Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2014

Open Access 01-12-2014 | Review

LRRK2 and neuroinflammation: partners in crime in Parkinson’s disease?

Authors: Isabella Russo, Luigi Bubacco, Elisa Greggio

Published in: Journal of Neuroinflammation | Issue 1/2014

Login to get access

Abstract

It is now well established that chronic inflammation is a prominent feature of several neurodegenerative disorders including Parkinson’s disease (PD). Growing evidence indicates that neuroinflammation can contribute greatly to dopaminergic neuron degeneration and progression of the disease. Recent literature highlights that leucine-rich repeat kinase 2 (LRRK2), a kinase mutated in both autosomal-dominantly inherited and sporadic PD cases, modulates inflammation in response to different pathological stimuli. In this review, we outline the state of the art of LRRK2 functions in microglia cells and in neuroinflammation. Furthermore, we discuss the potential role of LRRK2 in cytoskeleton remodeling and vesicle trafficking in microglia cells under physiological and pathological conditions. We also hypothesize that LRRK2 mutations might sensitize microglia cells toward a pro-inflammatory state, which in turn results in exacerbated inflammation with consequent neurodegeneration.
Appendix
Available only for authorised users
Literature
1.
go back to reference Paisán-Ruíz C, Jain S, Evans EW, Gilks WP, Simón J, van der Brug M, López de Munain A, Aparicio S, Gil AM, Khan N, Johnson J, Martinez JR, Nicholl D, Carrera IM, Pena AS, de Silva R, Lees A, Martí-Massó JF, Pérez-Tur J, Wood NW, Singleton AB: Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron. 2004, 44: 595-600. 10.1016/j.neuron.2004.10.023.PubMed Paisán-Ruíz C, Jain S, Evans EW, Gilks WP, Simón J, van der Brug M, López de Munain A, Aparicio S, Gil AM, Khan N, Johnson J, Martinez JR, Nicholl D, Carrera IM, Pena AS, de Silva R, Lees A, Martí-Massó JF, Pérez-Tur J, Wood NW, Singleton AB: Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron. 2004, 44: 595-600. 10.1016/j.neuron.2004.10.023.PubMed
2.
go back to reference Marin I: The Parkinson disease gene LRRK2: evolutionary and structural insights. Mol Biol Evol. 2006, 23: 2423-2433. 10.1093/molbev/msl114.PubMed Marin I: The Parkinson disease gene LRRK2: evolutionary and structural insights. Mol Biol Evol. 2006, 23: 2423-2433. 10.1093/molbev/msl114.PubMed
3.
go back to reference Bosgraaf L, Van Haastert PJ: Roc, a Ras/GTPase domain in complex proteins. Biochim Biophys Acta. 2003, 1643: 5-10. 10.1016/j.bbamcr.2003.08.008.PubMed Bosgraaf L, Van Haastert PJ: Roc, a Ras/GTPase domain in complex proteins. Biochim Biophys Acta. 2003, 1643: 5-10. 10.1016/j.bbamcr.2003.08.008.PubMed
4.
go back to reference Zimprich A, Biskup S, Leitner P, Lichtner P, Farrer M, Lincoln S, Kachergus J, Hulihan M, Uitti RJ, Calne DB, Stoessl AJ, Pfeiffer RF, Patenge N, Carbajal IC, Vieregge P, Asmus F, Müller-Myhsok B, Dickson DW, Meitinger T, Strom TM, Wszolek ZK, Gasser T: Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron. 2004, 44: 601-607. 10.1016/j.neuron.2004.11.005.PubMed Zimprich A, Biskup S, Leitner P, Lichtner P, Farrer M, Lincoln S, Kachergus J, Hulihan M, Uitti RJ, Calne DB, Stoessl AJ, Pfeiffer RF, Patenge N, Carbajal IC, Vieregge P, Asmus F, Müller-Myhsok B, Dickson DW, Meitinger T, Strom TM, Wszolek ZK, Gasser T: Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron. 2004, 44: 601-607. 10.1016/j.neuron.2004.11.005.PubMed
5.
go back to reference Simón-Sánchez J, Schulte C, Bras JM, Sharma M, Gibbs JR, Berg D, Paisan-Ruiz C, Lichtner P, Scholz SW, Hernandez DG, Krüger R, Federoff M, Klein C, Goate A, Perlmutter J, Bonin M, Nalls MA, Illig T, Gieger C, Houlden H, Steffens M, Okun MS, Racette BA, Cookson MR, Foote KD, Fernandez HH, Traynor BJ, Schreiber S, Arepalli S, Zonozi R, et al: Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat Genet. 2009, 41: 1308-1312. 10.1038/ng.487.PubMedCentralPubMed Simón-Sánchez J, Schulte C, Bras JM, Sharma M, Gibbs JR, Berg D, Paisan-Ruiz C, Lichtner P, Scholz SW, Hernandez DG, Krüger R, Federoff M, Klein C, Goate A, Perlmutter J, Bonin M, Nalls MA, Illig T, Gieger C, Houlden H, Steffens M, Okun MS, Racette BA, Cookson MR, Foote KD, Fernandez HH, Traynor BJ, Schreiber S, Arepalli S, Zonozi R, et al: Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat Genet. 2009, 41: 1308-1312. 10.1038/ng.487.PubMedCentralPubMed
6.
go back to reference Gomez-Suaga P, Fdez E, Blanca Ramirez M, Hilfiker S: A link between autophagy and the pathophysiology of LRRK2 in Parkinson’s disease. Parkinsons Dis. 2012, 2012: 324521.PubMedCentralPubMed Gomez-Suaga P, Fdez E, Blanca Ramirez M, Hilfiker S: A link between autophagy and the pathophysiology of LRRK2 in Parkinson’s disease. Parkinsons Dis. 2012, 2012: 324521.PubMedCentralPubMed
7.
go back to reference Haugarvoll K, Rademakers R, Kachergus JM, Nuytemans K, Ross OA, Gibson JM, Tan EK, Gaig C, Tolosa E, Goldwurm S, Guidi M, Riboldazzi G, Brown L, Walter U, Benecke R, Berg D, Gasser T, Theuns J, Pals P, Cras P, De Deyn PP, Engelborghs S, Pickut B, Uitti RJ, Foroud T, Nichols WC, Hagenah J, Klein C, Samii A, Zabetian CP, et al: Lrrk2 R1441C parkinsonism is clinically similar to sporadic Parkinson disease. Neurology. 2008, 70: 1456-1460. 10.1212/01.wnl.0000304044.22253.03.PubMedCentralPubMed Haugarvoll K, Rademakers R, Kachergus JM, Nuytemans K, Ross OA, Gibson JM, Tan EK, Gaig C, Tolosa E, Goldwurm S, Guidi M, Riboldazzi G, Brown L, Walter U, Benecke R, Berg D, Gasser T, Theuns J, Pals P, Cras P, De Deyn PP, Engelborghs S, Pickut B, Uitti RJ, Foroud T, Nichols WC, Hagenah J, Klein C, Samii A, Zabetian CP, et al: Lrrk2 R1441C parkinsonism is clinically similar to sporadic Parkinson disease. Neurology. 2008, 70: 1456-1460. 10.1212/01.wnl.0000304044.22253.03.PubMedCentralPubMed
8.
go back to reference Kumari U, Tan EK: LRRK2 in Parkinson’s disease: genetic and clinical studies from patients. FEBS J. 2009, 276: 6455-6463. 10.1111/j.1742-4658.2009.07344.x.PubMed Kumari U, Tan EK: LRRK2 in Parkinson’s disease: genetic and clinical studies from patients. FEBS J. 2009, 276: 6455-6463. 10.1111/j.1742-4658.2009.07344.x.PubMed
9.
go back to reference Funayama M, Hasegawa K, Ohta E, Kawashima N, Komiyama M, Kowa H, Tsuji S, Obata F: An LRRK2 mutation as a cause for the parkinsonism in the original PARK8 family. Ann Neurol. 2005, 57: 918-921. 10.1002/ana.20484.PubMed Funayama M, Hasegawa K, Ohta E, Kawashima N, Komiyama M, Kowa H, Tsuji S, Obata F: An LRRK2 mutation as a cause for the parkinsonism in the original PARK8 family. Ann Neurol. 2005, 57: 918-921. 10.1002/ana.20484.PubMed
10.
go back to reference Gilks WP, Abou-Sleiman PM, Gandhi S, Jain S, Singleton A, Lees AJ, Shaw K, Bhatia KP, Bonifati V, Quinn NP, Lynch J, Healy DG, Holton JL, Revesz T, Wood NW: A common LRRK2 mutation in idiopathic Parkinson’s disease. Lancet. 2005, 365: 415-416.PubMed Gilks WP, Abou-Sleiman PM, Gandhi S, Jain S, Singleton A, Lees AJ, Shaw K, Bhatia KP, Bonifati V, Quinn NP, Lynch J, Healy DG, Holton JL, Revesz T, Wood NW: A common LRRK2 mutation in idiopathic Parkinson’s disease. Lancet. 2005, 365: 415-416.PubMed
11.
go back to reference Goldwurm S, Di Fonzo A, Simons EJ, Rohé CF, Zini M, Canesi M, Tesei S, Zecchinelli A, Antonini A, Mariani C, Meucci N, Sacilotto G, Sironi F, Salani G, Ferreira J, Chien HF, Fabrizio E, Vanacore N, Dalla Libera A, Stocchi F, Diroma C, Lamberti P, Sampaio C, Meco G, Barbosa E, Bertoli-Avella AM, Breedveld GJ, Oostra BA, Pezzoli G, Bonifati V: The G6055A (G2019S) mutation in LRRK2 is frequent in both early and late onset Parkinson’s disease and originates from a common ancestor. J Med Genet. 2005, 42: e65-10.1136/jmg.2005.035568.PubMedCentralPubMed Goldwurm S, Di Fonzo A, Simons EJ, Rohé CF, Zini M, Canesi M, Tesei S, Zecchinelli A, Antonini A, Mariani C, Meucci N, Sacilotto G, Sironi F, Salani G, Ferreira J, Chien HF, Fabrizio E, Vanacore N, Dalla Libera A, Stocchi F, Diroma C, Lamberti P, Sampaio C, Meco G, Barbosa E, Bertoli-Avella AM, Breedveld GJ, Oostra BA, Pezzoli G, Bonifati V: The G6055A (G2019S) mutation in LRRK2 is frequent in both early and late onset Parkinson’s disease and originates from a common ancestor. J Med Genet. 2005, 42: e65-10.1136/jmg.2005.035568.PubMedCentralPubMed
12.
