Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2014

Open Access 01-12-2014 | Review

The rodent endovascular puncture model of subarachnoid hemorrhage: mechanisms of brain damage and therapeutic strategies

Authors: Elke Kooijman, Cora H Nijboer, Cindy TJ van Velthoven, Annemieke Kavelaars, Jozef Kesecioglu, Cobi J Heijnen

Published in: Journal of Neuroinflammation | Issue 1/2014

Login to get access

Abstract

Subarachnoid hemorrhage (SAH) represents a considerable health problem. To date, limited therapeutic options are available. In order to develop effective therapeutic strategies for SAH, the mechanisms involved in SAH brain damage should be fully explored. Here we review the mechanisms of SAH brain damage induced by the experimental endovascular puncture model. We have included a description of similarities and distinctions between experimental SAH in animals and human SAH pathology. Moreover, several novel treatment options to diminish SAH brain damage are discussed.
SAH is accompanied by cerebral inflammation as demonstrated by an influx of inflammatory cells into the cerebral parenchyma, upregulation of inflammatory transcriptional pathways and increased expression of cytokines and chemokines. Additionally, various cell death pathways including cerebral apoptosis, necrosis, necroptosis and autophagy are involved in neuronal damage caused by SAH.
Treatment strategies aiming at inhibition of inflammatory or cell death pathways demonstrate the importance of these mechanisms for survival after experimental SAH. Moreover, neuroregenerative therapies using stem cells are discussed as a possible strategy to repair the brain after SAH since this therapy may extend the window of treatment considerably. We propose the endovascular puncture model as a suitable animal model which resembles the human pathology of SAH and which could be applied to investigate novel therapeutic therapies to combat this debilitating insult.
Appendix
Available only for authorised users
Literature
1.
go back to reference Anderson CS, The ACROSS group: Epidemiology of aneurysmal subarachnoid hemorrhage in Australia and New Zealand: incidence and case fatality from the Australasian Cooperative Research on Subarachnoid Hemorrhage Study (ACROSS). Stroke. 2000, 31: 1843-1850. Anderson CS, The ACROSS group: Epidemiology of aneurysmal subarachnoid hemorrhage in Australia and New Zealand: incidence and case fatality from the Australasian Cooperative Research on Subarachnoid Hemorrhage Study (ACROSS). Stroke. 2000, 31: 1843-1850.
2.
go back to reference de Rooij NK, Linn FH, van der Plas JA, Algra A, Rinkel GJ: Incidence of subarachnoid hemorrhage: a systematic review with emphasis on region, age, gender and time trends. J Neurol Neurosurg Psychiatry. 2007, 78: 1365-1372. 10.1136/jnnp.2007.117655.PubMedCentralPubMed de Rooij NK, Linn FH, van der Plas JA, Algra A, Rinkel GJ: Incidence of subarachnoid hemorrhage: a systematic review with emphasis on region, age, gender and time trends. J Neurol Neurosurg Psychiatry. 2007, 78: 1365-1372. 10.1136/jnnp.2007.117655.PubMedCentralPubMed
3.
go back to reference Thrift AG, Dewey HM, Sturm JW, Srikanth VK, Gilligan AK, Gall SL, Macdonell RAL, McNeil JJ, Donnan GA: Incidence of stroke subtypes in the North East Melbourne Stroke Incidence Study (NEMESIS): differences between men and women. Neuroepidemiology. 2009, 32: 11-18. 10.1159/000170086.PubMed Thrift AG, Dewey HM, Sturm JW, Srikanth VK, Gilligan AK, Gall SL, Macdonell RAL, McNeil JJ, Donnan GA: Incidence of stroke subtypes in the North East Melbourne Stroke Incidence Study (NEMESIS): differences between men and women. Neuroepidemiology. 2009, 32: 11-18. 10.1159/000170086.PubMed
4.
go back to reference Van GJ, Kerr RS, Rinkel GJ: Subarachnoid hemorrhage. Lancet. 2007, 369: 306-318. 10.1016/S0140-6736(07)60153-6. Van GJ, Kerr RS, Rinkel GJ: Subarachnoid hemorrhage. Lancet. 2007, 369: 306-318. 10.1016/S0140-6736(07)60153-6.
5.
go back to reference Al-Tamimi YZ, Orsi NM, Quinn AC, Homer-Vanniasinkam S, Ross SA: A review of delayed ischemic neurologic deficit following aneurysmal subarachnoid hemorrhage: historical overview, current treatment, and pathophysiology. World Neurosurg. 2010, 73: 654-667. 10.1016/j.wneu.2010.02.005.PubMed Al-Tamimi YZ, Orsi NM, Quinn AC, Homer-Vanniasinkam S, Ross SA: A review of delayed ischemic neurologic deficit following aneurysmal subarachnoid hemorrhage: historical overview, current treatment, and pathophysiology. World Neurosurg. 2010, 73: 654-667. 10.1016/j.wneu.2010.02.005.PubMed
6.
go back to reference Dankbaar JW, Rijsdijk M, Van DSI, Velthuis BK, Wermer MJ, Rinkel GJ: Relationship between vasospasm, cerebral perfusion, and delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Neuroradiology. 2009, 51: 813-819. 10.1007/s00234-009-0575-y.PubMedCentralPubMed Dankbaar JW, Rijsdijk M, Van DSI, Velthuis BK, Wermer MJ, Rinkel GJ: Relationship between vasospasm, cerebral perfusion, and delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Neuroradiology. 2009, 51: 813-819. 10.1007/s00234-009-0575-y.PubMedCentralPubMed
7.
go back to reference Laskowitz DT, Kolls BJ: Neuroprotection in subarachnoid hemorrhage. Stroke. 2010, 41: S79-S84. 10.1161/STROKEAHA.110.595090.PubMedCentralPubMed Laskowitz DT, Kolls BJ: Neuroprotection in subarachnoid hemorrhage. Stroke. 2010, 41: S79-S84. 10.1161/STROKEAHA.110.595090.PubMedCentralPubMed
8.
go back to reference Bederson JB, Levy AL, Ding WH, Kahn R, DiPerna CA, Jenkins AL, Vallabhajosyula P: Acute vasoconstriction after subarachnoid hemorrhage. Neurosurgery. 1998, 42: 352-360. 10.1097/00006123-199802000-00091.PubMed Bederson JB, Levy AL, Ding WH, Kahn R, DiPerna CA, Jenkins AL, Vallabhajosyula P: Acute vasoconstriction after subarachnoid hemorrhage. Neurosurgery. 1998, 42: 352-360. 10.1097/00006123-199802000-00091.PubMed
9.
go back to reference Critchley GR, Bell BA: Acute cerebral tissue oxygenation changes following experimental subarachnoid hemorrhage. Neurol Res. 2003, 25: 451-456. 10.1179/016164103101201841.PubMed Critchley GR, Bell BA: Acute cerebral tissue oxygenation changes following experimental subarachnoid hemorrhage. Neurol Res. 2003, 25: 451-456. 10.1179/016164103101201841.PubMed
10.
go back to reference Prunell GF, Mathiesen T, Diemer NH, Svendgaard NA: Experimental subarachnoid hemorrhage: subarachnoid blood volume, mortality rate, neuronal death, cerebral blood flow, and perfusion pressure in three different rat models. Neurosurgery. 2003, 52: 165-175.PubMed Prunell GF, Mathiesen T, Diemer NH, Svendgaard NA: Experimental subarachnoid hemorrhage: subarachnoid blood volume, mortality rate, neuronal death, cerebral blood flow, and perfusion pressure in three different rat models. Neurosurgery. 2003, 52: 165-175.PubMed
11.
go back to reference Prunell GF, Mathiesen T, Svendgaard NA: Experimental subarachnoid hemorrhage: cerebral blood flow and brain metabolism during the acute phase in three different models in the rat. Neurosurgery. 2004, 54: 426-436. 10.1227/01.NEU.0000103670.09687.7A.PubMed Prunell GF, Mathiesen T, Svendgaard NA: Experimental subarachnoid hemorrhage: cerebral blood flow and brain metabolism during the acute phase in three different models in the rat. Neurosurgery. 2004, 54: 426-436. 10.1227/01.NEU.0000103670.09687.7A.PubMed
12.
go back to reference Thal SC, Sporer S, Klopotowski M, Thal SE, Woitzik J, Schmid-Elsaesser R, Plesnila N, Zausinger S: Brain edema formation and neurological impairment after subarachnoid hemorrhage in rats. J Neurosurg. 2009, 111: 988-994. 10.3171/2009.3.JNS08412.PubMed Thal SC, Sporer S, Klopotowski M, Thal SE, Woitzik J, Schmid-Elsaesser R, Plesnila N, Zausinger S: Brain edema formation and neurological impairment after subarachnoid hemorrhage in rats. J Neurosurg. 2009, 111: 988-994. 10.3171/2009.3.JNS08412.PubMed
13.
go back to reference Westermaier T, Jauss A, Eriskat J, Kunze E, Roosen K: Time-course of cerebral perfusion and tissue oxygenation in the first six hours after experimental subarachnoid hemorrhage in rats. J Cereb Blood Flow Metab. 2009, 29: 771-779. 10.1038/jcbfm.2008.169.PubMed Westermaier T, Jauss A, Eriskat J, Kunze E, Roosen K: Time-course of cerebral perfusion and tissue oxygenation in the first six hours after experimental subarachnoid hemorrhage in rats. J Cereb Blood Flow Metab. 2009, 29: 771-779. 10.1038/jcbfm.2008.169.PubMed
14.
go back to reference Pluta RM, Hansen-Schwartz J, Dreier J, Vajkoczy P, Macdonald RL, Nishizawa S, Kasuya H, Wellman G, Keller E, Zauner A, et al: Cerebral vasospasm following subarachnoid hemorrhage: time for a new world of thought. Neurol Res. 2009, 31: 151-158. 10.1179/174313209X393564.PubMedCentralPubMed Pluta RM, Hansen-Schwartz J, Dreier J, Vajkoczy P, Macdonald RL, Nishizawa S, Kasuya H, Wellman G, Keller E, Zauner A, et al: Cerebral vasospasm following subarachnoid hemorrhage: time for a new world of thought. Neurol Res. 2009, 31: 151-158. 10.1179/174313209X393564.PubMedCentralPubMed
15.
go back to reference Marbacher S, Fandino J, Kitchen ND: Standard intracranial in vivo animal models of delayed cerebral vasospasm. Br J Neurosurg. 2010, 24: 415-434. 10.3109/02688691003746274.PubMed Marbacher S, Fandino J, Kitchen ND: Standard intracranial in vivo animal models of delayed cerebral vasospasm. Br J Neurosurg. 2010, 24: 415-434. 10.3109/02688691003746274.PubMed
16.
go back to reference Gules I, Satoh M, Clower BR, Nanda A, Zhang JH: Comparison of three rat models of cerebral vasospasm. Am J Physiol Heart Circ Physiol. 2002, 283: H2551-H2559.PubMed Gules I, Satoh M, Clower BR, Nanda A, Zhang JH: Comparison of three rat models of cerebral vasospasm. Am J Physiol Heart Circ Physiol. 2002, 283: H2551-H2559.PubMed
17.
go back to reference Ostrowski RP, Colohan ART, Zhang JH: Mechanisms of hyperbaric oxygen-induced neuroprotection in a rat model of subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2005, 25: 554-571. 10.1038/sj.jcbfm.9600048.PubMed Ostrowski RP, Colohan ART, Zhang JH: Mechanisms of hyperbaric oxygen-induced neuroprotection in a rat model of subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2005, 25: 554-571. 10.1038/sj.jcbfm.9600048.PubMed
18.
go back to reference van den Bergh WM, Schepers J, Veldhuis WB, Nicolay K, Tulleken CA, Rinkel GJ: Magnetic resonance imaging in experimental subarachnoid hemorrhage. Acta Neurochir (Wien). 2005, 147: 977-983. 10.1007/s00701-005-0539-x. van den Bergh WM, Schepers J, Veldhuis WB, Nicolay K, Tulleken CA, Rinkel GJ: Magnetic resonance imaging in experimental subarachnoid hemorrhage. Acta Neurochir (Wien). 2005, 147: 977-983. 10.1007/s00701-005-0539-x.
