fung-Leung WP, Cai Z, Vitiello A, Salter-Cid L, Winqvist O, Wolfe TG, von Herrath M, Angulo A, Ghazal P, Lee JD, Fourie AM, Wu Y, Pang J, Ngo K, Peterson PA, Früh K, Yang Y: Impaired immunoproteasome assembly and immune responses in PA28−/− mice. Science 1999, 286:2162–2165.CrossRefPubMed
18.
19.
go back to reference Goldberg AL: Protein degradation and protection against misfolded or damaged proteins. Nature 2003, 426:895–899.CrossRefPubMed Goldberg AL: Protein degradation and protection against misfolded or damaged proteins. Nature 2003, 426:895–899.CrossRefPubMed
20.
go back to reference Paz Gavilán M, Vela J, Castaño A, Ramos B, del Río JC, Vitorica J, Ruano D: Cellular environment facilitates protein accumulation in aged rat hippocampus. Neurobiol Aging 2006, 27:973–982.CrossRefPubMed Paz Gavilán M, Vela J, Castaño A, Ramos B, del Río JC, Vitorica J, Ruano D: Cellular environment facilitates protein accumulation in aged rat hippocampus. Neurobiol Aging 2006, 27:973–982.CrossRefPubMed
21.
go back to reference Gavilán MP, Castaño A, Torres M, Portavella M, Caballero C, Jiménez S, García-Martínez A, Parrado J, Vitorica J, Ruano D: Age-related increase in the immunoproteasome content in rat hippocampus: molecular and functional aspects. J Neurochem 2009, 108:260–270.CrossRef Gavilán MP, Castaño A, Torres M, Portavella M, Caballero C, Jiménez S, García-Martínez A, Parrado J, Vitorica J, Ruano D: Age-related increase in the immunoproteasome content in rat hippocampus: molecular and functional aspects. J Neurochem 2009, 108:260–270.CrossRef
22.
go back to reference Gavilán MP, Pintado C, Gavilán E, Jiménez S, Ríos RM, Vitorica J, Castaño A, Ruano D: Dysfunction of the unfolded protein response increases neurodegeneration in aged rat hippocampus following proteasome inhibition. Aging Cell 2009, 8:654–665.CrossRefPubMed Gavilán MP, Pintado C, Gavilán E, Jiménez S, Ríos RM, Vitorica J, Castaño A, Ruano D: Dysfunction of the unfolded protein response increases neurodegeneration in aged rat hippocampus following proteasome inhibition. Aging Cell 2009, 8:654–665.CrossRefPubMed
23.
go back to reference Seifert U, Bialy LP, Ebstein F, Bech-Otschir D, Voigt A, Schröter F, Prozorovski T, Lange N, Steffen J, Rieger M, Kuckelkorn U, Aktas O, Kloetzel PM, Krüger E: Immunoproteasomes preserve protein homeostasis upon interferon-induced oxidative stress. Cell 2010, 142:613–624.CrossRefPubMed Seifert U, Bialy LP, Ebstein F, Bech-Otschir D, Voigt A, Schröter F, Prozorovski T, Lange N, Steffen J, Rieger M, Kuckelkorn U, Aktas O, Kloetzel PM, Krüger E: Immunoproteasomes preserve protein homeostasis upon interferon-induced oxidative stress. Cell 2010, 142:613–624.CrossRefPubMed
24.
go back to reference Witt E, Zantopf D, Schmidt M, Kraft R, Kloetzel PM, Kruger E: Characterisation of the newly identified human Ump1 homologue POMP and analysis of LMP7(β5i) incorporation into 20 S proteasomes. J Mol Biol 2000, 301:1–9.CrossRefPubMed Witt E, Zantopf D, Schmidt M, Kraft R, Kloetzel PM, Kruger E: Characterisation of the newly identified human Ump1 homologue POMP and analysis of LMP7(β5i) incorporation into 20 S proteasomes. J Mol Biol 2000, 301:1–9.CrossRefPubMed
25.
go back to reference Fricke B, Heink S, Steffen J, Kloetzel PM, Krüger E: The proteasome maturation protein POMP facilitates major steps of 20 S proteasome formation at the endoplasmic reticulum. EMBO reports 2007, 8:1170–1175.CrossRefPubMedPubMedCentral Fricke B, Heink S, Steffen J, Kloetzel PM, Krüger E: The proteasome maturation protein POMP facilitates major steps of 20 S proteasome formation at the endoplasmic reticulum. EMBO reports 2007, 8:1170–1175.CrossRefPubMedPubMedCentral
26.