go back to reference West AB, Moore DJ, Biskup S, Bugayenko A, Smith WW, Ross CA, Dawson VL, Dawson TM: Parkinson’s disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc Natl Acad Sci USA. 2005, 102: 16842-16847. 10.1073/pnas.0507360102.PubMedCentralPubMed West AB, Moore DJ, Biskup S, Bugayenko A, Smith WW, Ross CA, Dawson VL, Dawson TM: Parkinson’s disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc Natl Acad Sci USA. 2005, 102: 16842-16847. 10.1073/pnas.0507360102.PubMedCentralPubMed
13.
go back to reference Luzon-Toro B, de la Torre RE, Delgado A, Perez-Tur J, Hilfiker S: Mechanistic insight into the dominant mode of the Parkinson’s disease-associated G2019S LRRK2 mutation. Hum Mol Genet. 2007, 16: 2031-2039. 10.1093/hmg/ddm151.PubMed Luzon-Toro B, de la Torre RE, Delgado A, Perez-Tur J, Hilfiker S: Mechanistic insight into the dominant mode of the Parkinson’s disease-associated G2019S LRRK2 mutation. Hum Mol Genet. 2007, 16: 2031-2039. 10.1093/hmg/ddm151.PubMed
14.
go back to reference Anand VS, Reichling LJ, Lipinski K, Stochaj W, Duan W, Kelleher K, Pungaliya P, Brown EL, Reinhart PH, Somberg R, Hirst WD, Riddle SM, Braithwaite SP: Investigation of leucine-rich repeat kinase 2: enzymological properties and novel assays. FEBS J. 2009, 276: 466-478. 10.1111/j.1742-4658.2008.06789.x.PubMed Anand VS, Reichling LJ, Lipinski K, Stochaj W, Duan W, Kelleher K, Pungaliya P, Brown EL, Reinhart PH, Somberg R, Hirst WD, Riddle SM, Braithwaite SP: Investigation of leucine-rich repeat kinase 2: enzymological properties and novel assays. FEBS J. 2009, 276: 466-478. 10.1111/j.1742-4658.2008.06789.x.PubMed
15.
go back to reference Xiong Y, Dawson VL, Dawson TM: LRRK2 GTPase dysfunction in the pathogenesis of Parkinson’s disease. Biochem Soc Trans. 2012, 40: 1074-1079. 10.1042/BST20120093.PubMedCentralPubMed Xiong Y, Dawson VL, Dawson TM: LRRK2 GTPase dysfunction in the pathogenesis of Parkinson’s disease. Biochem Soc Trans. 2012, 40: 1074-1079. 10.1042/BST20120093.PubMedCentralPubMed
16.
go back to reference Greggio E, Cookson MR: Leucine-rich repeat kinase 2 mutations and Parkinson’s disease: three questions. ASN Neuro. 2009, 1: 13-24. 10.1042/AN20090007. Greggio E, Cookson MR: Leucine-rich repeat kinase 2 mutations and Parkinson’s disease: three questions. ASN Neuro. 2009, 1: 13-24. 10.1042/AN20090007.
17.
go back to reference Daniels V, Vancraenenbroeck R, Law BM, Greggio E, Lobbestael E, Gao F, De Maeyer M, Cookson MR, Harvey K, Baekelandt V, Taymans JM: Insight into the mode of action of the LRRK2 Y1699C pathogenic mutant. J Neurochem. 2011, 116: 304-315. 10.1111/j.1471-4159.2010.07105.x.PubMedCentralPubMed Daniels V, Vancraenenbroeck R, Law BM, Greggio E, Lobbestael E, Gao F, De Maeyer M, Cookson MR, Harvey K, Baekelandt V, Taymans JM: Insight into the mode of action of the LRRK2 Y1699C pathogenic mutant. J Neurochem. 2011, 116: 304-315. 10.1111/j.1471-4159.2010.07105.x.PubMedCentralPubMed
18.
go back to reference Li Y, Dunn L, Greggio E, Krumm B, Jackson GS, Cookson MR, Lewis PA, Deng J: The R1441C mutation alters the folding properties of the ROC domain of LRRK2. Biochim Biophys Acta. 2009, 1792: 1194-1197. 10.1016/j.bbadis.2009.09.010.PubMedCentralPubMed Li Y, Dunn L, Greggio E, Krumm B, Jackson GS, Cookson MR, Lewis PA, Deng J: The R1441C mutation alters the folding properties of the ROC domain of LRRK2. Biochim Biophys Acta. 2009, 1792: 1194-1197. 10.1016/j.bbadis.2009.09.010.PubMedCentralPubMed
19.
go back to reference Gloeckner CJ, Kinkl N, Schumacher A, Braun RJ, O’Neill E, Meitinger T, Kolch W, Prokisch H, Ueffing M: The Parkinson disease causing LRRK2 mutation I2020T is associated with increased kinase activity. Hum Mol Genet. 2006, 15: 223-232.PubMed Gloeckner CJ, Kinkl N, Schumacher A, Braun RJ, O’Neill E, Meitinger T, Kolch W, Prokisch H, Ueffing M: The Parkinson disease causing LRRK2 mutation I2020T is associated with increased kinase activity. Hum Mol Genet. 2006, 15: 223-232.PubMed
20.
go back to reference Jaleel M, Nichols RJ, Deak M, Campbell DG, Gillardon F, Knebel A, Alessi DR: LRRK2 phosphorylates moesin at threonine-558: characterization of how Parkinson’s disease mutants affect kinase activity. Biochem J. 2007, 405: 307-317. 10.1042/BJ20070209.PubMedCentralPubMed Jaleel M, Nichols RJ, Deak M, Campbell DG, Gillardon F, Knebel A, Alessi DR: LRRK2 phosphorylates moesin at threonine-558: characterization of how Parkinson’s disease mutants affect kinase activity. Biochem J. 2007, 405: 307-317. 10.1042/BJ20070209.PubMedCentralPubMed
21.
go back to reference Ito G, Okai T, Fujino G, Takeda K, Ichijo H, Katada T, Iwatsubo T: GTP binding is essential to the protein kinase activity of LRRK2, a causative gene product for familial Parkinson’s disease. Biochemistry. 2007, 46: 1380-1388. 10.1021/bi061960m.PubMed Ito G, Okai T, Fujino G, Takeda K, Ichijo H, Katada T, Iwatsubo T: GTP binding is essential to the protein kinase activity of LRRK2, a causative gene product for familial Parkinson’s disease. Biochemistry. 2007, 46: 1380-1388. 10.1021/bi061960m.PubMed
22.
go back to reference Sheng Z, Zhang S, Bustos D, Kleinheinz T, Le Pichon CE, Dominguez SL, Solanoy HO, Drummond J, Zhang X, Ding X, Cai F, Song Q, Li X, Yue Z, van der Brug MP, Burdick DJ, Gunzner-Toste J, Chen H, Liu X, Estrada AA, Sweeney ZK, Scearce-Levie K, Moffat JG, Kirkpatrick DS, Zhu H: Ser1292 autophosphorylation is an indicator of LRRK2 kinase activity and contributes to the cellular effects of PD mutations. Sci Transl Med. 2012, 4: 164ra161.PubMed Sheng Z, Zhang S, Bustos D, Kleinheinz T, Le Pichon CE, Dominguez SL, Solanoy HO, Drummond J, Zhang X, Ding X, Cai F, Song Q, Li X, Yue Z, van der Brug MP, Burdick DJ, Gunzner-Toste J, Chen H, Liu X, Estrada AA, Sweeney ZK, Scearce-Levie K, Moffat JG, Kirkpatrick DS, Zhu H: Ser1292 autophosphorylation is an indicator of LRRK2 kinase activity and contributes to the cellular effects of PD mutations. Sci Transl Med. 2012, 4: 164ra161.PubMed
23.
go back to reference West AB, Moore DJ, Choi C, Andrabi SA, Li X, Dikeman D, Biskup S, Zhang Z, Lim KL, Dawson VL, Dawson TM: Parkinson’s disease-associated mutations in LRRK2 link enhanced GTP-binding and kinase activities to neuronal toxicity. Hum Mol Genet. 2007, 16: 223-232.PubMed West AB, Moore DJ, Choi C, Andrabi SA, Li X, Dikeman D, Biskup S, Zhang Z, Lim KL, Dawson VL, Dawson TM: Parkinson’s disease-associated mutations in LRRK2 link enhanced GTP-binding and kinase activities to neuronal toxicity. Hum Mol Genet. 2007, 16: 223-232.PubMed
24.
go back to reference Han BS, Iacovitti L, Katano T, Hattori N, Seol W, Kim KS: Expression of the LRRK2 gene in the midbrain dopaminergic neurons of the substantia nigra. Neurosci Lett. 2008, 442: 190-194. 10.1016/j.neulet.2008.06.086.PubMedCentralPubMed Han BS, Iacovitti L, Katano T, Hattori N, Seol W, Kim KS: Expression of the LRRK2 gene in the midbrain dopaminergic neurons of the substantia nigra. Neurosci Lett. 2008, 442: 190-194. 10.1016/j.neulet.2008.06.086.PubMedCentralPubMed
25.
go back to reference Biskup S, Moore DJ, Celsi F, Higashi S, West AB, Andrabi SA, Kurkinen K, Yu SW, Savitt JM, Waldvogel HJ, Faull RL, Emson PC, Torp R, Ottersen OP, Dawson TM, Dawson VL: Localization of LRRK2 to membranous and vesicular structures in mammalian brain. Ann Neurol. 2006, 60: 557-569. 10.1002/ana.21019.PubMed Biskup S, Moore DJ, Celsi F, Higashi S, West AB, Andrabi SA, Kurkinen K, Yu SW, Savitt JM, Waldvogel HJ, Faull RL, Emson PC, Torp R, Ottersen OP, Dawson TM, Dawson VL: Localization of LRRK2 to membranous and vesicular structures in mammalian brain. Ann Neurol. 2006, 60: 557-569. 10.1002/ana.21019.PubMed
26.