19.
go back to reference Dankbaar JW, Slooter AJ, Rinkel GJ, Schaaf IC: Effect of different components of triple-H therapy on cerebral perfusion in patients with aneurysmal subarachnoid hemorrhage: a systematic review. Crit Care. 2010, 14: R23-10.1186/cc8886.PubMedCentralPubMed Dankbaar JW, Slooter AJ, Rinkel GJ, Schaaf IC: Effect of different components of triple-H therapy on cerebral perfusion in patients with aneurysmal subarachnoid hemorrhage: a systematic review. Crit Care. 2010, 14: R23-10.1186/cc8886.PubMedCentralPubMed
20.
go back to reference Li H, Pan R, Wang H, Rong X, Yin Z, Milgrom DP, Shi X, Tang Y, Peng Y: Clipping versus coiling for ruptured intracranial aneurysms: a systematic review and meta-analysis. Stroke. 2013, 44: 29-37. 10.1161/STROKEAHA.112.663559.PubMed Li H, Pan R, Wang H, Rong X, Yin Z, Milgrom DP, Shi X, Tang Y, Peng Y: Clipping versus coiling for ruptured intracranial aneurysms: a systematic review and meta-analysis. Stroke. 2013, 44: 29-37. 10.1161/STROKEAHA.112.663559.PubMed
21.
go back to reference Priebe HJ: Aneurysmal subarachnoid hemorrhage and the anesthetist. Br J Anaesth. 2007, 99: 102-118. 10.1093/bja/aem119.PubMed Priebe HJ: Aneurysmal subarachnoid hemorrhage and the anesthetist. Br J Anaesth. 2007, 99: 102-118. 10.1093/bja/aem119.PubMed
22.
go back to reference Linares G, Mayer SA: Hypothermia for the treatment of ischemic and hemorrhagic stroke. Crit Care Med. 2009, 37: S243-S249. 10.1097/CCM.0b013e3181aa5de1.PubMed Linares G, Mayer SA: Hypothermia for the treatment of ischemic and hemorrhagic stroke. Crit Care Med. 2009, 37: S243-S249. 10.1097/CCM.0b013e3181aa5de1.PubMed
23.
go back to reference Scaravilli V, Tinchero G, Citerio G: Fever management in SAH. Neurocrit Care. 2011, 15: 287-294. 10.1007/s12028-011-9588-6.PubMed Scaravilli V, Tinchero G, Citerio G: Fever management in SAH. Neurocrit Care. 2011, 15: 287-294. 10.1007/s12028-011-9588-6.PubMed
24.
go back to reference Schirmer CM, Ackil AA, Malek AM: Decompressive Craniectomy. Neurocrit Care. 2008, 8: 456-470. 10.1007/s12028-008-9082-y.PubMed Schirmer CM, Ackil AA, Malek AM: Decompressive Craniectomy. Neurocrit Care. 2008, 8: 456-470. 10.1007/s12028-008-9082-y.PubMed
25.
go back to reference Lee Y, Zuckerman SL, Mocco J: Current controversies in the prediction, diagnosis, and management of cerebral vasospasm: where do we stand?. Neurol Res Int. 2013, 2013: 373458.PubMedCentralPubMed Lee Y, Zuckerman SL, Mocco J: Current controversies in the prediction, diagnosis, and management of cerebral vasospasm: where do we stand?. Neurol Res Int. 2013, 2013: 373458.PubMedCentralPubMed
26.
go back to reference Wong GK, Poon WS: Magnesium sulphate for aneurysmal subarachnoid hemorrhage: why, how, and current controversy. Acta Neurochir Suppl. 2013, 115: 45-48.PubMed Wong GK, Poon WS: Magnesium sulphate for aneurysmal subarachnoid hemorrhage: why, how, and current controversy. Acta Neurochir Suppl. 2013, 115: 45-48.PubMed
27.
go back to reference Fassbender K, Hodapp B, Rossol S, Bertsch T, Schmeck J, Schutt S, Fritzinger M, Horn P, Vajkoczy P, Kreisel S, et al: Inflammatory cytokines in subarachnoid hemorrhage: association with abnormal blood flow velocities in basal cerebral arteries. J Neurol Neurosurg Psychiatry. 2001, 70: 534-537. 10.1136/jnnp.70.4.534.PubMedCentralPubMed Fassbender K, Hodapp B, Rossol S, Bertsch T, Schmeck J, Schutt S, Fritzinger M, Horn P, Vajkoczy P, Kreisel S, et al: Inflammatory cytokines in subarachnoid hemorrhage: association with abnormal blood flow velocities in basal cerebral arteries. J Neurol Neurosurg Psychiatry. 2001, 70: 534-537. 10.1136/jnnp.70.4.534.PubMedCentralPubMed
28.
go back to reference Naredi S, Lambert G, Friberg P, Zall S, Eden E, Rydenhag B, Tylman M, Bengtsson A: Sympathetic activation and inflammatory response in patients with subarachnoid hemorrhage. Intensive Care Med. 2006, 32: 1955-1961. 10.1007/s00134-006-0408-y.PubMed Naredi S, Lambert G, Friberg P, Zall S, Eden E, Rydenhag B, Tylman M, Bengtsson A: Sympathetic activation and inflammatory response in patients with subarachnoid hemorrhage. Intensive Care Med. 2006, 32: 1955-1961. 10.1007/s00134-006-0408-y.PubMed
29.
go back to reference Yoshimoto Y, Tanaka Y, Hoya K: Acute systemic inflammatory response syndrome in subarachnoid hemorrhage. Stroke. 2001, 32: 1989-1993. 10.1161/hs0901.095646.PubMed Yoshimoto Y, Tanaka Y, Hoya K: Acute systemic inflammatory response syndrome in subarachnoid hemorrhage. Stroke. 2001, 32: 1989-1993. 10.1161/hs0901.095646.PubMed
30.
go back to reference Lee SJ, Benveniste EN: Adhesion molecule expression and regulation on cells of the central nervous system. J Neuroimmunol. 1999, 98: 77-88. 10.1016/S0165-5728(99)00084-3.PubMed Lee SJ, Benveniste EN: Adhesion molecule expression and regulation on cells of the central nervous system. J Neuroimmunol. 1999, 98: 77-88. 10.1016/S0165-5728(99)00084-3.PubMed
31.
go back to reference Sercombe R, Dinh YR, Gomis P: Cerebrovascular inflammation following subarachnoid hemorrhage. Jpn J Pharmacol. 2002, 88: 227-249. 10.1254/jjp.88.227.PubMed Sercombe R, Dinh YR, Gomis P: Cerebrovascular inflammation following subarachnoid hemorrhage. Jpn J Pharmacol. 2002, 88: 227-249. 10.1254/jjp.88.227.PubMed
32.
go back to reference Rothoerl RD, Schebesch KM, Kubitza M, Woertgen C, Brawanski A, Pina AL: ICAM-1 and VCAM-1 expression following aneurysmal subarachnoid hemorrhage and their possible role in the pathophysiology of subsequent ischemic deficits. Cerebrovasc Dis. 2006, 22: 143-149. 10.1159/000093243.PubMed Rothoerl RD, Schebesch KM, Kubitza M, Woertgen C, Brawanski A, Pina AL: ICAM-1 and VCAM-1 expression following aneurysmal subarachnoid hemorrhage and their possible role in the pathophysiology of subsequent ischemic deficits. Cerebrovasc Dis. 2006, 22: 143-149. 10.1159/000093243.PubMed
33.
go back to reference Xie X, Wu X, Cui J, Li H, Yan X: Increase ICAM-1 and LFA-1 expression by cerebrospinal fluid of subarachnoid hemorrhage patients: involvement of TNF-α. Brain Res. 2013, 1512: 89-96.PubMed Xie X, Wu X, Cui J, Li H, Yan X: Increase ICAM-1 and LFA-1 expression by cerebrospinal fluid of subarachnoid hemorrhage patients: involvement of TNF-α. Brain Res. 2013, 1512: 89-96.PubMed
34.
go back to reference Cahill J, Zhang JH: Subarachnoid hemorrhage: is it time for a new direction?. Stroke. 2009, 40: S86-S87. 10.1161/STROKEAHA.108.533315.PubMedCentralPubMed Cahill J, Zhang JH: Subarachnoid hemorrhage: is it time for a new direction?. Stroke. 2009, 40: S86-S87. 10.1161/STROKEAHA.108.533315.PubMedCentralPubMed
35.
go back to reference Sozen T, Tsuchiyama R, Hasegawa Y, Suzuki H, Jadhav V, Nishizawa S, Zhang JH: Role of interleukin-1β in early brain injury after subarachnoid hemorrhage in mice. Stroke. 2009, 40: 2519-2525. 10.1161/STROKEAHA.109.549592.PubMedCentralPubMed Sozen T, Tsuchiyama R, Hasegawa Y, Suzuki H, Jadhav V, Nishizawa S, Zhang JH: Role of interleukin-1β in early brain injury after subarachnoid hemorrhage in mice. Stroke. 2009, 40: 2519-2525. 10.1161/STROKEAHA.109.549592.PubMedCentralPubMed
36.
go back to reference Yamashita T, Abe K: Therapeutic approaches to vascular protection in ischemic stroke. Acta Med Okayama. 2011, 65: 219-223.PubMed Yamashita T, Abe K: Therapeutic approaches to vascular protection in ischemic stroke. Acta Med Okayama. 2011, 65: 219-223.PubMed
37.