go back to reference Heink S, Ludwig D, Kloetzel PM, Kruger E: IFN-gamma induced immune adaptation of the proteasome system is an accelerated and transient response. Proc Natl Acad Sci USA 2005, 102:9241–9246.CrossRefPubMedPubMedCentral Heink S, Ludwig D, Kloetzel PM, Kruger E: IFN-gamma induced immune adaptation of the proteasome system is an accelerated and transient response. Proc Natl Acad Sci USA 2005, 102:9241–9246.CrossRefPubMedPubMedCentral
27.
go back to reference Deol P, Zaiss DMW, Monaco JJ, Sijts AJAM: Rates of processing determine the immunogenicity of immunoproteasome-generated epitopes. J Immunol 2007, 178:7557–7562.CrossRefPubMed Deol P, Zaiss DMW, Monaco JJ, Sijts AJAM: Rates of processing determine the immunogenicity of immunoproteasome-generated epitopes. J Immunol 2007, 178:7557–7562.CrossRefPubMed
28.
go back to reference Ebstein F, Lange N, Urban S, Seifert U, Kruger E, Kloetzel PM: Maturation of human dendritic cells is accompanied by functional remodelling of the ubiquitin-proteasome system. Int J Biochem Cell Biol 2009, 41:1205–1215.CrossRefPubMed Ebstein F, Lange N, Urban S, Seifert U, Kruger E, Kloetzel PM: Maturation of human dendritic cells is accompanied by functional remodelling of the ubiquitin-proteasome system. Int J Biochem Cell Biol 2009, 41:1205–1215.CrossRefPubMed
29.
go back to reference de Graaf N, van Helden MJG, Textoris-Taube K, Chiba T, Topham DJ, Kloetzel PM, Zaiss DMW, Sijts AJAM: PA28 and the proteasome immunosubunits play a central and independent role in the production of MHC class I-binding peptides in vivo. Eur J Immunol 2011, 41:926–935.CrossRefPubMedPubMedCentral de Graaf N, van Helden MJG, Textoris-Taube K, Chiba T, Topham DJ, Kloetzel PM, Zaiss DMW, Sijts AJAM: PA28 and the proteasome immunosubunits play a central and independent role in the production of MHC class I-binding peptides in vivo. Eur J Immunol 2011, 41:926–935.CrossRefPubMedPubMedCentral
30.
go back to reference Strehl B, Seifert U, Krüger E, Heink S, Kuckelkorn U, Kloetzel PM: Interferon-γ, the functional plasticity of the ubiquitin-proteasome system, and MHC class I antigen processing. Immunol Rev 2005, 207:19–30.CrossRefPubMed Strehl B, Seifert U, Krüger E, Heink S, Kuckelkorn U, Kloetzel PM: Interferon-γ, the functional plasticity of the ubiquitin-proteasome system, and MHC class I antigen processing. Immunol Rev 2005, 207:19–30.CrossRefPubMed
31.
go back to reference Griffin R, Nally R, Nolan Y, McCartney Y, Linden J, Lynch MA: The age-related attenuation in long-term potentiation is associated with microglial activation. J Neurochem 2006, 99:1263–1272.CrossRefPubMed Griffin R, Nally R, Nolan Y, McCartney Y, Linden J, Lynch MA: The age-related attenuation in long-term potentiation is associated with microglial activation. J Neurochem 2006, 99:1263–1272.CrossRefPubMed
32.
go back to reference Keller JN, Hanni KB, Markesbery WR: Possible involvement of proteasome inhibition in aging: implications for oxidative stress. Mech Ageing Dev 2000, 113:61–70.CrossRefPubMed Keller JN, Hanni KB, Markesbery WR: Possible involvement of proteasome inhibition in aging: implications for oxidative stress. Mech Ageing Dev 2000, 113:61–70.CrossRefPubMed
33.
go back to reference Ding Q, Keller JN: Proteasomes and proteasome inhibition in the central nervous system. Free Radic Biol Med 2001, 31:574–584.CrossRefPubMed Ding Q, Keller JN: Proteasomes and proteasome inhibition in the central nervous system. Free Radic Biol Med 2001, 31:574–584.CrossRefPubMed
34.