go back to reference Giesert F, Hofmann A, Burger A, Zerle J, Kloos K, Hafen U, Ernst L, Zhang J, Vogt-Weisenhorn DM, Wurst W: Expression analysis of Lrrk1, Lrrk2 and Lrrk2 splice variants in mice. PLoS One. 2013, 8: e63778-10.1371/journal.pone.0063778.PubMedCentralPubMed Giesert F, Hofmann A, Burger A, Zerle J, Kloos K, Hafen U, Ernst L, Zhang J, Vogt-Weisenhorn DM, Wurst W: Expression analysis of Lrrk1, Lrrk2 and Lrrk2 splice variants in mice. PLoS One. 2013, 8: e63778-10.1371/journal.pone.0063778.PubMedCentralPubMed
27.
go back to reference Dodson MW, Zhang T, Jiang C, Chen S, Guo M: Roles of the Drosophila LRRK2 homolog in Rab7-dependent lysosomal positioning. Hum Mol Genet. 2012, 21: 1350-1363. 10.1093/hmg/ddr573.PubMedCentralPubMed Dodson MW, Zhang T, Jiang C, Chen S, Guo M: Roles of the Drosophila LRRK2 homolog in Rab7-dependent lysosomal positioning. Hum Mol Genet. 2012, 21: 1350-1363. 10.1093/hmg/ddr573.PubMedCentralPubMed
28.
go back to reference Alegre-Abarrategui J, Christian H, Lufino MM, Mutihac R, Venda LL, Ansorge O, Wade-Martins R: LRRK2 regulates autophagic activity and localizes to specific membrane microdomains in a novel human genomic reporter cellular model. Hum Mol Genet. 2009, 18: 4022-4034. 10.1093/hmg/ddp346.PubMedCentralPubMed Alegre-Abarrategui J, Christian H, Lufino MM, Mutihac R, Venda LL, Ansorge O, Wade-Martins R: LRRK2 regulates autophagic activity and localizes to specific membrane microdomains in a novel human genomic reporter cellular model. Hum Mol Genet. 2009, 18: 4022-4034. 10.1093/hmg/ddp346.PubMedCentralPubMed
29.
go back to reference Belluzzi E, Greggio E, Piccoli G: Presynaptic dysfunction in Parkinson’s disease: a focus on LRRK2. Biochem Soc Trans. 2012, 40: 1111-1116. 10.1042/BST20120124.PubMed Belluzzi E, Greggio E, Piccoli G: Presynaptic dysfunction in Parkinson’s disease: a focus on LRRK2. Biochem Soc Trans. 2012, 40: 1111-1116. 10.1042/BST20120124.PubMed
30.
go back to reference Moehle MS, Webber PJ, Tse T, Sukar N, Standaert DG, DeSilva TM, Cowell RM, West AB: LRRK2 inhibition attenuates microglial inflammatory responses. J Neurosci. 2012, 32: 1602-1611. 10.1523/JNEUROSCI.5601-11.2012.PubMedCentralPubMed Moehle MS, Webber PJ, Tse T, Sukar N, Standaert DG, DeSilva TM, Cowell RM, West AB: LRRK2 inhibition attenuates microglial inflammatory responses. J Neurosci. 2012, 32: 1602-1611. 10.1523/JNEUROSCI.5601-11.2012.PubMedCentralPubMed
31.
go back to reference Piccoli G, Condliffe SB, Bauer M, Giesert F, Boldt K, De Astis S, Meixner A, Sarioglu H, Vogt-Weisenhorn DM, Wurst W, Gloeckner CJ, Matteoli M, Sala C, Ueffing M: LRRK2 controls synaptic vesicle storage and mobilization within the recycling pool. J Neurosci. 2011, 31: 2225-2237. 10.1523/JNEUROSCI.3730-10.2011.PubMed Piccoli G, Condliffe SB, Bauer M, Giesert F, Boldt K, De Astis S, Meixner A, Sarioglu H, Vogt-Weisenhorn DM, Wurst W, Gloeckner CJ, Matteoli M, Sala C, Ueffing M: LRRK2 controls synaptic vesicle storage and mobilization within the recycling pool. J Neurosci. 2011, 31: 2225-2237. 10.1523/JNEUROSCI.3730-10.2011.PubMed
32.
go back to reference Matta S, Van Kolen K, da Cunha R, van den Bogaart G, Mandemakers W, Miskiewicz K, De Bock PJ, Morais VA, Vilain S, Haddad D, Delbroek L, Swerts J, Chávez-Gutiérrez L, Esposito G, Daneels G, Karran E, Holt M, Gevaert K, Moechars DW, De Strooper B, Verstreken P: LRRK2 controls an EndoA phosphorylation cycle in synaptic endocytosis. Neuron. 2012, 75: 1008-1021. 10.1016/j.neuron.2012.08.022.PubMed Matta S, Van Kolen K, da Cunha R, van den Bogaart G, Mandemakers W, Miskiewicz K, De Bock PJ, Morais VA, Vilain S, Haddad D, Delbroek L, Swerts J, Chávez-Gutiérrez L, Esposito G, Daneels G, Karran E, Holt M, Gevaert K, Moechars DW, De Strooper B, Verstreken P: LRRK2 controls an EndoA phosphorylation cycle in synaptic endocytosis. Neuron. 2012, 75: 1008-1021. 10.1016/j.neuron.2012.08.022.PubMed
33.
go back to reference Kett LR, Boassa D, Ho CC, Rideout HJ, Hu J, Terada M, Ellisman M, Dauer WT: LRRK2 Parkinson disease mutations enhance its microtubule association. Hum Mol Genet. 2012, 21: 890-899. 10.1093/hmg/ddr526.PubMedCentralPubMed Kett LR, Boassa D, Ho CC, Rideout HJ, Hu J, Terada M, Ellisman M, Dauer WT: LRRK2 Parkinson disease mutations enhance its microtubule association. Hum Mol Genet. 2012, 21: 890-899. 10.1093/hmg/ddr526.PubMedCentralPubMed
34.
go back to reference Law BM, Spain VA, Leinster VH, Chia R, Beilina A, Cho HJ, Taymans JM, Urban MK, Sancho RM, Ramírez MB, Biskup S, Baekelandt V, Cai H, Cookson MR, Berwick DC, Harvey K: A direct interaction between leucine-rich repeat kinase 2 and specific beta-tubulin isoforms regulates tubulin acetylation. J Biol Chem. 2013, 289: 895-908.PubMedCentralPubMed Law BM, Spain VA, Leinster VH, Chia R, Beilina A, Cho HJ, Taymans JM, Urban MK, Sancho RM, Ramírez MB, Biskup S, Baekelandt V, Cai H, Cookson MR, Berwick DC, Harvey K: A direct interaction between leucine-rich repeat kinase 2 and specific beta-tubulin isoforms regulates tubulin acetylation. J Biol Chem. 2013, 289: 895-908.PubMedCentralPubMed
35.
go back to reference Papkovskaia TD, Chau KY, Inesta-Vaquera F, Papkovsky DB, Healy DG, Nishio K, Staddon J, Duchen MR, Hardy J, Schapira AH, Cooper JM: G2019S leucine-rich repeat kinase 2 causes uncoupling protein-mediated mitochondrial depolarization. Hum Mol Genet. 2012, 21: 4201-4213. 10.1093/hmg/dds244.PubMedCentralPubMed Papkovskaia TD, Chau KY, Inesta-Vaquera F, Papkovsky DB, Healy DG, Nishio K, Staddon J, Duchen MR, Hardy J, Schapira AH, Cooper JM: G2019S leucine-rich repeat kinase 2 causes uncoupling protein-mediated mitochondrial depolarization. Hum Mol Genet. 2012, 21: 4201-4213. 10.1093/hmg/dds244.PubMedCentralPubMed
36.
go back to reference Wang X, Yan MH, Fujioka H, Liu J, Wilson-Delfosse A, Chen SG, Perry G, Casadesus G, Zhu X: LRRK2 regulates mitochondrial dynamics and function through direct interaction with DLP1. Hum Mol Genet. 2012, 21: 1931-1944. 10.1093/hmg/dds003.PubMedCentralPubMed Wang X, Yan MH, Fujioka H, Liu J, Wilson-Delfosse A, Chen SG, Perry G, Casadesus G, Zhu X: LRRK2 regulates mitochondrial dynamics and function through direct interaction with DLP1. Hum Mol Genet. 2012, 21: 1931-1944. 10.1093/hmg/dds003.PubMedCentralPubMed
37.
go back to reference Ho CC, Rideout HJ, Ribe E, Troy CM, Dauer WT: The Parkinson disease protein leucine-rich repeat kinase 2 transduces death signals via Fas-associated protein with death domain and caspase-8 in a cellular model of neurodegeneration. J Neurosci. 2009, 29: 1011-1016. 10.1523/JNEUROSCI.5175-08.2009.PubMedCentralPubMed Ho CC, Rideout HJ, Ribe E, Troy CM, Dauer WT: The Parkinson disease protein leucine-rich repeat kinase 2 transduces death signals via Fas-associated protein with death domain and caspase-8 in a cellular model of neurodegeneration. J Neurosci. 2009, 29: 1011-1016. 10.1523/JNEUROSCI.5175-08.2009.PubMedCentralPubMed
38.
go back to reference Plowey ED, Cherra SJ, Liu YJ, Chu CT: Role of autophagy in G2019S-LRRK2-associated neurite shortening in differentiated SH-SY5Y cells. J Neurochem. 2008, 105: 1048-1056. 10.1111/j.1471-4159.2008.05217.x.PubMedCentralPubMed Plowey ED, Cherra SJ, Liu YJ, Chu CT: Role of autophagy in G2019S-LRRK2-associated neurite shortening in differentiated SH-SY5Y cells. J Neurochem. 2008, 105: 1048-1056. 10.1111/j.1471-4159.2008.05217.x.PubMedCentralPubMed
39.
go back to reference Gomez-Suaga P, Luzon-Toro B, Churamani D, Zhang L, Bloor-Young D, Patel S, Woodman PG, Churchill GC, Hilfiker S: Leucine-rich repeat kinase 2 regulates autophagy through a calcium-dependent pathway involving NAADP. Hum Mol Genet. 2012, 21: 511-525. 10.1093/hmg/ddr481.PubMedCentralPubMed Gomez-Suaga P, Luzon-Toro B, Churamani D, Zhang L, Bloor-Young D, Patel S, Woodman PG, Churchill GC, Hilfiker S: Leucine-rich repeat kinase 2 regulates autophagy through a calcium-dependent pathway involving NAADP. Hum Mol Genet. 2012, 21: 511-525. 10.1093/hmg/ddr481.PubMedCentralPubMed
40.