go back to reference Chaichana KL, Pradilla G, Huang J, Tamargo RJ: Role of inflammation (leukocyte-endothelial cell interactions) in vasospasm after subarachnoid hemorrhage. World Neurosurg. 2010, 73: 22-41. 10.1016/j.surneu.2009.05.027.PubMed Chaichana KL, Pradilla G, Huang J, Tamargo RJ: Role of inflammation (leukocyte-endothelial cell interactions) in vasospasm after subarachnoid hemorrhage. World Neurosurg. 2010, 73: 22-41. 10.1016/j.surneu.2009.05.027.PubMed
38.
go back to reference Kubota T, Handa Y, Tsuchida A, Kaneko M, Kobayashi H, Kubota T: The kinetics of lymphocyte subsets and macrophages in subarachnoid space after subarachnoid hemorrhage in rats. Stroke. 1993, 24: 1993-2000. 10.1161/01.STR.24.12.1993.PubMed Kubota T, Handa Y, Tsuchida A, Kaneko M, Kobayashi H, Kubota T: The kinetics of lymphocyte subsets and macrophages in subarachnoid space after subarachnoid hemorrhage in rats. Stroke. 1993, 24: 1993-2000. 10.1161/01.STR.24.12.1993.PubMed
39.
go back to reference Provencio J, Fu X, Siu A, Rasmussen P, Hazen S, Ransohoff R: CSF neutrophils are implicated in the development of vasospasm in subarachnoid hemorrhage. Neurocrit Care. 2010, 12: 244-251. 10.1007/s12028-009-9308-7.PubMedCentralPubMed Provencio J, Fu X, Siu A, Rasmussen P, Hazen S, Ransohoff R: CSF neutrophils are implicated in the development of vasospasm in subarachnoid hemorrhage. Neurocrit Care. 2010, 12: 244-251. 10.1007/s12028-009-9308-7.PubMedCentralPubMed
40.
go back to reference Simard JM, Geng Z, Woo SK, Ivanova S, Tosun C, Melnichenko L, Gerzanich V: Glibenclamide reduces inflammation, vasogenic edema, and caspase-3 activation after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2009, 29: 317-330. 10.1038/jcbfm.2008.120.PubMedCentralPubMed Simard JM, Geng Z, Woo SK, Ivanova S, Tosun C, Melnichenko L, Gerzanich V: Glibenclamide reduces inflammation, vasogenic edema, and caspase-3 activation after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2009, 29: 317-330. 10.1038/jcbfm.2008.120.PubMedCentralPubMed
41.
go back to reference Hendryk S, Jarzab B, Josko J: Increase of the IL-1 beta and IL-6 levels in CSF in patients with vasospasm following aneurysmal SAH. Neuro Endocrinol Lett. 2004, 25: 141-147.PubMed Hendryk S, Jarzab B, Josko J: Increase of the IL-1 beta and IL-6 levels in CSF in patients with vasospasm following aneurysmal SAH. Neuro Endocrinol Lett. 2004, 25: 141-147.PubMed
42.
go back to reference Osuka K, Suzuki Y, Tanazawa T, Hattori K, Yamamoto N, Takayasu M, Shibuya M, Yoshida J: Interleukin-6 and development of vasospasm after subarachnoid hemorrhage. Acta Neurochir. 1998, 140: 943-951. 10.1007/s007010050197.PubMed Osuka K, Suzuki Y, Tanazawa T, Hattori K, Yamamoto N, Takayasu M, Shibuya M, Yoshida J: Interleukin-6 and development of vasospasm after subarachnoid hemorrhage. Acta Neurochir. 1998, 140: 943-951. 10.1007/s007010050197.PubMed
43.
go back to reference Sarrafzadeh A, Schlenk F, Gericke C, Vajkoczy P: Relevance of cerebral interleukin-6 after aneurysmal subarachnoid hemorrhage. Neurocrit Care. 2010, 13: 339-346. 10.1007/s12028-010-9432-4.PubMed Sarrafzadeh A, Schlenk F, Gericke C, Vajkoczy P: Relevance of cerebral interleukin-6 after aneurysmal subarachnoid hemorrhage. Neurocrit Care. 2010, 13: 339-346. 10.1007/s12028-010-9432-4.PubMed
44.
go back to reference Magnoni S, Stocchetti N, Colombo G, Carlin A, Colombo A, Lipton JM, Catania A: α-melanocyte-stimulating hormone is decreased in plasma of patients with acute brain injury. J Neurotrauma. 2003, 20: 251-260. 10.1089/089771503321532833.PubMed Magnoni S, Stocchetti N, Colombo G, Carlin A, Colombo A, Lipton JM, Catania A: α-melanocyte-stimulating hormone is decreased in plasma of patients with acute brain injury. J Neurotrauma. 2003, 20: 251-260. 10.1089/089771503321532833.PubMed
45.
go back to reference Mathiesen T, Edner G, Ulfarsson E, Andersson B: Cerebrospinal fluid interleukin-1 receptor antagonist and tumor necrosis factor α following subarachnoid hemorrhage. J Neurosurg. 1997, 87: 215-220. 10.3171/jns.1997.87.2.0215.PubMed Mathiesen T, Edner G, Ulfarsson E, Andersson B: Cerebrospinal fluid interleukin-1 receptor antagonist and tumor necrosis factor α following subarachnoid hemorrhage. J Neurosurg. 1997, 87: 215-220. 10.3171/jns.1997.87.2.0215.PubMed
46.
go back to reference Nakahara T, Tsuruta R, Kaneko T, Yamashita S, Fujita M, Kasaoka S, Hashiguchi T, Suzuki M, Maruyama I, Maekawa T: High-mobility group box 1 protein in CSF of patients with subarachnoid hemorrhage. Neurocrit Care. 2009, 11: 362-368. 10.1007/s12028-009-9276-y.PubMed Nakahara T, Tsuruta R, Kaneko T, Yamashita S, Fujita M, Kasaoka S, Hashiguchi T, Suzuki M, Maruyama I, Maekawa T: High-mobility group box 1 protein in CSF of patients with subarachnoid hemorrhage. Neurocrit Care. 2009, 11: 362-368. 10.1007/s12028-009-9276-y.PubMed
47.
go back to reference Prunell GF, Svendgaard NA, Alkass K, Mathiesen T: Inflammation in the brain after experimental subarachnoid hemorrhage. Neurosurgery. 2005, 56: 1082-1092.PubMed Prunell GF, Svendgaard NA, Alkass K, Mathiesen T: Inflammation in the brain after experimental subarachnoid hemorrhage. Neurosurgery. 2005, 56: 1082-1092.PubMed
48.
go back to reference Chou SH, Feske SK, Atherton J, Konigsberg RG, De Jager PL, Du R, Ogilvy CS, Lo EH, Ning M: Early elevation of serum tumor necrosis factor-alpha is associated with poor outcome in subarachnoid hemorrhage. J Investig Med. 2012, 60: 1054-1058.PubMedCentralPubMed Chou SH, Feske SK, Atherton J, Konigsberg RG, De Jager PL, Du R, Ogilvy CS, Lo EH, Ning M: Early elevation of serum tumor necrosis factor-alpha is associated with poor outcome in subarachnoid hemorrhage. J Investig Med. 2012, 60: 1054-1058.PubMedCentralPubMed
49.
go back to reference Jiang Y, Liu DW, Han XY, Dong YN, Gao J, Du B, Meng L, Shi JG: Neuroprotective effects of anti-tumor necrosis factor-alpha antibody on apoptosis following subarachnoid hemorrhage in a rat model. J Clin Neurosci. 2012, 19: 866-872. 10.1016/j.jocn.2011.08.038.PubMed Jiang Y, Liu DW, Han XY, Dong YN, Gao J, Du B, Meng L, Shi JG: Neuroprotective effects of anti-tumor necrosis factor-alpha antibody on apoptosis following subarachnoid hemorrhage in a rat model. J Clin Neurosci. 2012, 19: 866-872. 10.1016/j.jocn.2011.08.038.PubMed
50.
go back to reference Vecchione C, Frati A, Di Pardo A, Cifelli G, Carnevale D, Gentile MT, Carangi R, Landolfi A, Carullo P, Bettarini U, et al: Tumor necrosis factor-α mediates hemolysis-induced vasoconstriction and the cerebral vasospasm evoked by subarachnoid hemorrhage. Hypertension. 2009, 54: 150-156. 10.1161/HYPERTENSIONAHA.108.128124.PubMed Vecchione C, Frati A, Di Pardo A, Cifelli G, Carnevale D, Gentile MT, Carangi R, Landolfi A, Carullo P, Bettarini U, et al: Tumor necrosis factor-α mediates hemolysis-induced vasoconstriction and the cerebral vasospasm evoked by subarachnoid hemorrhage. Hypertension. 2009, 54: 150-156. 10.1161/HYPERTENSIONAHA.108.128124.PubMed
51.
go back to reference Seki S, Nakashima H, Nakashima M, Kinoshita M: Antitumor immunity produced by the liver Kupffer cells, NK cells, NKT cells, and CD8 CD122 T cells. Clin Dev Immunol. 2011, 2011: 868345.PubMedCentralPubMed Seki S, Nakashima H, Nakashima M, Kinoshita M: Antitumor immunity produced by the liver Kupffer cells, NK cells, NKT cells, and CD8 CD122 T cells. Clin Dev Immunol. 2011, 2011: 868345.PubMedCentralPubMed
52.
go back to reference Voloboueva LA, Giffard RG: Inflammation, mitochondria, and the inhibition of adult neurogenesis. J Neurosci Res. 2011, 89: 1989-1996. 10.1002/jnr.22768.PubMedCentralPubMed Voloboueva LA, Giffard RG: Inflammation, mitochondria, and the inhibition of adult neurogenesis. J Neurosci Res. 2011, 89: 1989-1996. 10.1002/jnr.22768.PubMedCentralPubMed
53.
go back to reference Behrens MM, Ali SS, Dugan LL: Interleukin-6 mediates the increase in NADPH-oxidase in the ketamine model of schizophrenia. J Neurosci. 2008, 28: 13957-13966. 10.1523/JNEUROSCI.4457-08.2008.PubMedCentralPubMed Behrens MM, Ali SS, Dugan LL: Interleukin-6 mediates the increase in NADPH-oxidase in the ketamine model of schizophrenia. J Neurosci. 2008, 28: 13957-13966. 10.1523/JNEUROSCI.4457-08.2008.PubMedCentralPubMed
54.
go back to reference Wakade C, King MD, Laird MD, Alleyne CH, Dhandapani KM: Curcumin attenuates vascular inflammation and cerebral vasospasm after subarachnoid hemorrhage in mice. Antioxid Redox Signal. 2009, 11: 35-45. 10.1089/ars.2008.2056.PubMed Wakade C, King MD, Laird MD, Alleyne CH, Dhandapani KM: Curcumin attenuates vascular inflammation and cerebral vasospasm after subarachnoid hemorrhage in mice. Antioxid Redox Signal. 2009, 11: 35-45. 10.1089/ars.2008.2056.PubMed
55.