go back to reference Perry VH: Contribution of systemic inflammation to chronic neurodegeneration. Acta Neuropathol 2010, 120:277–286.CrossRefPubMed Perry VH: Contribution of systemic inflammation to chronic neurodegeneration. Acta Neuropathol 2010, 120:277–286.CrossRefPubMed
35.
go back to reference Mishto M, Bellavista E, Santero A, Stolzing A, Liborio C, Nacmias B, Spazzafumo L, Chiappelli M, Licastro F, Sorbi S, Pession A, Ohm T, Grune T, Franceschi C: Immunoproteasome and LMP2 polymorphism in aged and Alzheimer’s disease brains. Neurobiol Aging 2006, 27:54–66.CrossRefPubMed Mishto M, Bellavista E, Santero A, Stolzing A, Liborio C, Nacmias B, Spazzafumo L, Chiappelli M, Licastro F, Sorbi S, Pession A, Ohm T, Grune T, Franceschi C: Immunoproteasome and LMP2 polymorphism in aged and Alzheimer’s disease brains. Neurobiol Aging 2006, 27:54–66.CrossRefPubMed
36.
go back to reference Díaz-Hernández M, Hernández F, Martín-Aparicio E, Gómez-Ramos P, Morán MA, Castaño JG, Ferrer I, Avila J, Lucas JJ: Neuronal induction of the immunoproteasome in Huntington’s disease. J Neurosci 2003, 23:11653–11661.PubMed Díaz-Hernández M, Hernández F, Martín-Aparicio E, Gómez-Ramos P, Morán MA, Castaño JG, Ferrer I, Avila J, Lucas JJ: Neuronal induction of the immunoproteasome in Huntington’s disease. J Neurosci 2003, 23:11653–11661.PubMed
37.
go back to reference Mishto M, Bellavista E, Liborio C, Textoris-Taube K, Santero A, Giordano M, D’Alfonso S, Listi F, Nacmias B, Cellini E, Leone M, Grimaldi LM, Fenoglio C, Esposito F, Martinelli-Boneschi F, Galimberti D, Scarpini E, Seifert U, Amato MP, Caruso C, Foschini MP, Kloetzel MP, Franceschi C: Immunoproteasome LMP2 60HH variant alters MBP epitope generation and reduces the risk to develop multiple sclerosis in Italian female population. PLoS One 2010, 5:e9287.CrossRefPubMedPubMedCentral Mishto M, Bellavista E, Liborio C, Textoris-Taube K, Santero A, Giordano M, D’Alfonso S, Listi F, Nacmias B, Cellini E, Leone M, Grimaldi LM, Fenoglio C, Esposito F, Martinelli-Boneschi F, Galimberti D, Scarpini E, Seifert U, Amato MP, Caruso C, Foschini MP, Kloetzel MP, Franceschi C: Immunoproteasome LMP2 60HH variant alters MBP epitope generation and reduces the risk to develop multiple sclerosis in Italian female population. PLoS One 2010, 5:e9287.CrossRefPubMedPubMedCentral
38.
go back to reference Mishto M, Liborio C, Bellavista E, Martucci M, Santero A, Giulioni M, Marucci G, Franceschi C: Immunoproteasome expression is induced in mesial temporal lobe epilepsy. Biochem Biophys Res Com 2011, 408:65–70.CrossRefPubMed Mishto M, Liborio C, Bellavista E, Martucci M, Santero A, Giulioni M, Marucci G, Franceschi C: Immunoproteasome expression is induced in mesial temporal lobe epilepsy. Biochem Biophys Res Com 2011, 408:65–70.CrossRefPubMed
Metadata
Title
Lipopolysaccharide-induced neuroinflammation leads to the accumulation of ubiquitinated proteins and increases susceptibility to neurodegeneration induced by proteasome inhibition in rat hippocampus
Authors
Cristina Pintado
María P Gavilán
Elena Gavilán
Luisa García-Cuervo
Antonia Gutiérrez
Javier Vitorica
Angélica Castaño
Rosa M Ríos
Diego Ruano
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2012
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-9-87

Other articles of this Issue 1/2012

Journal of Neuroinflammation 1/2012 Go to the issue