go back to reference Manzoni C, Mamais A, Dihanich S, Abeti R, Soutar MP, Plun-Favreau H, Giunti P, Tooze SA, Bandopadhyay R, Lewis PA: Inhibition of LRRK2 kinase activity stimulates macroautophagy. Biochim Biophys Acta. 2013, 1833: 2900-2910. 10.1016/j.bbamcr.2013.07.020.PubMedCentralPubMed Manzoni C, Mamais A, Dihanich S, Abeti R, Soutar MP, Plun-Favreau H, Giunti P, Tooze SA, Bandopadhyay R, Lewis PA: Inhibition of LRRK2 kinase activity stimulates macroautophagy. Biochim Biophys Acta. 2013, 1833: 2900-2910. 10.1016/j.bbamcr.2013.07.020.PubMedCentralPubMed
41.
go back to reference Orenstein SJ, Kuo SH, Tasset I, Arias E, Koga H, Fernandez-Carasa I, Cortes E, Honig LS, Dauer W, Consiglio A, Raya A, Sulzer D, Cuervo AM: Interplay of LRRK2 with chaperone-mediated autophagy. Nat Neurosci. 2013, 16: 394-406. 10.1038/nn.3350.PubMedCentralPubMed Orenstein SJ, Kuo SH, Tasset I, Arias E, Koga H, Fernandez-Carasa I, Cortes E, Honig LS, Dauer W, Consiglio A, Raya A, Sulzer D, Cuervo AM: Interplay of LRRK2 with chaperone-mediated autophagy. Nat Neurosci. 2013, 16: 394-406. 10.1038/nn.3350.PubMedCentralPubMed
42.
go back to reference Russo I, Barlati S, Bosetti F: Effects of neuroinflammation on the regenerative capacity of brain stem cells. J Neurochem. 2011, 116: 947-956. 10.1111/j.1471-4159.2010.07168.x.PubMedCentralPubMed Russo I, Barlati S, Bosetti F: Effects of neuroinflammation on the regenerative capacity of brain stem cells. J Neurochem. 2011, 116: 947-956. 10.1111/j.1471-4159.2010.07168.x.PubMedCentralPubMed
43.
go back to reference Pradhan S, Andreasson K: Commentary: progressive inflammation as a contributing factor to early development of Parkinson’s disease. Exp Neurol. 2013, 241: 148-155.PubMed Pradhan S, Andreasson K: Commentary: progressive inflammation as a contributing factor to early development of Parkinson’s disease. Exp Neurol. 2013, 241: 148-155.PubMed
44.
go back to reference Russo I, Amornphimoltham P, Weigert R, Barlati S, Bosetti F: Cyclooxygenase-1 is involved in the inhibition of hippocampal neurogenesis after lipopolysaccharide-induced neuroinflammation. Cell Cycle. 2011, 10: 2568-2573. 10.4161/cc.10.15.15946.PubMedCentralPubMed Russo I, Amornphimoltham P, Weigert R, Barlati S, Bosetti F: Cyclooxygenase-1 is involved in the inhibition of hippocampal neurogenesis after lipopolysaccharide-induced neuroinflammation. Cell Cycle. 2011, 10: 2568-2573. 10.4161/cc.10.15.15946.PubMedCentralPubMed
45.
go back to reference Russo I, Caracciolo L, Tweedie D, Choi SH, Greig NH, Barlati S, Bosetti F: 3,6′-Dithiothalidomide, a new TNF-alpha synthesis inhibitor, attenuates the effect of Abeta1-42 intracerebroventricular injection on hippocampal neurogenesis and memory deficit. J Neurochem. 2012, 122: 1181-1192. 10.1111/j.1471-4159.2012.07846.x.PubMedCentralPubMed Russo I, Caracciolo L, Tweedie D, Choi SH, Greig NH, Barlati S, Bosetti F: 3,6′-Dithiothalidomide, a new TNF-alpha synthesis inhibitor, attenuates the effect of Abeta1-42 intracerebroventricular injection on hippocampal neurogenesis and memory deficit. J Neurochem. 2012, 122: 1181-1192. 10.1111/j.1471-4159.2012.07846.x.PubMedCentralPubMed
46.
go back to reference Neumann H, Kotter MR, Franklin RJ: Debris clearance by microglia: an essential link between degeneration and regeneration. Brain. 2009, 132: 288-295.PubMedCentralPubMed Neumann H, Kotter MR, Franklin RJ: Debris clearance by microglia: an essential link between degeneration and regeneration. Brain. 2009, 132: 288-295.PubMedCentralPubMed
47.
go back to reference Nimmerjahn A, Kirchhoff F, Helmchen F: Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 2005, 308: 1314-1318. 10.1126/science.1110647.PubMed Nimmerjahn A, Kirchhoff F, Helmchen F: Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 2005, 308: 1314-1318. 10.1126/science.1110647.PubMed
48.
go back to reference Gao HM, Hong JS: Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression. Trends Immunol. 2008, 29: 357-365. 10.1016/j.it.2008.05.002.PubMed Gao HM, Hong JS: Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression. Trends Immunol. 2008, 29: 357-365. 10.1016/j.it.2008.05.002.PubMed
49.
go back to reference Hirsch EC, Hunot S: Neuroinflammation in Parkinson’s disease: a target for neuroprotection?. Lancet Neurol. 2009, 8: 382-397. 10.1016/S1474-4422(09)70062-6.PubMed Hirsch EC, Hunot S: Neuroinflammation in Parkinson’s disease: a target for neuroprotection?. Lancet Neurol. 2009, 8: 382-397. 10.1016/S1474-4422(09)70062-6.PubMed
50.
go back to reference Mogi M, Harada M, Riederer P, Narabayashi H, Fujita K, Nagatsu T: Tumor necrosis factor-alpha (TNF-alpha) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neurosci Lett. 1994, 165: 208-210. 10.1016/0304-3940(94)90746-3.PubMed Mogi M, Harada M, Riederer P, Narabayashi H, Fujita K, Nagatsu T: Tumor necrosis factor-alpha (TNF-alpha) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neurosci Lett. 1994, 165: 208-210. 10.1016/0304-3940(94)90746-3.PubMed
51.
go back to reference McGeer PL, Itagaki S, Boyes BE, McGeer EG: Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology. 1988, 38: 1285-1291. 10.1212/WNL.38.8.1285.PubMed McGeer PL, Itagaki S, Boyes BE, McGeer EG: Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology. 1988, 38: 1285-1291. 10.1212/WNL.38.8.1285.PubMed
52.
go back to reference Hurley SD, O’Banion MK, Song DD, Arana FS, Olschowka JA, Haber SN: Microglial response is poorly correlated with neurodegeneration following chronic, low-dose MPTP administration in monkeys. Exp Neurol. 2003, 184: 659-668. 10.1016/S0014-4886(03)00273-5.PubMed Hurley SD, O’Banion MK, Song DD, Arana FS, Olschowka JA, Haber SN: Microglial response is poorly correlated with neurodegeneration following chronic, low-dose MPTP administration in monkeys. Exp Neurol. 2003, 184: 659-668. 10.1016/S0014-4886(03)00273-5.PubMed
53.
go back to reference Langston JW, Forno LS, Tetrud J, Reeves AG, Kaplan JA, Karluk D: Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann Neurol. 1999, 46: 598-605. 10.1002/1531-8249(199910)46:4<598::AID-ANA7>3.0.CO;2-F.PubMed Langston JW, Forno LS, Tetrud J, Reeves AG, Kaplan JA, Karluk D: Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann Neurol. 1999, 46: 598-605. 10.1002/1531-8249(199910)46:4<598::AID-ANA7>3.0.CO;2-F.PubMed
54.
go back to reference Sriram K, Miller DB, O’Callaghan JP: Minocycline attenuates microglial activation but fails to mitigate striatal dopaminergic neurotoxicity: role of tumor necrosis factor-alpha. J Neurochem. 2006, 96: 706-718. 10.1111/j.1471-4159.2005.03566.x.PubMed Sriram K, Miller DB, O’Callaghan JP: Minocycline attenuates microglial activation but fails to mitigate striatal dopaminergic neurotoxicity: role of tumor necrosis factor-alpha. J Neurochem. 2006, 96: 706-718. 10.1111/j.1471-4159.2005.03566.x.PubMed
55.
go back to reference Aloisi F: Immune function of microglia. Glia. 2001, 36: 165-179. 10.1002/glia.1106.PubMed Aloisi F: Immune function of microglia. Glia. 2001, 36: 165-179. 10.1002/glia.1106.PubMed
56.
go back to reference Jenner P, Olanow CW: Understanding cell death in Parkinson’s disease. Ann Neurol. 1998, 44: S72-S84. 10.1002/ana.410440712.PubMed Jenner P, Olanow CW: Understanding cell death in Parkinson’s disease. Ann Neurol. 1998, 44: S72-S84. 10.1002/ana.410440712.PubMed
57.
go back to reference Whitton PS: Inflammation as a causative factor in the aetiology of Parkinson’s disease. Br J Pharmacol. 2007, 150: 963-976.PubMedCentralPubMed Whitton PS: Inflammation as a causative factor in the aetiology of Parkinson’s disease. Br J Pharmacol. 2007, 150: 963-976.PubMedCentralPubMed
58.
go back to reference Tansey MG, Goldberg MS: Neuroinflammation in Parkinson’s disease: its role in neuronal death and implications for therapeutic intervention. Neurobiol Dis. 2010, 37: 510-518. 10.1016/j.nbd.2009.11.004.PubMedCentralPubMed Tansey MG, Goldberg MS: Neuroinflammation in Parkinson’s disease: its role in neuronal death and implications for therapeutic intervention. Neurobiol Dis. 2010, 37: 510-518. 10.1016/j.nbd.2009.11.004.PubMedCentralPubMed
59.
go back to reference Russo I, Bubacco L, Greggio E: Exosomes-associated neurodegeneration and progression of Parkinson’s disease. Am J Neurodegener Dis. 2012, 1: 217-225.PubMedCentralPubMed Russo I, Bubacco L, Greggio E: Exosomes-associated neurodegeneration and progression of Parkinson’s disease. Am J Neurodegener Dis. 2012, 1: 217-225.PubMedCentralPubMed
60.