go back to reference Bowman G, Bonneau R, Chinchilli V, Tracey K, Cockroft K: A novel inhibitor of inflammatory cytokine production (CNI-1493) reduces rodent post-hemorrhagic vasospasm. Neurocrit Care. 2006, 5: 222-229. 10.1385/NCC:5:3:222.PubMed Bowman G, Bonneau R, Chinchilli V, Tracey K, Cockroft K: A novel inhibitor of inflammatory cytokine production (CNI-1493) reduces rodent post-hemorrhagic vasospasm. Neurocrit Care. 2006, 5: 222-229. 10.1385/NCC:5:3:222.PubMed
56.
go back to reference Kikuchi T, Okuda Y, Kaito N, Abe T: Cytokine production in cerebrospinal fluid after subarachnoid hemorrhage. Neurol Res. 1995, 17: 106-108.PubMed Kikuchi T, Okuda Y, Kaito N, Abe T: Cytokine production in cerebrospinal fluid after subarachnoid hemorrhage. Neurol Res. 1995, 17: 106-108.PubMed
57.
go back to reference Hirashima Y, Nakamura S, Endo S, Kuwayama N, Naruse Y, Takaku A: Elevation of platelet activating factor, inflammatory cytokines, and coagulation factors in the internal jugular vein of patients with subarachnoid hemorrhage. Neurochem Res. 1997, 22: 1249-1255. 10.1023/A:1021985030331.PubMed Hirashima Y, Nakamura S, Endo S, Kuwayama N, Naruse Y, Takaku A: Elevation of platelet activating factor, inflammatory cytokines, and coagulation factors in the internal jugular vein of patients with subarachnoid hemorrhage. Neurochem Res. 1997, 22: 1249-1255. 10.1023/A:1021985030331.PubMed
58.
go back to reference Sugawara T, Jadhav V, Ayer R, Chen W, Suzuki H, Zhang JH: Thrombin inhibition by argatroban ameliorates early brain injury and improves neurological outcomes after experimental subarachnoid hemorrhage in rats. Stroke. 2009, 40: 1530-1532. 10.1161/STROKEAHA.108.531699.PubMedCentralPubMed Sugawara T, Jadhav V, Ayer R, Chen W, Suzuki H, Zhang JH: Thrombin inhibition by argatroban ameliorates early brain injury and improves neurological outcomes after experimental subarachnoid hemorrhage in rats. Stroke. 2009, 40: 1530-1532. 10.1161/STROKEAHA.108.531699.PubMedCentralPubMed
59.
go back to reference Greenhalgh AD, Brough D, Robinson EM, Girard S, Rothwell NJ, Allan SM: Interleukin-1 receptor antagonist is beneficial after subarachnoid hemorrhage in rat by blocking hem-driven inflammatory pathology. Dis Model Mech. 2012, 5: 823-833. 10.1242/dmm.008557.PubMedCentralPubMed Greenhalgh AD, Brough D, Robinson EM, Girard S, Rothwell NJ, Allan SM: Interleukin-1 receptor antagonist is beneficial after subarachnoid hemorrhage in rat by blocking hem-driven inflammatory pathology. Dis Model Mech. 2012, 5: 823-833. 10.1242/dmm.008557.PubMedCentralPubMed
60.
go back to reference Chen S, Ma Q, Krafft PR, Hu Q, Rolland W, Sherchan P, Zhang J, Tang J, Zhang JH: P2X7R/cryopyrin inflammasome axis inhibition reduces neuroinflammation after SAH. Neurobiol Dis. 2013, 58: 296-307.PubMedCentralPubMed Chen S, Ma Q, Krafft PR, Hu Q, Rolland W, Sherchan P, Zhang J, Tang J, Zhang JH: P2X7R/cryopyrin inflammasome axis inhibition reduces neuroinflammation after SAH. Neurobiol Dis. 2013, 58: 296-307.PubMedCentralPubMed
61.
go back to reference Suzuki H, Ayer R, Sugawara T, Chen W, Sozen T, Hasegawa Y, Kanamaru K, Zhang JH: Protective effects of recombinant osteopontin on early brain injury after subarachnoid hemorrhage in rats. Crit Care Med. 2010, 38: 612-618. 10.1097/CCM.0b013e3181c027ae.PubMedCentralPubMed Suzuki H, Ayer R, Sugawara T, Chen W, Sozen T, Hasegawa Y, Kanamaru K, Zhang JH: Protective effects of recombinant osteopontin on early brain injury after subarachnoid hemorrhage in rats. Crit Care Med. 2010, 38: 612-618. 10.1097/CCM.0b013e3181c027ae.PubMedCentralPubMed
62.
go back to reference Maddahi A, Ansar S, Chen Q, Edvinsson L: Blockade of the MEK/ERK pathway with a raf inhibitor prevents activation of pro-inflammatory mediators in cerebral arteries and reduction in cerebral blood flow after subarachnoid hemorrhage in a rat model. J Cereb Blood Flow Metab. 2011, 31: 144-154. 10.1038/jcbfm.2010.62.PubMedCentralPubMed Maddahi A, Ansar S, Chen Q, Edvinsson L: Blockade of the MEK/ERK pathway with a raf inhibitor prevents activation of pro-inflammatory mediators in cerebral arteries and reduction in cerebral blood flow after subarachnoid hemorrhage in a rat model. J Cereb Blood Flow Metab. 2011, 31: 144-154. 10.1038/jcbfm.2010.62.PubMedCentralPubMed
63.
go back to reference Pan Y, Chen KF, Lin YX, Wu W, Zhou X, Zhang X, Zhang X, Shi J: Intracisternal administration of SB203580, a p38 mitogen-activated protein kinase inhibitor, attenuates cerebral vasospasm via inhibition of tumor-necrosis factor-alpha. J Clin Neurosci. 2013, 20: 726-730. 10.1016/j.jocn.2012.09.012.PubMed Pan Y, Chen KF, Lin YX, Wu W, Zhou X, Zhang X, Zhang X, Shi J: Intracisternal administration of SB203580, a p38 mitogen-activated protein kinase inhibitor, attenuates cerebral vasospasm via inhibition of tumor-necrosis factor-alpha. J Clin Neurosci. 2013, 20: 726-730. 10.1016/j.jocn.2012.09.012.PubMed
64.
go back to reference Ouyang L, Shi Z, Zhao S, Wang FT, Zhou TT, Liu B, Bao JK: Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif. 2012, 45: 487-498. 10.1111/j.1365-2184.2012.00845.x.PubMed Ouyang L, Shi Z, Zhao S, Wang FT, Zhou TT, Liu B, Bao JK: Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif. 2012, 45: 487-498. 10.1111/j.1365-2184.2012.00845.x.PubMed
65.
go back to reference Perez-Pinzon MA, Stetler RA, Fiskum G: Novel mitochondrial targets for neuroprotection. J Cereb Blood Flow Metab. 2012, 32: 1362-1376. 10.1038/jcbfm.2012.32.PubMedCentralPubMed Perez-Pinzon MA, Stetler RA, Fiskum G: Novel mitochondrial targets for neuroprotection. J Cereb Blood Flow Metab. 2012, 32: 1362-1376. 10.1038/jcbfm.2012.32.PubMedCentralPubMed
66.
go back to reference Gao C, Liu X, Liu W, Shi H, Zhao Z, Chen H, Zhao S: Anti-apoptotic and neuroprotective effects of tetramethylpyrazine following subarachnoid hemorrhage in rats. Auton Neurosci. 2008, 141: 22-30. 10.1016/j.autneu.2008.04.007.PubMed Gao C, Liu X, Liu W, Shi H, Zhao Z, Chen H, Zhao S: Anti-apoptotic and neuroprotective effects of tetramethylpyrazine following subarachnoid hemorrhage in rats. Auton Neurosci. 2008, 141: 22-30. 10.1016/j.autneu.2008.04.007.PubMed
67.
go back to reference Cheng G, Wei L, Zhi-dan S, Shi-guang Z, Xiang-zhen L: Atorvastatin ameliorates cerebral vasospasm and early brain injury after subarachnoid hemorrhage and inhibits caspase-dependent apoptosis pathway. BMC Neurosci. 2009, 10: 7-10.1186/1471-2202-10-7.PubMedCentralPubMed Cheng G, Wei L, Zhi-dan S, Shi-guang Z, Xiang-zhen L: Atorvastatin ameliorates cerebral vasospasm and early brain injury after subarachnoid hemorrhage and inhibits caspase-dependent apoptosis pathway. BMC Neurosci. 2009, 10: 7-10.1186/1471-2202-10-7.PubMedCentralPubMed
68.
go back to reference Endo H, Nito C, Kamada H, Yu F, Chan PH: Akt/GSK3β survival signaling is involved in acute brain injury after subarachnoid hemorrhage in rats. Stroke. 2006, 37: 2140-2146. 10.1161/01.STR.0000229888.55078.72.PubMed Endo H, Nito C, Kamada H, Yu F, Chan PH: Akt/GSK3β survival signaling is involved in acute brain injury after subarachnoid hemorrhage in rats. Stroke. 2006, 37: 2140-2146. 10.1161/01.STR.0000229888.55078.72.PubMed
69.
go back to reference Cahill J, Calvert JW, Zhang JH: Mechanisms of early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2006, 26: 1341-1353. 10.1038/sj.jcbfm.9600283.PubMed Cahill J, Calvert JW, Zhang JH: Mechanisms of early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2006, 26: 1341-1353. 10.1038/sj.jcbfm.9600283.PubMed
70.
go back to reference Palade C, Ciurea AV, Nica DA, Savu R, Moisa HA: Interference of apoptosis in the pathophysiology of subarachnoid hemorrhage. Asian J Neurosurg. 2013, 8: 106-111. 10.4103/1793-5482.116389.PubMedCentralPubMed Palade C, Ciurea AV, Nica DA, Savu R, Moisa HA: Interference of apoptosis in the pathophysiology of subarachnoid hemorrhage. Asian J Neurosurg. 2013, 8: 106-111. 10.4103/1793-5482.116389.PubMedCentralPubMed
71.
go back to reference Nijboer CH, Heijnen CJ, van der Kooij MA, Zijlstra J, van Velthoven CTJ, Culmsee C, van Bel F, Hagberg H, Kavelaars A: Targeting the p53 pathway to protect the neonatal ischemic brain. Ann Neurol. 2011, 70: 255-264. 10.1002/ana.22413.PubMed Nijboer CH, Heijnen CJ, van der Kooij MA, Zijlstra J, van Velthoven CTJ, Culmsee C, van Bel F, Hagberg H, Kavelaars A: Targeting the p53 pathway to protect the neonatal ischemic brain. Ann Neurol. 2011, 70: 255-264. 10.1002/ana.22413.PubMed
72.
go back to reference Cahill J, Calvert JW, Solaroglu I, Zhang JH: Vasospasm and p53-induced apoptosis in an experimental model of subarachnoid hemorrhage. Stroke. 2006, 37: 1868-1874. 10.1161/01.STR.0000226995.27230.96.PubMed Cahill J, Calvert JW, Solaroglu I, Zhang JH: Vasospasm and p53-induced apoptosis in an experimental model of subarachnoid hemorrhage. Stroke. 2006, 37: 1868-1874. 10.1161/01.STR.0000226995.27230.96.PubMed
73.