go back to reference Ouchi Y, Yagi S, Yokokura M, Sakamoto M: Neuroinflammation in the living brain of Parkinson’s disease. Parkinsonism Relat Disord. 2009, 15 (Suppl 3): S200-S204.PubMed Ouchi Y, Yagi S, Yokokura M, Sakamoto M: Neuroinflammation in the living brain of Parkinson’s disease. Parkinsonism Relat Disord. 2009, 15 (Suppl 3): S200-S204.PubMed
61.
go back to reference Hamza TH, Zabetian CP, Tenesa A, Laederach A, Montimurro J, Yearout D, Kay DM, Doheny KF, Paschall J, Pugh E, Kusel VI, Collura R, Roberts J, Griffith A, Samii A, Scott WK, Nutt J, Factor SA, Payami H: Common genetic variation in the HLA region is associated with late-onset sporadic Parkinson’s disease. Nat Genet. 2010, 42: 781-785. 10.1038/ng.642.PubMedCentralPubMed Hamza TH, Zabetian CP, Tenesa A, Laederach A, Montimurro J, Yearout D, Kay DM, Doheny KF, Paschall J, Pugh E, Kusel VI, Collura R, Roberts J, Griffith A, Samii A, Scott WK, Nutt J, Factor SA, Payami H: Common genetic variation in the HLA region is associated with late-onset sporadic Parkinson’s disease. Nat Genet. 2010, 42: 781-785. 10.1038/ng.642.PubMedCentralPubMed
62.
go back to reference Ahmed I, Tamouza R, Delord M, Krishnamoorthy R, Tzourio C, Mulot C, Nacfer M, Lambert JC, Beaune P, Laurent-Puig P, Loriot MA, Charron D, Elbaz A: Association between Parkinson’s disease and the HLA-DRB1 locus. Mov Disord. 2012, 27: 1104-1110. 10.1002/mds.25035.PubMed Ahmed I, Tamouza R, Delord M, Krishnamoorthy R, Tzourio C, Mulot C, Nacfer M, Lambert JC, Beaune P, Laurent-Puig P, Loriot MA, Charron D, Elbaz A: Association between Parkinson’s disease and the HLA-DRB1 locus. Mov Disord. 2012, 27: 1104-1110. 10.1002/mds.25035.PubMed
63.
go back to reference Bialecka M, Klodowska-Duda G, Kurzawski M, Slawek J, Gorzkowska A, Opala G, Bialecki P, Sagan L, Drozdzik M: Interleukin-10 (IL10) and tumor necrosis factor alpha (TNF) gene polymorphisms in Parkinson’s disease patients. Parkinsonism Relat Disord. 2008, 14: 636-640. 10.1016/j.parkreldis.2008.02.001.PubMed Bialecka M, Klodowska-Duda G, Kurzawski M, Slawek J, Gorzkowska A, Opala G, Bialecki P, Sagan L, Drozdzik M: Interleukin-10 (IL10) and tumor necrosis factor alpha (TNF) gene polymorphisms in Parkinson’s disease patients. Parkinsonism Relat Disord. 2008, 14: 636-640. 10.1016/j.parkreldis.2008.02.001.PubMed
64.
go back to reference Wahner AD, Sinsheimer JS, Bronstein JM, Ritz B: Inflammatory cytokine gene polymorphisms and increased risk of Parkinson disease. Arch Neurol. 2007, 64: 836-840. 10.1001/archneur.64.6.836.PubMed Wahner AD, Sinsheimer JS, Bronstein JM, Ritz B: Inflammatory cytokine gene polymorphisms and increased risk of Parkinson disease. Arch Neurol. 2007, 64: 836-840. 10.1001/archneur.64.6.836.PubMed
65.
go back to reference Chung CY, Seo H, Sonntag KC, Brooks A, Lin L, Isacson O: Cell type-specific gene expression of midbrain dopaminergic neurons reveals molecules involved in their vulnerability and protection. Hum Mol Genet. 2005, 14: 1709-1725. 10.1093/hmg/ddi178.PubMedCentralPubMed Chung CY, Seo H, Sonntag KC, Brooks A, Lin L, Isacson O: Cell type-specific gene expression of midbrain dopaminergic neurons reveals molecules involved in their vulnerability and protection. Hum Mol Genet. 2005, 14: 1709-1725. 10.1093/hmg/ddi178.PubMedCentralPubMed
66.
go back to reference Zhang FR, Huang W, Chen SM, Sun LD, Liu H, Li Y, Cui Y, Yan XX, Yang HT, Yang RD, Chu TS, Zhang C, Zhang L, Han JW, Yu GQ, Quan C, Yu YX, Zhang Z, Shi BQ, Zhang LH, Cheng H, Wang CY, Lin Y, Zheng HF, Fu XA, Zuo XB, Wang Q, Long H, Sun YP, Cheng YL, et al: Genomewide association study of leprosy. N Engl J Med. 2009, 361: 2609-2618. 10.1056/NEJMoa0903753.PubMed Zhang FR, Huang W, Chen SM, Sun LD, Liu H, Li Y, Cui Y, Yan XX, Yang HT, Yang RD, Chu TS, Zhang C, Zhang L, Han JW, Yu GQ, Quan C, Yu YX, Zhang Z, Shi BQ, Zhang LH, Cheng H, Wang CY, Lin Y, Zheng HF, Fu XA, Zuo XB, Wang Q, Long H, Sun YP, Cheng YL, et al: Genomewide association study of leprosy. N Engl J Med. 2009, 361: 2609-2618. 10.1056/NEJMoa0903753.PubMed
67.
go back to reference Umeno J, Asano K, Matsushita T, Matsumoto T, Kiyohara Y, Iida M, Nakamura Y, Kamatani N, Kubo M: Meta-analysis of published studies identified eight additional common susceptibility loci for Crohn’s disease and ulcerative colitis. Inflamm Bowel Dis. 2011, 17: 2407-2415. 10.1002/ibd.21651.PubMed Umeno J, Asano K, Matsushita T, Matsumoto T, Kiyohara Y, Iida M, Nakamura Y, Kamatani N, Kubo M: Meta-analysis of published studies identified eight additional common susceptibility loci for Crohn’s disease and ulcerative colitis. Inflamm Bowel Dis. 2011, 17: 2407-2415. 10.1002/ibd.21651.PubMed
68.
go back to reference Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH, Rioux JD, Brant SR, Silverberg MS, Taylor KD, Barmada MM, Bitton A, Dassopoulos T, Datta LW, Green T, Griffiths AM, Kistner EO, Murtha MT, Regueiro MD, Rotter JI, Schumm LP, Steinhart AH, Targan SR, Xavier RJ, Libioulle C, Sandor C, Lathrop M, Belaiche J, Dewit O, Gut I, NIDDK IBD Genetics Consortium, et al: Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet. 2008, 40: 955-962. 10.1038/ng.175.PubMedCentralPubMed Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH, Rioux JD, Brant SR, Silverberg MS, Taylor KD, Barmada MM, Bitton A, Dassopoulos T, Datta LW, Green T, Griffiths AM, Kistner EO, Murtha MT, Regueiro MD, Rotter JI, Schumm LP, Steinhart AH, Targan SR, Xavier RJ, Libioulle C, Sandor C, Lathrop M, Belaiche J, Dewit O, Gut I, NIDDK IBD Genetics Consortium, et al: Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet. 2008, 40: 955-962. 10.1038/ng.175.PubMedCentralPubMed
69.
go back to reference Ohsawa K, Kohsaka S: Dynamic motility of microglia: purinergic modulation of microglial movement in the normal and pathological brain. Glia. 2011, 59: 1793-1799. 10.1002/glia.21238.PubMed Ohsawa K, Kohsaka S: Dynamic motility of microglia: purinergic modulation of microglial movement in the normal and pathological brain. Glia. 2011, 59: 1793-1799. 10.1002/glia.21238.PubMed
70.
go back to reference Garden GA, Moller T: Microglia biology in health and disease. J Neuroimmune Pharmacol. 2006, 1: 127-137. 10.1007/s11481-006-9015-5.PubMed Garden GA, Moller T: Microglia biology in health and disease. J Neuroimmune Pharmacol. 2006, 1: 127-137. 10.1007/s11481-006-9015-5.PubMed
71.
go back to reference Abd-El-Basset EM, Abd-El-Barr MM: Effect of interleukin-1beta on the expression of actin isoforms in cultured mouse astroglia. Anat Rec (Hoboken). 2011, 294: 16-23. 10.1002/ar.21303. Abd-El-Basset EM, Abd-El-Barr MM: Effect of interleukin-1beta on the expression of actin isoforms in cultured mouse astroglia. Anat Rec (Hoboken). 2011, 294: 16-23. 10.1002/ar.21303.