go back to reference Cahill J, Calvert JW, Marcantonio S, Zhang JH: p53 may play an orchestrating role in apoptotic cell death after experimental subarachnoid hemorrhage. Neurosurgery. 2007, 60: 531-545.PubMed Cahill J, Calvert JW, Marcantonio S, Zhang JH: p53 may play an orchestrating role in apoptotic cell death after experimental subarachnoid hemorrhage. Neurosurgery. 2007, 60: 531-545.PubMed
74.
go back to reference Yan J, Chen C, Hu Q, Yang X, Lei J, Yang L, Wang K, Qin L, Huang H, Zhou C: The role of p53 in brain edema after 24 hours of experimental subarachnoid hemorrhage in a rat model. Exp Neurol. 2008, 214: 37-46. 10.1016/j.expneurol.2008.07.006.PubMed Yan J, Chen C, Hu Q, Yang X, Lei J, Yang L, Wang K, Qin L, Huang H, Zhou C: The role of p53 in brain edema after 24 hours of experimental subarachnoid hemorrhage in a rat model. Exp Neurol. 2008, 214: 37-46. 10.1016/j.expneurol.2008.07.006.PubMed
75.
go back to reference Moll UM, Wolff S, Speidel D, Deppert W: Transcription-independent pro-apoptotic functions of p53. Curr Opin Cell Biol. 2005, 17: 631-636. 10.1016/j.ceb.2005.09.007.PubMed Moll UM, Wolff S, Speidel D, Deppert W: Transcription-independent pro-apoptotic functions of p53. Curr Opin Cell Biol. 2005, 17: 631-636. 10.1016/j.ceb.2005.09.007.PubMed
76.
go back to reference Kaiser M, Kuhnl A, Reins J, Fischer S, Ortiz-Tanchez J, Schlee C, Mochmann LH, Heesch S, Benlasfer O, Hofmann WK, et al: Antileukemic activity of the HSP70 inhibitor pifithrin-mu in acute leukemia. Blood Cancer J. 2011, 1: e28-10.1038/bcj.2011.28.PubMedCentralPubMed Kaiser M, Kuhnl A, Reins J, Fischer S, Ortiz-Tanchez J, Schlee C, Mochmann LH, Heesch S, Benlasfer O, Hofmann WK, et al: Antileukemic activity of the HSP70 inhibitor pifithrin-mu in acute leukemia. Blood Cancer J. 2011, 1: e28-10.1038/bcj.2011.28.PubMedCentralPubMed
77.
go back to reference Matz PG, Sundaresan S, Sharp FR, Weinstein PR: Induction of HSP70 in rat brain following subarachnoid hemorrhage produced by endovascular perforation. J Neurosurg. 1996, 85: 138-145. 10.3171/jns.1996.85.1.0138.PubMed Matz PG, Sundaresan S, Sharp FR, Weinstein PR: Induction of HSP70 in rat brain following subarachnoid hemorrhage produced by endovascular perforation. J Neurosurg. 1996, 85: 138-145. 10.3171/jns.1996.85.1.0138.PubMed
78.
go back to reference van den Tweel ER, Peeters-Scholte CM, Van BF, Heijnen CJ, Groenendaal F: Inhibition of nNOS and iNOS following hypoxia-ischemia improves long-term outcome but does not influence the inflammatory response in the neonatal rat brain. Dev Neurosci. 2002, 24: 389-395. 10.1159/000069044.PubMed van den Tweel ER, Peeters-Scholte CM, Van BF, Heijnen CJ, Groenendaal F: Inhibition of nNOS and iNOS following hypoxia-ischemia improves long-term outcome but does not influence the inflammatory response in the neonatal rat brain. Dev Neurosci. 2002, 24: 389-395. 10.1159/000069044.PubMed
79.
go back to reference Heck TG, Schaler CM, de Bittencourt PIH: HSP70 expression: does it a novel fatigue signaling factor from immune system to the brain?. Cell Biochem Funct. 2011, 29: 215-226. 10.1002/cbf.1739.PubMed Heck TG, Schaler CM, de Bittencourt PIH: HSP70 expression: does it a novel fatigue signaling factor from immune system to the brain?. Cell Biochem Funct. 2011, 29: 215-226. 10.1002/cbf.1739.PubMed
80.
go back to reference Turturici G, Sconzo G, Geraci F: Hsp70 and its molecular role in nervous system diseases. Biochem Res Int. 2011, 2011: 618127.PubMedCentralPubMed Turturici G, Sconzo G, Geraci F: Hsp70 and its molecular role in nervous system diseases. Biochem Res Int. 2011, 2011: 618127.PubMedCentralPubMed
81.
go back to reference Sekihara K, Harashima N, Tongu M, Tamaki Y, Uchida N, Inomata T, Harada M: Pifithrin-mu, an inhibitor of Heat-Shock Protein 70, can increase the antitumor effects of hyperthermia against human prostate cancer cells. PLoS One. 2013, 8: e78772-10.1371/journal.pone.0078772.PubMedCentralPubMed Sekihara K, Harashima N, Tongu M, Tamaki Y, Uchida N, Inomata T, Harada M: Pifithrin-mu, an inhibitor of Heat-Shock Protein 70, can increase the antitumor effects of hyperthermia against human prostate cancer cells. PLoS One. 2013, 8: e78772-10.1371/journal.pone.0078772.PubMedCentralPubMed
82.
go back to reference Ayer RE, Zhang JH: The clinical significance of acute brain injury in subarachnoid hemorrhage and opportunity for intervention. Acta Neurochir Suppl. 2008, 105: 179-184. 10.1007/978-3-211-09469-3_35.PubMed Ayer RE, Zhang JH: The clinical significance of acute brain injury in subarachnoid hemorrhage and opportunity for intervention. Acta Neurochir Suppl. 2008, 105: 179-184. 10.1007/978-3-211-09469-3_35.PubMed
83.
go back to reference Prunell GF, Svendgaard NA, Alkass K, Mathiesen T: Delayed cell death related to acute cerebral blood flow changes following subarachnoid hemorrhage in the rat brain. J Neurosurg. 2005, 102: 1046-1054. 10.3171/jns.2005.102.6.1046.PubMed Prunell GF, Svendgaard NA, Alkass K, Mathiesen T: Delayed cell death related to acute cerebral blood flow changes following subarachnoid hemorrhage in the rat brain. J Neurosurg. 2005, 102: 1046-1054. 10.3171/jns.2005.102.6.1046.PubMed
84.
go back to reference Yan J, Li L, Khatibi NH, Yang L, Wang K, Zhang W, Martin RD, Han J, Zhang J, Zhou C: Blood-brain barrier disruption following subarachnoid hemorrhage may be facilitated through PUMA induction of endothelial cell apoptosis from the endoplasmic reticulum. Exp Neurol. 2011, 230: 240-247. 10.1016/j.expneurol.2011.04.022.PubMed Yan J, Li L, Khatibi NH, Yang L, Wang K, Zhang W, Martin RD, Han J, Zhang J, Zhou C: Blood-brain barrier disruption following subarachnoid hemorrhage may be facilitated through PUMA induction of endothelial cell apoptosis from the endoplasmic reticulum. Exp Neurol. 2011, 230: 240-247. 10.1016/j.expneurol.2011.04.022.PubMed
85.
go back to reference Jing CH, Wang L, Liu PP, Wu C, Ruan D, Chen G: Autophagy activation is associated with neuroprotection against apoptosis via a mitochondrial pathway in a rat model of subarachnoid hemorrhage. Neuroscience. 2012, 213: 144-153.PubMed Jing CH, Wang L, Liu PP, Wu C, Ruan D, Chen G: Autophagy activation is associated with neuroprotection against apoptosis via a mitochondrial pathway in a rat model of subarachnoid hemorrhage. Neuroscience. 2012, 213: 144-153.PubMed
86.
go back to reference Wang X, Han W, Du X, Zhu C, Carlsson Y, Mallard C, Jacotot E, Hagberg H: Neuroprotective effect of Bax-inhibiting peptide on neonatal brain injury. Stroke. 2010, 41: 2050-2055. 10.1161/STROKEAHA.110.589051.PubMed Wang X, Han W, Du X, Zhu C, Carlsson Y, Mallard C, Jacotot E, Hagberg H: Neuroprotective effect of Bax-inhibiting peptide on neonatal brain injury. Stroke. 2010, 41: 2050-2055. 10.1161/STROKEAHA.110.589051.PubMed
87.
go back to reference Zhou C, Yamaguchi M, Kusaka G, Schonholz C, Nanda A, Zhang JH: Caspase inhibitors prevent endothelial apoptosis and cerebral vasospasm in dog model of experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2004, 24: 419-431. 10.1097/00004647-200404000-00007.PubMed Zhou C, Yamaguchi M, Kusaka G, Schonholz C, Nanda A, Zhang JH: Caspase inhibitors prevent endothelial apoptosis and cerebral vasospasm in dog model of experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2004, 24: 419-431. 10.1097/00004647-200404000-00007.PubMed
88.
go back to reference Iseda K, Ono S, Onoda K, Satoh M, Manabe H, Nishiguchi M, Takahashi K, Tokunaga K, Sugiu K, Date I: Antivasospastic and antiinflammatory effects of caspase inhibitor in experimental subarachnoid hemorrhage. J Neurosurg. 2007, 107: 128-135. 10.3171/JNS-07/07/0128.PubMed Iseda K, Ono S, Onoda K, Satoh M, Manabe H, Nishiguchi M, Takahashi K, Tokunaga K, Sugiu K, Date I: Antivasospastic and antiinflammatory effects of caspase inhibitor in experimental subarachnoid hemorrhage. J Neurosurg. 2007, 107: 128-135. 10.3171/JNS-07/07/0128.PubMed
89.
go back to reference Park S, Yamaguchi M, Zhou C, Calvert JW, Tang J, Zhang JH: Neurovascular protection reduces early brain injury after subarachnoid hemorrhage. Stroke. 2004, 35: 2412-2417. 10.1161/01.STR.0000141162.29864.e9.PubMed Park S, Yamaguchi M, Zhou C, Calvert JW, Tang J, Zhang JH: Neurovascular protection reduces early brain injury after subarachnoid hemorrhage. Stroke. 2004, 35: 2412-2417. 10.1161/01.STR.0000141162.29864.e9.PubMed
90.
go back to reference Krafft PR, Caner B, Klebe D, Rolland WB, Tang J, Zhang JH: PHA-543613 preserves blood brain barrier integrity after intracerebral hemorrhage in mice. Stroke. 2013, 44: 1743-1747. 10.1161/STROKEAHA.111.000427.PubMedCentralPubMed Krafft PR, Caner B, Klebe D, Rolland WB, Tang J, Zhang JH: PHA-543613 preserves blood brain barrier integrity after intracerebral hemorrhage in mice. Stroke. 2013, 44: 1743-1747. 10.1161/STROKEAHA.111.000427.PubMedCentralPubMed
91.