72.
go back to reference Cookson MR: The role of leucine-rich repeat kinase 2 (LRRK2) in Parkinson’s disease. Nat Rev Neurosci. 2010, 11: 791-797. 10.1038/nrn2935.PubMedCentralPubMed Cookson MR: The role of leucine-rich repeat kinase 2 (LRRK2) in Parkinson’s disease. Nat Rev Neurosci. 2010, 11: 791-797. 10.1038/nrn2935.PubMedCentralPubMed
73.
go back to reference Parisiadou L, Cai H: LRRK2 function on actin and microtubule dynamics in Parkinson disease. Commun Integr Biol. 2010, 3: 396-400. 10.4161/cib.3.5.12286.PubMedCentralPubMed Parisiadou L, Cai H: LRRK2 function on actin and microtubule dynamics in Parkinson disease. Commun Integr Biol. 2010, 3: 396-400. 10.4161/cib.3.5.12286.PubMedCentralPubMed
74.
go back to reference Berwick DC, Harvey K: LRRK2 signaling pathways: the key to unlocking neurodegeneration?. Trends Cell Biol. 2011, 21: 257-265. 10.1016/j.tcb.2011.01.001.PubMed Berwick DC, Harvey K: LRRK2 signaling pathways: the key to unlocking neurodegeneration?. Trends Cell Biol. 2011, 21: 257-265. 10.1016/j.tcb.2011.01.001.PubMed
75.
go back to reference Miklossy J, Arai T, Guo JP, Klegeris A, Yu S, McGeer EG, McGeer PL: LRRK2 expression in normal and pathologic human brain and in human cell lines. J Neuropathol Exp Neurol. 2006, 65: 953-963. 10.1097/01.jnen.0000235121.98052.54.PubMed Miklossy J, Arai T, Guo JP, Klegeris A, Yu S, McGeer EG, McGeer PL: LRRK2 expression in normal and pathologic human brain and in human cell lines. J Neuropathol Exp Neurol. 2006, 65: 953-963. 10.1097/01.jnen.0000235121.98052.54.PubMed
76.
go back to reference Marker DF, Puccini JM, Mockus TE, Barbieri J, Lu SM, Gelbard HA: LRRK2 kinase inhibition prevents pathological microglial phagocytosis in response to HIV-1 Tat protein. J Neuroinflammation. 2012, 9: 261-10.1186/1742-2094-9-261.PubMedCentralPubMed Marker DF, Puccini JM, Mockus TE, Barbieri J, Lu SM, Gelbard HA: LRRK2 kinase inhibition prevents pathological microglial phagocytosis in response to HIV-1 Tat protein. J Neuroinflammation. 2012, 9: 261-10.1186/1742-2094-9-261.PubMedCentralPubMed
77.
go back to reference Hakimi M, Selvanantham T, Swinton E, Padmore RF, Tong Y, Kabbach G, Venderova K, Girardin SE, Bulman DE, Scherzer CR, LaVoie MJ, Gris D, Park DS, Angel JB, Shen J, Philpott DJ, Schlossmacher MG: Parkinson’s disease-linked LRRK2 is expressed in circulating and tissue immune cells and upregulated following recognition of microbial structures. J Neural Transm. 2011, 118: 795-808. 10.1007/s00702-011-0653-2.PubMedCentralPubMed Hakimi M, Selvanantham T, Swinton E, Padmore RF, Tong Y, Kabbach G, Venderova K, Girardin SE, Bulman DE, Scherzer CR, LaVoie MJ, Gris D, Park DS, Angel JB, Shen J, Philpott DJ, Schlossmacher MG: Parkinson’s disease-linked LRRK2 is expressed in circulating and tissue immune cells and upregulated following recognition of microbial structures. J Neural Transm. 2011, 118: 795-808. 10.1007/s00702-011-0653-2.PubMedCentralPubMed
78.
go back to reference Thevenet J, Pescini Gobert R, van Huijsduijnen Hooft R, Wiessner C, Sagot YJ: Regulation of LRRK2 expression points to a functional role in human monocyte maturation. PLoS One. 2011, 6: e21519-10.1371/journal.pone.0021519.PubMedCentralPubMed Thevenet J, Pescini Gobert R, van Huijsduijnen Hooft R, Wiessner C, Sagot YJ: Regulation of LRRK2 expression points to a functional role in human monocyte maturation. PLoS One. 2011, 6: e21519-10.1371/journal.pone.0021519.PubMedCentralPubMed
79.
go back to reference Gillardon F, Schmid R, Draheim H: Parkinson’s disease-linked leucine-rich repeat kinase 2(R1441G) mutation increases proinflammatory cytokine release from activated primary microglial cells and resultant neurotoxicity. Neuroscience. 2012, 208: 41-48.PubMed Gillardon F, Schmid R, Draheim H: Parkinson’s disease-linked leucine-rich repeat kinase 2(R1441G) mutation increases proinflammatory cytokine release from activated primary microglial cells and resultant neurotoxicity. Neuroscience. 2012, 208: 41-48.PubMed
80.
go back to reference Dzamko N, Inesta-Vaquera F, Zhang J, Xie C, Cai H, Arthur S, Tan L, Choi H, Gray N, Cohen P, Pedrioli P, Clark K, Alessi DR: The IkappaB kinase family phosphorylates the Parkinson’s disease kinase LRRK2 at Ser935 and Ser910 during Toll-like receptor signaling. PLoS One. 2012, 7: e39132-10.1371/journal.pone.0039132.PubMedCentralPubMed Dzamko N, Inesta-Vaquera F, Zhang J, Xie C, Cai H, Arthur S, Tan L, Choi H, Gray N, Cohen P, Pedrioli P, Clark K, Alessi DR: The IkappaB kinase family phosphorylates the Parkinson’s disease kinase LRRK2 at Ser935 and Ser910 during Toll-like receptor signaling. PLoS One. 2012, 7: e39132-10.1371/journal.pone.0039132.PubMedCentralPubMed
81.
go back to reference Kim B, Yang MS, Choi D, Kim JH, Kim HS, Seol W, Choi S, Jou I, Kim EY, Joe EH: Impaired inflammatory responses in murine Lrrk2-knockdown brain microglia. PLoS One. 2012, 7: e34693-10.1371/journal.pone.0034693.PubMedCentralPubMed Kim B, Yang MS, Choi D, Kim JH, Kim HS, Seol W, Choi S, Jou I, Kim EY, Joe EH: Impaired inflammatory responses in murine Lrrk2-knockdown brain microglia. PLoS One. 2012, 7: e34693-10.1371/journal.pone.0034693.PubMedCentralPubMed
82.
go back to reference Choi SH, Langenbach R, Bosetti F: Genetic deletion or pharmacological inhibition of cyclooxygenase-1 attenuate lipopolysaccharide-induced inflammatory response and brain injury. FASEB J. 2008, 22: 1491-1501.PubMedCentralPubMed Choi SH, Langenbach R, Bosetti F: Genetic deletion or pharmacological inhibition of cyclooxygenase-1 attenuate lipopolysaccharide-induced inflammatory response and brain injury. FASEB J. 2008, 22: 1491-1501.PubMedCentralPubMed
83.
go back to reference Lee M: Neurotransmitters and microglial-mediated neuroinflammation. Curr Protein Pept Sci. 2013, 14: 21-32. 10.2174/1389203711314010005.PubMed Lee M: Neurotransmitters and microglial-mediated neuroinflammation. Curr Protein Pept Sci. 2013, 14: 21-32. 10.2174/1389203711314010005.PubMed
84.
go back to reference Mogi M, Togari A, Kondo T, Mizuno Y, Komure O, Kuno S, Ichinose H, Nagatsu T: Caspase activities and tumor necrosis factor receptor R1 (p55) level are elevated in the substantia nigra from parkinsonian brain. J Neural Transm. 2000, 107: 335-341. 10.1007/s007020050028.PubMed Mogi M, Togari A, Kondo T, Mizuno Y, Komure O, Kuno S, Ichinose H, Nagatsu T: Caspase activities and tumor necrosis factor receptor R1 (p55) level are elevated in the substantia nigra from parkinsonian brain. J Neural Transm. 2000, 107: 335-341. 10.1007/s007020050028.PubMed
85.
go back to reference Liu Z, Lee J, Krummey S, Lu W, Cai H, Lenardo MJ: The kinase LRRK2 is a regulator of the transcription factor NFAT that modulates the severity of inflammatory bowel disease. Nat Immunol. 2011, 12: 1063-1070. 10.1038/ni.2113.PubMedCentralPubMed Liu Z, Lee J, Krummey S, Lu W, Cai H, Lenardo MJ: The kinase LRRK2 is a regulator of the transcription factor NFAT that modulates the severity of inflammatory bowel disease. Nat Immunol. 2011, 12: 1063-1070. 10.1038/ni.2113.PubMedCentralPubMed
86.
go back to reference de Maturana LR, Aguila JC, Sousa A, Vazquez N, Del Rio P, Aiastui A, Gorostidi A, de Munain LA, Sanchez-Pernaute R: Leucine-rich repeat kinase 2 modulates cyclooxygenase 2 and the inflammatory response in idiopathic and genetic Parkinson’s disease. Neurobiol Aging. 2014, 5: 1116-1124. de Maturana LR, Aguila JC, Sousa A, Vazquez N, Del Rio P, Aiastui A, Gorostidi A, de Munain LA, Sanchez-Pernaute R: Leucine-rich repeat kinase 2 modulates cyclooxygenase 2 and the inflammatory response in idiopathic and genetic Parkinson’s disease. Neurobiol Aging. 2014, 5: 1116-1124.
87.
go back to reference Caesar M, Zach S, Carlson CB, Brockmann K, Gasser T, Gillardon F: Leucine-rich repeat kinase 2 functionally interacts with microtubules and kinase-dependently modulates cell migration. Neurobiol Dis. 2013, 54: 280-288.PubMed Caesar M, Zach S, Carlson CB, Brockmann K, Gasser T, Gillardon F: Leucine-rich repeat kinase 2 functionally interacts with microtubules and kinase-dependently modulates cell migration. Neurobiol Dis. 2013, 54: 280-288.PubMed
88.
go back to reference Meixner A, Boldt K, Van Troys M, Askenazi M, Gloeckner CJ, Bauer M, Marto JA, Ampe C, Kinkl N, Ueffing M: A QUICK screen for Lrrk2 interaction partners–leucine-rich repeat kinase 2 is involved in actin cytoskeleton dynamics. Mol Cell Proteomics. 2011, 10: M110 001172-10.1074/mcp.M110.001172.PubMedCentralPubMed Meixner A, Boldt K, Van Troys M, Askenazi M, Gloeckner CJ, Bauer M, Marto JA, Ampe C, Kinkl N, Ueffing M: A QUICK screen for Lrrk2 interaction partners–leucine-rich repeat kinase 2 is involved in actin cytoskeleton dynamics. Mol Cell Proteomics. 2011, 10: M110 001172-10.1074/mcp.M110.001172.PubMedCentralPubMed
89.
go back to reference Gillardon F: Leucine-rich repeat kinase 2 phosphorylates brain tubulin-beta isoforms and modulates microtubule stability–a point of convergence in parkinsonian neurodegeneration?. J Neurochem. 2009, 110: 1514-1522. 10.1111/j.1471-4159.2009.06235.x.PubMed Gillardon F: Leucine-rich repeat kinase 2 phosphorylates brain tubulin-beta isoforms and modulates microtubule stability–a point of convergence in parkinsonian neurodegeneration?. J Neurochem. 2009, 110: 1514-1522. 10.1111/j.1471-4159.2009.06235.x.PubMed
90.
go back to reference MacLeod D, Dowman J, Hammond R, Leete T, Inoue K, Abeliovich A: The familial Parkinsonism gene LRRK2 regulates neurite process morphology. Neuron. 2006, 52: 587-593. 10.1016/j.neuron.2006.10.008.PubMed MacLeod D, Dowman J, Hammond R, Leete T, Inoue K, Abeliovich A: The familial Parkinsonism gene LRRK2 regulates neurite process morphology. Neuron. 2006, 52: 587-593. 10.1016/j.neuron.2006.10.008.PubMed
91.
go back to reference Parisiadou L, Xie C, Cho HJ, Lin X, Gu XL, Long CX, Lobbestael E, Baekelandt V, Taymans JM, Sun L, Cai H: Phosphorylation of ezrin/radixin/moesin proteins by LRRK2 promotes the rearrangement of actin cytoskeleton in neuronal morphogenesis. J Neurosci. 2009, 29: 13971-13980. 10.1523/JNEUROSCI.3799-09.2009.PubMedCentralPubMed Parisiadou L, Xie C, Cho HJ, Lin X, Gu XL, Long CX, Lobbestael E, Baekelandt V, Taymans JM, Sun L, Cai H: Phosphorylation of ezrin/radixin/moesin proteins by LRRK2 promotes the rearrangement of actin cytoskeleton in neuronal morphogenesis. J Neurosci. 2009, 29: 13971-13980. 10.1523/JNEUROSCI.3799-09.2009.PubMedCentralPubMed
92.
go back to reference Sepulveda B, Mesias R, Li X, Yue Z, Benson DL: Short- and long-term effects of LRRK2 on axon and dendrite growth. PLoS One. 2013, 8: e61986-10.1371/journal.pone.0061986.PubMedCentralPubMed Sepulveda B, Mesias R, Li X, Yue Z, Benson DL: Short- and long-term effects of LRRK2 on axon and dendrite growth. PLoS One. 2013, 8: e61986-10.1371/journal.pone.0061986.PubMedCentralPubMed
93.
go back to reference Gandhi PN, Wang X, Zhu X, Chen SG, Wilson-Delfosse AL: The Roc domain of leucine-rich repeat kinase 2 is sufficient for interaction with microtubules. J Neurosci Res. 2008, 86: 1711-1720. 10.1002/jnr.21622.PubMedCentralPubMed Gandhi PN, Wang X, Zhu X, Chen SG, Wilson-Delfosse AL: The Roc domain of leucine-rich repeat kinase 2 is sufficient for interaction with microtubules. J Neurosci Res. 2008, 86: 1711-1720. 10.1002/jnr.21622.PubMedCentralPubMed
94.
go back to reference Lin X, Parisiadou L, Gu XL, Wang L, Shim H, Sun L, Xie C, Long CX, Yang WJ, Ding J, Chen ZZ, Gallant PE, Tao-Cheng JH, Rudow G, Troncoso JC, Liu Z, Li Z, Cai H: Leucine-rich repeat kinase 2 regulates the progression of neuropathology induced by Parkinson’s-disease-related mutant alpha-synuclein. Neuron. 2009, 64: 807-827. 10.1016/j.neuron.2009.11.006.PubMedCentralPubMed Lin X, Parisiadou L, Gu XL, Wang L, Shim H, Sun L, Xie C, Long CX, Yang WJ, Ding J, Chen ZZ, Gallant PE, Tao-Cheng JH, Rudow G, Troncoso JC, Liu Z, Li Z, Cai H: Leucine-rich repeat kinase 2 regulates the progression of neuropathology induced by Parkinson’s-disease-related mutant alpha-synuclein. Neuron. 2009, 64: 807-827. 10.1016/j.neuron.2009.11.006.PubMedCentralPubMed
95.
go back to reference Kawakami F, Yabata T, Ohta E, Maekawa T, Shimada N, Suzuki M, Maruyama H, Ichikawa T, Obata F: LRRK2 phosphorylates tubulin-associated tau but not the free molecule: LRRK2-mediated regulation of the tau-tubulin association and neurite outgrowth. PLoS One. 2012, 7: e30834-10.1371/journal.pone.0030834.PubMedCentralPubMed Kawakami F, Yabata T, Ohta E, Maekawa T, Shimada N, Suzuki M, Maruyama H, Ichikawa T, Obata F: LRRK2 phosphorylates tubulin-associated tau but not the free molecule: LRRK2-mediated regulation of the tau-tubulin association and neurite outgrowth. PLoS One. 2012, 7: e30834-10.1371/journal.pone.0030834.PubMedCentralPubMed
96.
go back to reference Li Y, Liu W, Oo TF, Wang L, Tang Y, Jackson-Lewis V, Zhou C, Geghman K, Bogdanov M, Przedborski S, Beal MF, Burke RE, Li C: Mutant LRRK2(R1441G) BAC transgenic mice recapitulate cardinal features of Parkinson’s disease. Nat Neurosci. 2009, 12: 826-828. 10.1038/nn.2349.PubMedCentralPubMed Li Y, Liu W, Oo TF, Wang L, Tang Y, Jackson-Lewis V, Zhou C, Geghman K, Bogdanov M, Przedborski S, Beal MF, Burke RE, Li C: Mutant LRRK2(R1441G) BAC transgenic mice recapitulate cardinal features of Parkinson’s disease. Nat Neurosci. 2009, 12: 826-828. 10.1038/nn.2349.PubMedCentralPubMed
97.
go back to reference Wehrle-Haller B, Imhof BA: Actin, microtubules and focal adhesion dynamics during cell migration. Int J Biochem Cell Biol. 2003, 35: 39-50. 10.1016/S1357-2725(02)00071-7.PubMed Wehrle-Haller B, Imhof BA: Actin, microtubules and focal adhesion dynamics during cell migration. Int J Biochem Cell Biol. 2003, 35: 39-50. 10.1016/S1357-2725(02)00071-7.PubMed
98.
go back to reference Stuart LM, Bell SA, Stewart CR, Silver JM, Richard J, Goss JL, Tseng AA, Zhang A, El Khoury JB, Moore KJ: CD36 signals to the actin cytoskeleton and regulates microglial migration via a p130Cas complex. J Biol Chem. 2007, 282: 27392-27401. 10.1074/jbc.M702887200.PubMed Stuart LM, Bell SA, Stewart CR, Silver JM, Richard J, Goss JL, Tseng AA, Zhang A, El Khoury JB, Moore KJ: CD36 signals to the actin cytoskeleton and regulates microglial migration via a p130Cas complex. J Biol Chem. 2007, 282: 27392-27401. 10.1074/jbc.M702887200.PubMed
99.
go back to reference Gardel ML, Schneider IC, Aratyn-Schaus Y, Waterman CM: Mechanical integration of actin and adhesion dynamics in cell migration. Annu Rev Cell Dev Biol. 2010, 26: 315-333. 10.1146/annurev.cellbio.011209.122036.PubMedCentralPubMed Gardel ML, Schneider IC, Aratyn-Schaus Y, Waterman CM: Mechanical integration of actin and adhesion dynamics in cell migration. Annu Rev Cell Dev Biol. 2010, 26: 315-333. 10.1146/annurev.cellbio.011209.122036.PubMedCentralPubMed
100.
go back to reference Small JV, Stradal T, Vignal E, Rottner K: The lamellipodium: where motility begins. Trends Cell Biol. 2002, 12: 112-120. 10.1016/S0962-8924(01)02237-1.PubMed Small JV, Stradal T, Vignal E, Rottner K: The lamellipodium: where motility begins. Trends Cell Biol. 2002, 12: 112-120. 10.1016/S0962-8924(01)02237-1.PubMed
101.
go back to reference Holmes KC, Popp D, Gebhard W, Kabsch W: Atomic model of the actin filament. Nature. 1990, 347: 44-49. 10.1038/347044a0.PubMed Holmes KC, Popp D, Gebhard W, Kabsch W: Atomic model of the actin filament. Nature. 1990, 347: 44-49. 10.1038/347044a0.PubMed
102.
go back to reference Cross AK, Woodroofe MN: Chemokines induce migration and changes in actin polymerization in adult rat brain microglia and a human fetal microglial cell line in vitro. J Neurosci Res. 1999, 55: 17-23. 10.1002/(SICI)1097-4547(19990101)55:1<17::AID-JNR3>3.0.CO;2-J.PubMed Cross AK, Woodroofe MN: Chemokines induce migration and changes in actin polymerization in adult rat brain microglia and a human fetal microglial cell line in vitro. J Neurosci Res. 1999, 55: 17-23. 10.1002/(SICI)1097-4547(19990101)55:1<17::AID-JNR3>3.0.CO;2-J.PubMed
103.
go back to reference Welch MD, Mullins RD: Cellular control of actin nucleation. Annu Rev Cell Dev Biol. 2002, 18: 247-288. 10.1146/annurev.cellbio.18.040202.112133.PubMed Welch MD, Mullins RD: Cellular control of actin nucleation. Annu Rev Cell Dev Biol. 2002, 18: 247-288. 10.1146/annurev.cellbio.18.040202.112133.PubMed
104.
go back to reference Faff L, Nolte C: Extracellular acidification decreases the basal motility of cultured mouse microglia via the rearrangement of the actin cytoskeleton. Brain Res. 2000, 853: 22-31. 10.1016/S0006-8993(99)02221-0.PubMed Faff L, Nolte C: Extracellular acidification decreases the basal motility of cultured mouse microglia via the rearrangement of the actin cytoskeleton. Brain Res. 2000, 853: 22-31. 10.1016/S0006-8993(99)02221-0.PubMed
105.