go back to reference Neumar RW: Molecular mechanisms of ischemic neuronal injury. Ann Emerg Med. 2000, 36: 483-506.PubMed Neumar RW: Molecular mechanisms of ischemic neuronal injury. Ann Emerg Med. 2000, 36: 483-506.PubMed
92.
go back to reference Harris HE, Andersson U, Pisetsky DS: HMGB1: a multifunctional alarmin driving autoimmune and inflammatory disease. Nat Rev Rheumatol. 2012, 8: 195-202. 10.1038/nrrheum.2011.222.PubMed Harris HE, Andersson U, Pisetsky DS: HMGB1: a multifunctional alarmin driving autoimmune and inflammatory disease. Nat Rev Rheumatol. 2012, 8: 195-202. 10.1038/nrrheum.2011.222.PubMed
93.
go back to reference Kang R, Livesey KM, Zeh HJ, Lotze MT, Tang D: HMGB1 as an autophagy sensor in oxidative stress. Autophagy. 2011, 7: 904-906. 10.4161/auto.7.8.15704.PubMed Kang R, Livesey KM, Zeh HJ, Lotze MT, Tang D: HMGB1 as an autophagy sensor in oxidative stress. Autophagy. 2011, 7: 904-906. 10.4161/auto.7.8.15704.PubMed
94.
go back to reference Venereau E, Casalgrandi M, Schiraldi M, Antoine DJ, Cattaneo A, De MF, Liu J, Antonelli A, Preti A, Raeli L, et al: Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release. J Exp Med. 2012, 209: 1519-1528. 10.1084/jem.20120189.PubMedCentralPubMed Venereau E, Casalgrandi M, Schiraldi M, Antoine DJ, Cattaneo A, De MF, Liu J, Antonelli A, Preti A, Raeli L, et al: Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release. J Exp Med. 2012, 209: 1519-1528. 10.1084/jem.20120189.PubMedCentralPubMed
95.
go back to reference Murakami K, Koide M, Dumont TM, Russell SR, Tranmer BI, Wellman GC: Subarachnoid hemorrhage induces gliosis and increased expression of the pro-inflammatory cytokine high mobility group box 1 protein. Transl Stroke Res. 2011, 2: 72-79. 10.1007/s12975-010-0052-2.PubMedCentralPubMed Murakami K, Koide M, Dumont TM, Russell SR, Tranmer BI, Wellman GC: Subarachnoid hemorrhage induces gliosis and increased expression of the pro-inflammatory cytokine high mobility group box 1 protein. Transl Stroke Res. 2011, 2: 72-79. 10.1007/s12975-010-0052-2.PubMedCentralPubMed
96.
go back to reference Hreggvidsdottir HS, Lundberg AM, Aveberger AC, Klevenvall L, Andersson U, Harris HE: High mobility group box protein 1 (HMGB1)-partner molecule complexes enhance cytokine production by signaling through the partner molecule receptor. Mol Med. 2012, 18: 224-230.PubMedCentralPubMed Hreggvidsdottir HS, Lundberg AM, Aveberger AC, Klevenvall L, Andersson U, Harris HE: High mobility group box protein 1 (HMGB1)-partner molecule complexes enhance cytokine production by signaling through the partner molecule receptor. Mol Med. 2012, 18: 224-230.PubMedCentralPubMed
97.
go back to reference Edye ME, Lopez-Castejon G, Allan SM, Brough D: Acidosis drives damage-associated molecular pattern (DAMP)-induced interleukin-1 secretion via a caspase-1-independent pathway. J Biol Chem. 2013, 288: 30485-30494. 10.1074/jbc.M113.478941.PubMedCentralPubMed Edye ME, Lopez-Castejon G, Allan SM, Brough D: Acidosis drives damage-associated molecular pattern (DAMP)-induced interleukin-1 secretion via a caspase-1-independent pathway. J Biol Chem. 2013, 288: 30485-30494. 10.1074/jbc.M113.478941.PubMedCentralPubMed
98.
go back to reference Sun Q, Wang F, Li W, Li W, Hu Y, Li S, Zhu J, Zhou M, Hang C: Glycyrrhizic acid confers neuroprotection after subarachnoid hemorrhage via inhibition of high mobility group box-1 protein: a hypothesis for novel therapy of subarachnoid hemorrhage. Med Hypotheses. 2013, 81: 268-268. 10.1016/j.mehy.2013.04.032. Sun Q, Wang F, Li W, Li W, Hu Y, Li S, Zhu J, Zhou M, Hang C: Glycyrrhizic acid confers neuroprotection after subarachnoid hemorrhage via inhibition of high mobility group box-1 protein: a hypothesis for novel therapy of subarachnoid hemorrhage. Med Hypotheses. 2013, 81: 268-268. 10.1016/j.mehy.2013.04.032.
99.
go back to reference Bialik S, Zalckvar E, Ber Y, Rubinstein AD, Kimchi A: Systems biology analysis of programmed cell death. Trends Biochem Sci. 2010, 35: 556-564. 10.1016/j.tibs.2010.04.008.PubMed Bialik S, Zalckvar E, Ber Y, Rubinstein AD, Kimchi A: Systems biology analysis of programmed cell death. Trends Biochem Sci. 2010, 35: 556-564. 10.1016/j.tibs.2010.04.008.PubMed
100.
go back to reference Lee JY, He Y, Sagher O, Keep R, Hua Y, Xi G: Activated autophagy pathway in experimental subarachnoid hemorrhage. Brain Res. 2009, 1287: 126-135.PubMed Lee JY, He Y, Sagher O, Keep R, Hua Y, Xi G: Activated autophagy pathway in experimental subarachnoid hemorrhage. Brain Res. 2009, 1287: 126-135.PubMed
101.
go back to reference Wang Z, Shi XY, Yin J, Zuo G, Zhang J, Chen G: Role of autophagy in early brain injury after experimental subarachnoid hemorrhage. J Mol Neurosci. 2012, 46: 192-202. 10.1007/s12031-011-9575-6.PubMed Wang Z, Shi XY, Yin J, Zuo G, Zhang J, Chen G: Role of autophagy in early brain injury after experimental subarachnoid hemorrhage. J Mol Neurosci. 2012, 46: 192-202. 10.1007/s12031-011-9575-6.PubMed
102.
go back to reference Zhao H, Ji Z, Tang D, Yan C, Zhao W, Gao C: Role of autophagy in early brain injury after subarachnoid hemorrhage in rats. Mol Biol Rep. 2013, 40: 819-827. 10.1007/s11033-012-2120-z.PubMed Zhao H, Ji Z, Tang D, Yan C, Zhao W, Gao C: Role of autophagy in early brain injury after subarachnoid hemorrhage in rats. Mol Biol Rep. 2013, 40: 819-827. 10.1007/s11033-012-2120-z.PubMed
103.
go back to reference Fayaz S, Suvanish KV, Rajanikant G: Necroptosis: who knew there were so many interesting ways to die?. CNS Neurol Disord Drug Targets. 2013, in press Fayaz S, Suvanish KV, Rajanikant G: Necroptosis: who knew there were so many interesting ways to die?. CNS Neurol Disord Drug Targets. 2013, in press
104.
go back to reference Northington FJ, Chavez-Valdez R, Graham EM, Razdan S, Gauda EB, Martin LJ: Necrostatin decreases oxidative damage, inflammation, and injury after neonatal HI. J Cereb Blood Flow Metab. 2011, 31: 178-189. 10.1038/jcbfm.2010.72.PubMedCentralPubMed Northington FJ, Chavez-Valdez R, Graham EM, Razdan S, Gauda EB, Martin LJ: Necrostatin decreases oxidative damage, inflammation, and injury after neonatal HI. J Cereb Blood Flow Metab. 2011, 31: 178-189. 10.1038/jcbfm.2010.72.PubMedCentralPubMed
105.
go back to reference Chavez-Valdez R, Martin LJ, Flock DL, Northington FJ: Necrostatin-1 attenuates mitochondrial dysfunction in neurons and astrocytes following neonatal hypoxia-ischemia. Neuroscience. 2012, 219: 192-203.PubMedCentralPubMed Chavez-Valdez R, Martin LJ, Flock DL, Northington FJ: Necrostatin-1 attenuates mitochondrial dysfunction in neurons and astrocytes following neonatal hypoxia-ischemia. Neuroscience. 2012, 219: 192-203.PubMedCentralPubMed
106.
go back to reference Wang YQ, Wang L, Zhang MY, Wang T, Bao HJ, Liu WL, Dai DK, Zhang L, Chang P, Dong WW, et al: Necrostatin-1 suppresses autophagy and apoptosis in mice traumatic brain injury model. Neurochem Res. 2012, 37: 1849-1858. 10.1007/s11064-012-0791-4.PubMed Wang YQ, Wang L, Zhang MY, Wang T, Bao HJ, Liu WL, Dai DK, Zhang L, Chang P, Dong WW, et al: Necrostatin-1 suppresses autophagy and apoptosis in mice traumatic brain injury model. Neurochem Res. 2012, 37: 1849-1858. 10.1007/s11064-012-0791-4.PubMed
107.
go back to reference Chang P, Dong W, Zhang M, Wang Z, Wang Y, Wang T, Gao Y, Meng H, Luo B, Luo C, et al: Anti-necroptosis chemical necrostatin-1 can also suppress apoptotic and autophagic pathway to exert neuroprotective effect in mice intracerebral hemorrhage model. J Mol Neurosci. 2013, in press Chang P, Dong W, Zhang M, Wang Z, Wang Y, Wang T, Gao Y, Meng H, Luo B, Luo C, et al: Anti-necroptosis chemical necrostatin-1 can also suppress apoptotic and autophagic pathway to exert neuroprotective effect in mice intracerebral hemorrhage model. J Mol Neurosci. 2013, in press
108.
go back to reference Wagner EF: AP-1 - Introductory remarks. Oncogene. 2001, 20: 2334-2335. 10.1038/sj.onc.1204416.PubMed Wagner EF: AP-1 - Introductory remarks. Oncogene. 2001, 20: 2334-2335. 10.1038/sj.onc.1204416.PubMed
109.
go back to reference Chen D, Wei X, Guan J, Yuan J, Peng Y, Song L, Liu Y: Inhibition of c-Jun N-terminal kinase prevents blood brain barrier disruption and normalizes the expression of tight junction proteins clautin-5 and ZO-1 in a rat model of subarachnoid hemorrhage. Acta Neurochir. 2012, 154: 1469-1476. 10.1007/s00701-012-1328-y.PubMed Chen D, Wei X, Guan J, Yuan J, Peng Y, Song L, Liu Y: Inhibition of c-Jun N-terminal kinase prevents blood brain barrier disruption and normalizes the expression of tight junction proteins clautin-5 and ZO-1 in a rat model of subarachnoid hemorrhage. Acta Neurochir. 2012, 154: 1469-1476. 10.1007/s00701-012-1328-y.PubMed
110.