106.
go back to reference Castellano F, Chavrier P, Caron E: Actin dynamics during phagocytosis. Semin Immunol. 2001, 13: 347-355. 10.1006/smim.2001.0331.PubMed Castellano F, Chavrier P, Caron E: Actin dynamics during phagocytosis. Semin Immunol. 2001, 13: 347-355. 10.1006/smim.2001.0331.PubMed
107.
go back to reference Barcia C, Ros CM, Annese V, Carrillo-de Sauvage MA, Ros-Bernal F, Gomez A, Yuste JE, Campuzano CM, de Pablos V, Fernandez-Villalba E, Herrero MT: ROCK/Cdc42-mediated microglial motility and gliapse formation lead to phagocytosis of degenerating dopaminergic neurons in vivo. Sci Rep. 2012, 2: 809.PubMedCentralPubMed Barcia C, Ros CM, Annese V, Carrillo-de Sauvage MA, Ros-Bernal F, Gomez A, Yuste JE, Campuzano CM, de Pablos V, Fernandez-Villalba E, Herrero MT: ROCK/Cdc42-mediated microglial motility and gliapse formation lead to phagocytosis of degenerating dopaminergic neurons in vivo. Sci Rep. 2012, 2: 809.PubMedCentralPubMed
108.
go back to reference Swanson JA, Johnson MT, Beningo K, Post P, Mooseker M, Araki N: A contractile activity that closes phagosomes in macrophages. J Cell Sci. 1999, 112 (Pt 3): 307-316.PubMed Swanson JA, Johnson MT, Beningo K, Post P, Mooseker M, Araki N: A contractile activity that closes phagosomes in macrophages. J Cell Sci. 1999, 112 (Pt 3): 307-316.PubMed
109.
go back to reference Xiong Y, Coombes CE, Kilaru A, Li X, Gitler AD, Bowers WJ, Dawson VL, Dawson TM, Moore DJ: GTPase activity plays a key role in the pathobiology of LRRK2. PLoS Genet. 2010, 6: e1000902-10.1371/journal.pgen.1000902.PubMedCentralPubMed Xiong Y, Coombes CE, Kilaru A, Li X, Gitler AD, Bowers WJ, Dawson VL, Dawson TM, Moore DJ: GTPase activity plays a key role in the pathobiology of LRRK2. PLoS Genet. 2010, 6: e1000902-10.1371/journal.pgen.1000902.PubMedCentralPubMed
110.
go back to reference Shin N, Jeong H, Kwon J, Heo HY, Kwon JJ, Yun HJ, Kim CH, Han BS, Tong Y, Shen J, Hatano T, Hattori N, Kim KS, Chang S, Seol W: LRRK2 regulates synaptic vesicle endocytosis. Exp Cell Res. 2008, 314: 2055-2065. 10.1016/j.yexcr.2008.02.015.PubMed Shin N, Jeong H, Kwon J, Heo HY, Kwon JJ, Yun HJ, Kim CH, Han BS, Tong Y, Shen J, Hatano T, Hattori N, Kim KS, Chang S, Seol W: LRRK2 regulates synaptic vesicle endocytosis. Exp Cell Res. 2008, 314: 2055-2065. 10.1016/j.yexcr.2008.02.015.PubMed
111.
go back to reference Yun HJ, Park J, Ho DH, Kim H, Kim CH, Oh H, Ga I, Seo H, Chang S, Son I, Seol W: LRRK2 phosphorylates Snapin and inhibits interaction of Snapin with SNAP-25. Exp Mol Med. 2013, 45: e36-10.1038/emm.2013.68.PubMedCentralPubMed Yun HJ, Park J, Ho DH, Kim H, Kim CH, Oh H, Ga I, Seo H, Chang S, Son I, Seol W: LRRK2 phosphorylates Snapin and inhibits interaction of Snapin with SNAP-25. Exp Mol Med. 2013, 45: e36-10.1038/emm.2013.68.PubMedCentralPubMed
112.
go back to reference Migheli R, Del Giudice MG, Spissu Y, Sanna G, Xiong Y, Dawson TM, Dawson VL, Galioto M, Rocchitta G, Biosa A, Serra PA, Carri MT, Crosio C, Iaccarino C: LRRK2 affects vesicle trafficking. Neurotransmitter extracellular level and membrane receptor localization. PLoS One. 2013, 8: e77198-10.1371/journal.pone.0077198.PubMedCentralPubMed Migheli R, Del Giudice MG, Spissu Y, Sanna G, Xiong Y, Dawson TM, Dawson VL, Galioto M, Rocchitta G, Biosa A, Serra PA, Carri MT, Crosio C, Iaccarino C: LRRK2 affects vesicle trafficking. Neurotransmitter extracellular level and membrane receptor localization. PLoS One. 2013, 8: e77198-10.1371/journal.pone.0077198.PubMedCentralPubMed
113.
go back to reference MacLeod DA, Rhinn H, Kuwahara T, Zolin A, Di Paolo G, McCabe BD, Marder KS, Honig LS, Clark LN, Small SA, Abeliovich A: RAB7L1 interacts with LRRK2 to modify intraneuronal protein sorting and Parkinson’s disease risk. Neuron. 2013, 77: 425-439. 10.1016/j.neuron.2012.11.033.PubMedCentralPubMed MacLeod DA, Rhinn H, Kuwahara T, Zolin A, Di Paolo G, McCabe BD, Marder KS, Honig LS, Clark LN, Small SA, Abeliovich A: RAB7L1 interacts with LRRK2 to modify intraneuronal protein sorting and Parkinson’s disease risk. Neuron. 2013, 77: 425-439. 10.1016/j.neuron.2012.11.033.PubMedCentralPubMed
114.
go back to reference Ravikumar B, Imarisio S, Sarkar S, O’Kane CJ, Rubinsztein DC: Rab5 modulates aggregation and toxicity of mutant huntingtin through macroautophagy in cell and fly models of Huntington disease. J Cell Sci. 2008, 121: 1649-1660. 10.1242/jcs.025726.PubMedCentralPubMed Ravikumar B, Imarisio S, Sarkar S, O’Kane CJ, Rubinsztein DC: Rab5 modulates aggregation and toxicity of mutant huntingtin through macroautophagy in cell and fly models of Huntington disease. J Cell Sci. 2008, 121: 1649-1660. 10.1242/jcs.025726.PubMedCentralPubMed
115.
go back to reference Stow JL, Manderson AP, Murray RZ: SNAREing immunity: the role of SNAREs in the immune system. Nat Rev Immunol. 2006, 6: 919-929. 10.1038/nri1980.PubMed Stow JL, Manderson AP, Murray RZ: SNAREing immunity: the role of SNAREs in the immune system. Nat Rev Immunol. 2006, 6: 919-929. 10.1038/nri1980.PubMed
116.
go back to reference Stanley AC, Lacy P: Pathways for cytokine secretion. Physiology (Bethesda). 2010, 25: 218-229. 10.1152/physiol.00017.2010. Stanley AC, Lacy P: Pathways for cytokine secretion. Physiology (Bethesda). 2010, 25: 218-229. 10.1152/physiol.00017.2010.
117.
go back to reference Stow JL, Low PC, Offenhauser C, Sangermani D: Cytokine secretion in macrophages and other cells: pathways and mediators. Immunobiology. 2009, 214: 601-612. 10.1016/j.imbio.2008.11.005.PubMed Stow JL, Low PC, Offenhauser C, Sangermani D: Cytokine secretion in macrophages and other cells: pathways and mediators. Immunobiology. 2009, 214: 601-612. 10.1016/j.imbio.2008.11.005.PubMed
118.
go back to reference Lucin KM, Wyss-Coray T: Immune activation in brain aging and neurodegeneration: too much or too little?. Neuron. 2009, 64: 110-122. 10.1016/j.neuron.2009.08.039.PubMedCentralPubMed Lucin KM, Wyss-Coray T: Immune activation in brain aging and neurodegeneration: too much or too little?. Neuron. 2009, 64: 110-122. 10.1016/j.neuron.2009.08.039.PubMedCentralPubMed
119.
go back to reference Bucci C, Bakke O, Progida C: Rab7b and receptors trafficking. Commun Integr Biol. 2010, 3: 401-404. 10.4161/cib.3.5.12341.PubMedCentralPubMed Bucci C, Bakke O, Progida C: Rab7b and receptors trafficking. Commun Integr Biol. 2010, 3: 401-404. 10.4161/cib.3.5.12341.PubMedCentralPubMed
120.
go back to reference Stuart LM, Ezekowitz RA: Phagocytosis: elegant complexity. Immunity. 2005, 22: 539-550. 10.1016/j.immuni.2005.05.002.PubMed Stuart LM, Ezekowitz RA: Phagocytosis: elegant complexity. Immunity. 2005, 22: 539-550. 10.1016/j.immuni.2005.05.002.PubMed
121.
go back to reference Imamura K, Hishikawa N, Sawada M, Nagatsu T, Yoshida M, Hashizume Y: Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson’s disease brains. Acta Neuropathol. 2003, 106: 518-526. 10.1007/s00401-003-0766-2.PubMed Imamura K, Hishikawa N, Sawada M, Nagatsu T, Yoshida M, Hashizume Y: Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson’s disease brains. Acta Neuropathol. 2003, 106: 518-526. 10.1007/s00401-003-0766-2.PubMed
122.
go back to reference Ghosh A, Roy A, Liu X, Kordower JH, Mufson EJ, Hartley DM, Ghosh S, Mosley RL, Gendelman HE, Pahan K: Selective inhibition of NF-kappaB activation prevents dopaminergic neuronal loss in a mouse model of Parkinson’s disease. Proc Natl Acad Sci USA. 2007, 104: 18754-18759. 10.1073/pnas.0704908104.PubMedCentralPubMed Ghosh A, Roy A, Liu X, Kordower JH, Mufson EJ, Hartley DM, Ghosh S, Mosley RL, Gendelman HE, Pahan K: Selective inhibition of NF-kappaB activation prevents dopaminergic neuronal loss in a mouse model of Parkinson’s disease. Proc Natl Acad Sci USA. 2007, 104: 18754-18759. 10.1073/pnas.0704908104.PubMedCentralPubMed
123.
go back to reference Taymans JM, Vancraenenbroeck R, Ollikainen P, Beilina A, Lobbestael E, De Maeyer M, Baekelandt V, Cookson MR: LRRK2 kinase activity is dependent on LRRK2 GTP binding capacity but independent of LRRK2 GTP binding. PLoS One. 2011, 6: e23207-10.1371/journal.pone.0023207.PubMedCentralPubMed Taymans JM, Vancraenenbroeck R, Ollikainen P, Beilina A, Lobbestael E, De Maeyer M, Baekelandt V, Cookson MR: LRRK2 kinase activity is dependent on LRRK2 GTP binding capacity but independent of LRRK2 GTP binding. PLoS One. 2011, 6: e23207-10.1371/journal.pone.0023207.PubMedCentralPubMed
Metadata
Title
LRRK2 and neuroinflammation: partners in crime in Parkinson’s disease?
Authors
Isabella Russo
Luigi Bubacco
Elisa Greggio
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2014
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-11-52

Other articles of this Issue 1/2014

Journal of Neuroinflammation 1/2014 Go to the issue