go back to reference Yatsushige H, Yamaguchi M, Zhou C, Calvert JW, Zhang JH: Role of c-Jun N-terminal kinase in cerebral vasospasm after experimental subarachnoid hemorrhage. Stroke. 2005, 36: 1538-1543. 10.1161/01.STR.0000170713.22011.c8.PubMed Yatsushige H, Yamaguchi M, Zhou C, Calvert JW, Zhang JH: Role of c-Jun N-terminal kinase in cerebral vasospasm after experimental subarachnoid hemorrhage. Stroke. 2005, 36: 1538-1543. 10.1161/01.STR.0000170713.22011.c8.PubMed
111.
go back to reference Yatsushige H, Ostrowski RP, Tsubokawa T, Colohan A, Zhang JH: Role of c-Jun N-terminal kinase in early brain injury after subarachnoid hemorrhage. J Neurosci Res. 2007, 85: 1436-1448. 10.1002/jnr.21281.PubMed Yatsushige H, Ostrowski RP, Tsubokawa T, Colohan A, Zhang JH: Role of c-Jun N-terminal kinase in early brain injury after subarachnoid hemorrhage. J Neurosci Res. 2007, 85: 1436-1448. 10.1002/jnr.21281.PubMed
112.
go back to reference Borsello T, Clarke PGH, Hirt L, Vercelli A, Repici M, Schorderet DF, Bogousslavsky J, Bonny C: A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia. Nat Med. 2003, 9: 1180-1186. 10.1038/nm911.PubMed Borsello T, Clarke PGH, Hirt L, Vercelli A, Repici M, Schorderet DF, Bogousslavsky J, Bonny C: A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia. Nat Med. 2003, 9: 1180-1186. 10.1038/nm911.PubMed
113.
go back to reference Esneault E, Castagne V, Moser P, Bonny C, Bernaudin M: D-JNKi, a peptide inhibitor of c-Jun N-terminal kinase, promotes functional recovery after transient focal cerebral ischemia in rats. Neuroscience. 2008, 152: 308-320. 10.1016/j.neuroscience.2007.12.036.PubMed Esneault E, Castagne V, Moser P, Bonny C, Bernaudin M: D-JNKi, a peptide inhibitor of c-Jun N-terminal kinase, promotes functional recovery after transient focal cerebral ischemia in rats. Neuroscience. 2008, 152: 308-320. 10.1016/j.neuroscience.2007.12.036.PubMed
114.
go back to reference Michel-Monigadon D, Bonny C, Hirt L: c-Jun N-terminal kinase pathway inhibition in intracerebral hemorrhage. Cerebrovasc Dis. 2010, 29: 564-570. 10.1159/000306643.PubMed Michel-Monigadon D, Bonny C, Hirt L: c-Jun N-terminal kinase pathway inhibition in intracerebral hemorrhage. Cerebrovasc Dis. 2010, 29: 564-570. 10.1159/000306643.PubMed
115.
go back to reference Nijboer CH, van der Kooij MA, van Bel F, Ohl F, Heijnen CJ, Kavelaars A: Inhibition of the JNK/AP-1 pathway reduces neuronal death and improves behavioral outcome after neonatal hypoxic -ischemic brain injury. Brain Behav Immun. 2010, 24: 812-821. 10.1016/j.bbi.2009.09.008.PubMed Nijboer CH, van der Kooij MA, van Bel F, Ohl F, Heijnen CJ, Kavelaars A: Inhibition of the JNK/AP-1 pathway reduces neuronal death and improves behavioral outcome after neonatal hypoxic -ischemic brain injury. Brain Behav Immun. 2010, 24: 812-821. 10.1016/j.bbi.2009.09.008.PubMed
116.
go back to reference Benakis C, Vaslin A, Pasquali C, Hirt L: Neuroprotection by inhibiting the c-Jun N-terminal kinase pathway after cerebral ischemia occurs independently of interleukin-6 and keratinocyte-derived chemokine (KC/CXCL1) secretion. J Neuroinflammation. 2012, 9: 76-10.1186/1742-2094-9-76.PubMedCentralPubMed Benakis C, Vaslin A, Pasquali C, Hirt L: Neuroprotection by inhibiting the c-Jun N-terminal kinase pathway after cerebral ischemia occurs independently of interleukin-6 and keratinocyte-derived chemokine (KC/CXCL1) secretion. J Neuroinflammation. 2012, 9: 76-10.1186/1742-2094-9-76.PubMedCentralPubMed
117.
go back to reference Nijboer CH, Bonestroo HJ, Zijlstra J, Kavelaars A, Heijnen CJ: Mitochondrial JNK phosphorylation as a novel therapeutic target to inhibit neuroinflammation and apoptosis after neonatal ischemic brain damage. Neurobiol Dis. 2013, 54: 432-444.PubMed Nijboer CH, Bonestroo HJ, Zijlstra J, Kavelaars A, Heijnen CJ: Mitochondrial JNK phosphorylation as a novel therapeutic target to inhibit neuroinflammation and apoptosis after neonatal ischemic brain damage. Neurobiol Dis. 2013, 54: 432-444.PubMed
118.
go back to reference Park GH, Jeon SJ, Ko HM, Ryu JR, Lee JM, Kim HY, Han SH, Kang YS, Park SH, Shin CY, et al: Activation of microglial cells via protease-activated receptor 2 mediates neuronal cell death in cultured rat primary neuron. Nitric Oxide. 2010, 22: 18-29. 10.1016/j.niox.2009.10.008.PubMed Park GH, Jeon SJ, Ko HM, Ryu JR, Lee JM, Kim HY, Han SH, Kang YS, Park SH, Shin CY, et al: Activation of microglial cells via protease-activated receptor 2 mediates neuronal cell death in cultured rat primary neuron. Nitric Oxide. 2010, 22: 18-29. 10.1016/j.niox.2009.10.008.PubMed
119.
go back to reference Shishodia S, Aggarwal BB: Nuclear factor-kappaB activation: a question of life or death. J Biochem Mol Biol. 2002, 35: 28-40. 10.5483/BMBRep.2002.35.1.028.PubMed Shishodia S, Aggarwal BB: Nuclear factor-kappaB activation: a question of life or death. J Biochem Mol Biol. 2002, 35: 28-40. 10.5483/BMBRep.2002.35.1.028.PubMed
120.
go back to reference Aoki T, Kataoka H, Shimamura M, Nakagami H, Wakayama K, Moriwaki T, Ishibashi R, Nozaki K, Morishita R, Hashimoto N: NF-κB is a key mediator of cerebral aneurysm formation. Circulation. 2007, 116: 2830-2840. 10.1161/CIRCULATIONAHA.107.728303.PubMed Aoki T, Kataoka H, Shimamura M, Nakagami H, Wakayama K, Moriwaki T, Ishibashi R, Nozaki K, Morishita R, Hashimoto N: NF-κB is a key mediator of cerebral aneurysm formation. Circulation. 2007, 116: 2830-2840. 10.1161/CIRCULATIONAHA.107.728303.PubMed
121.
go back to reference You WC, Wang C, Pan Y, Zhang X, Zhou X, Zhang X, Shi J, Zhou M: Activation of nuclear factor-κB in the brain after experimental subarachnoid hemorrhage and its potential role in delayed brain injury. PLoS One. 2013, 8: e60290-10.1371/journal.pone.0060290.PubMedCentralPubMed You WC, Wang C, Pan Y, Zhang X, Zhou X, Zhang X, Shi J, Zhou M: Activation of nuclear factor-κB in the brain after experimental subarachnoid hemorrhage and its potential role in delayed brain injury. PLoS One. 2013, 8: e60290-10.1371/journal.pone.0060290.PubMedCentralPubMed
122.
go back to reference Nijboer CHA, Heijnen CJ, Groenendaal F, May MJ, van Bel F, Kavelaars A: Strong neuroprotection by inhibition of NF-κB after neonatal hypoxia-ischemia involves apoptotic mechanisms but is independent of cytokines. Stroke. 2008, 39: 2129-2137. 10.1161/STROKEAHA.107.504175.PubMed Nijboer CHA, Heijnen CJ, Groenendaal F, May MJ, van Bel F, Kavelaars A: Strong neuroprotection by inhibition of NF-κB after neonatal hypoxia-ischemia involves apoptotic mechanisms but is independent of cytokines. Stroke. 2008, 39: 2129-2137. 10.1161/STROKEAHA.107.504175.PubMed
123.
go back to reference van der Kooij MA, Nijboer CH, Ohl F, Groenendaal F, Heijnen CJ, van Bel F, Kavelaars A: NF-κB inhibition after neonatal cerebral hypoxia-ischemia improves long-term motor and cognitive outcome in rats. Neurobiol Dis. 2010, 38: 266-272. 10.1016/j.nbd.2010.01.016.PubMed van der Kooij MA, Nijboer CH, Ohl F, Groenendaal F, Heijnen CJ, van Bel F, Kavelaars A: NF-κB inhibition after neonatal cerebral hypoxia-ischemia improves long-term motor and cognitive outcome in rats. Neurobiol Dis. 2010, 38: 266-272. 10.1016/j.nbd.2010.01.016.PubMed
124.
go back to reference Suzuki H, Hasegawa Y, Chen W, Kanamaru K, Zhang JH: Recombinant osteopontin in cerebral vasospasm after subarachnoid hemorrhage. Ann Neurol. 2010, 68: 650-660. 10.1002/ana.22102.PubMedCentralPubMed Suzuki H, Hasegawa Y, Chen W, Kanamaru K, Zhang JH: Recombinant osteopontin in cerebral vasospasm after subarachnoid hemorrhage. Ann Neurol. 2010, 68: 650-660. 10.1002/ana.22102.PubMedCentralPubMed
125.
go back to reference Sodek J, Ganss B, McKee MD: Osteopontin. Crit Rev Oral Biol Med. 2000, 11: 279-303. 10.1177/10454411000110030101.PubMed Sodek J, Ganss B, McKee MD: Osteopontin. Crit Rev Oral Biol Med. 2000, 11: 279-303. 10.1177/10454411000110030101.PubMed
126.
go back to reference Grasso G, Tomasello F: Erythropoietin for subarachnoid hemorrhage: is there a reason for hope?. World Neurosurg. 2012, 77: 46-48. 10.1016/j.wneu.2011.01.028.PubMed Grasso G, Tomasello F: Erythropoietin for subarachnoid hemorrhage: is there a reason for hope?. World Neurosurg. 2012, 77: 46-48. 10.1016/j.wneu.2011.01.028.PubMed
127.
go back to reference Helbok R, Shaker E, Beer R, Chemelli A, Sojer M, Sohm F, Broessner G, Lackner P, Beck M, Zangerle A, et al: High dose erythropoietin increases brain tissue oxygen tension in severe vasospasm after subarachnoid hemorrhage. BMC Neurol. 2012, 12: 32-10.1186/1471-2377-12-32.PubMedCentralPubMed Helbok R, Shaker E, Beer R, Chemelli A, Sojer M, Sohm F, Broessner G, Lackner P, Beck M, Zangerle A, et al: High dose erythropoietin increases brain tissue oxygen tension in severe vasospasm after subarachnoid hemorrhage. BMC Neurol. 2012, 12: 32-10.1186/1471-2377-12-32.PubMedCentralPubMed
128.
go back to reference Turner JD, Mammis A, Prestigiacomo CJ: Erythropoietin for the treatment of subarachnoid hemorrhage: a review. World Neurosurg. 2010, 73: 500-507. 10.1016/j.wneu.2010.02.026.PubMed Turner JD, Mammis A, Prestigiacomo CJ: Erythropoietin for the treatment of subarachnoid hemorrhage: a review. World Neurosurg. 2010, 73: 500-507. 10.1016/j.wneu.2010.02.026.PubMed
129.
go back to reference Fan X, Heijnen CJ, van der Kooij MA, Groenendaal F, van Bel F: Beneficial effect of erythropoietin on sensorimotor function and white matter after hypoxia-ischemia in neonatal mice. Pediatr Res. 2011, 69: 56-61. 10.1203/PDR.0b013e3181fcbef3.PubMed Fan X, Heijnen CJ, van der Kooij MA, Groenendaal F, van Bel F: Beneficial effect of erythropoietin on sensorimotor function and white matter after hypoxia-ischemia in neonatal mice. Pediatr Res. 2011, 69: 56-61. 10.1203/PDR.0b013e3181fcbef3.PubMed
130.
go back to reference Gonzalez FF, Larpthaveesarp A, McQuillen P, Derugin N, Wendland M, Spadafora R, Ferriero DM: Erythropoietin increases neurogenesis and oligodendrogliosis of subventricular zone precursor cells after neonatal stroke. Stroke. 2013, in press Gonzalez FF, Larpthaveesarp A, McQuillen P, Derugin N, Wendland M, Spadafora R, Ferriero DM: Erythropoietin increases neurogenesis and oligodendrogliosis of subventricular zone precursor cells after neonatal stroke. Stroke. 2013, in press
131.
go back to reference Juul S: Neuroprotective role of erythropoietin in neonates. J Matern Fetal Neonatal Med. 2012, 25: 97-99.PubMed Juul S: Neuroprotective role of erythropoietin in neonates. J Matern Fetal Neonatal Med. 2012, 25: 97-99.PubMed
132.
go back to reference Xiong T, Qu Y, Mu D, Ferriero D: Erythropoietin for neonatal brain injury: opportunity and challenge. Int J Dev Neurosci. 2011, 29: 583-591. 10.1016/j.ijdevneu.2010.12.007.PubMed Xiong T, Qu Y, Mu D, Ferriero D: Erythropoietin for neonatal brain injury: opportunity and challenge. Int J Dev Neurosci. 2011, 29: 583-591. 10.1016/j.ijdevneu.2010.12.007.PubMed
133.
go back to reference Celik M, Gakmen N, Erbayraktar S, Akhisaroglu M, Konakc S, Ulukus C, Genc S, Genc K, Sagiroglu E, Cerami A, et al: Erythropoietin prevents motor neuron apoptosis and neurologic disability in experimental spinal cord ischemic injury. Proc Natl Acad Sci. 2002, 99: 2258-2263. 10.1073/pnas.042693799.PubMedCentralPubMed Celik M, Gakmen N, Erbayraktar S, Akhisaroglu M, Konakc S, Ulukus C, Genc S, Genc K, Sagiroglu E, Cerami A, et al: Erythropoietin prevents motor neuron apoptosis and neurologic disability in experimental spinal cord ischemic injury. Proc Natl Acad Sci. 2002, 99: 2258-2263. 10.1073/pnas.042693799.PubMedCentralPubMed
134.
go back to reference Juul SE, Anderson DK, Li Y, Christensen RD: Erythropoietin and erythropoietin receptor in the developing human central nervous system. Pediatr Res. 1998, 43: 40-49.PubMed Juul SE, Anderson DK, Li Y, Christensen RD: Erythropoietin and erythropoietin receptor in the developing human central nervous system. Pediatr Res. 1998, 43: 40-49.PubMed
135.
go back to reference Siren AL, Fratelli M, Brines M, Goemans C, Casagrande S, Lewczuk P, Keenan S, Gleiter C, Pasquali C, Capobianco A, et al: Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. Proc Natl Acad Sci. 2001, 98: 4044-4049. 10.1073/pnas.051606598.PubMedCentralPubMed Siren AL, Fratelli M, Brines M, Goemans C, Casagrande S, Lewczuk P, Keenan S, Gleiter C, Pasquali C, Capobianco A, et al: Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. Proc Natl Acad Sci. 2001, 98: 4044-4049. 10.1073/pnas.051606598.PubMedCentralPubMed
136.
go back to reference Villa P, Bigini P, Mennini T, Agnello D, Laragione T, Cagnotto A, Viviani B, Marinovich M, Cerami A, Coleman TR, et al: Erythropoietin selectively attenuates cytokine production and inflammation in cerebral ischemia by targeting neuronal apoptosis. J Exp Med. 2003, 198: 971-975. 10.1084/jem.20021067.PubMedCentralPubMed Villa P, Bigini P, Mennini T, Agnello D, Laragione T, Cagnotto A, Viviani B, Marinovich M, Cerami A, Coleman TR, et al: Erythropoietin selectively attenuates cytokine production and inflammation in cerebral ischemia by targeting neuronal apoptosis. J Exp Med. 2003, 198: 971-975. 10.1084/jem.20021067.PubMedCentralPubMed
137.
go back to reference Wang L, Zhang Z, Wang Y, Zhang R, Chopp M: Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats. Stroke. 2004, 35: 1732-1737. 10.1161/01.STR.0000132196.49028.a4.PubMed Wang L, Zhang Z, Wang Y, Zhang R, Chopp M: Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats. Stroke. 2004, 35: 1732-1737. 10.1161/01.STR.0000132196.49028.a4.PubMed
138.
go back to reference Chen G, Zhang S, Shi J, Ai J, Hang C: Effects of recombinant human erythropoietin (rhEPO) on JAK2/STAT3 pathway and endothelial apoptosis in the rabbit basilar artery after subarachnoid hemorrhage. Cytokine. 2009, 45: 162-168. 10.1016/j.cyto.2008.11.015.PubMed Chen G, Zhang S, Shi J, Ai J, Hang C: Effects of recombinant human erythropoietin (rhEPO) on JAK2/STAT3 pathway and endothelial apoptosis in the rabbit basilar artery after subarachnoid hemorrhage. Cytokine. 2009, 45: 162-168. 10.1016/j.cyto.2008.11.015.PubMed
139.
go back to reference Grasso G, Buemi M, Alafaci C, Sfacteria A, Passalacqua M, Sturiale A, Calapai G, De Vico G, Piedimonte G, Salpietro FM, et al: Beneficial effects of systemic administration of recombinant human erythropoietin in rabbits subjected to subarachnoid hemorrhage. Proc Natl Acad Sci. 2002, 99: 5627-5631. 10.1073/pnas.082097299.PubMedCentralPubMed Grasso G, Buemi M, Alafaci C, Sfacteria A, Passalacqua M, Sturiale A, Calapai G, De Vico G, Piedimonte G, Salpietro FM, et al: Beneficial effects of systemic administration of recombinant human erythropoietin in rabbits subjected to subarachnoid hemorrhage. Proc Natl Acad Sci. 2002, 99: 5627-5631. 10.1073/pnas.082097299.PubMedCentralPubMed
140.
go back to reference Zhang ZG, Chopp M: Neurorestorative therapies for stroke: underlying mechanisms and translation to the clinic. Lancet Neurol. 2009, 8: 491-500. 10.1016/S1474-4422(09)70061-4.PubMedCentralPubMed Zhang ZG, Chopp M: Neurorestorative therapies for stroke: underlying mechanisms and translation to the clinic. Lancet Neurol. 2009, 8: 491-500. 10.1016/S1474-4422(09)70061-4.PubMedCentralPubMed
141.
go back to reference Kocsis JD, Honmou O: Chapter 6 - bone marrow stem cells in experimental stroke. Progress in Brain Research. 2012, 201: 79-98.PubMed Kocsis JD, Honmou O: Chapter 6 - bone marrow stem cells in experimental stroke. Progress in Brain Research. 2012, 201: 79-98.PubMed
142.
go back to reference Scheibe F, Ladhoff J, Huck J, Grohmann M, Blazej K, Oersal A, Baeva N, Seifert M, Priller J: Immune effects of mesenchymal stromal cells in experimental stroke. J Cereb Blood Flow Metab. 2012, 32: 1578-1588. 10.1038/jcbfm.2012.55.PubMedCentralPubMed Scheibe F, Ladhoff J, Huck J, Grohmann M, Blazej K, Oersal A, Baeva N, Seifert M, Priller J: Immune effects of mesenchymal stromal cells in experimental stroke. J Cereb Blood Flow Metab. 2012, 32: 1578-1588. 10.1038/jcbfm.2012.55.PubMedCentralPubMed
143.
go back to reference Wakabayashi K, Nagai A, Sheikh AM, Shiota Y, Narantuya D, Watanabe T, Masuda J, Kobayashi S, Kim SU, Yamaguchi S: Transplantation of human mesenchymal stem cells promotes functional improvement and increased expression of neurotrophic factors in a rat focal cerebral ischemia model. J Neurosci Res. 2010, 88: 1017-1025.PubMed Wakabayashi K, Nagai A, Sheikh AM, Shiota Y, Narantuya D, Watanabe T, Masuda J, Kobayashi S, Kim SU, Yamaguchi S: Transplantation of human mesenchymal stem cells promotes functional improvement and increased expression of neurotrophic factors in a rat focal cerebral ischemia model. J Neurosci Res. 2010, 88: 1017-1025.PubMed
144.
go back to reference Donega V, van Velthoven CT, Nijboer CH, Kavelaars A, Heijnen CJ: The endogenous regenerative capacity of the damaged newborn brain: boosting neurogenesis with mesenchymal stem cell treatment. J Cereb Blood Flow Metab. 2013, 33: 625-634. 10.1038/jcbfm.2013.3.PubMedCentralPubMed Donega V, van Velthoven CT, Nijboer CH, Kavelaars A, Heijnen CJ: The endogenous regenerative capacity of the damaged newborn brain: boosting neurogenesis with mesenchymal stem cell treatment. J Cereb Blood Flow Metab. 2013, 33: 625-634. 10.1038/jcbfm.2013.3.PubMedCentralPubMed
145.
go back to reference Onda T, Honmou O, Harada K, Houkin K, Hamada H, Kocsis JD: Therapeutic benefits by human mesenchymal stem cells (hMSCs) and Ang-1 gene-modified hMSCs after cerebral ischemia. J Cereb Blood Flow Metab. 2007, 28: 329-340.PubMedCentralPubMed Onda T, Honmou O, Harada K, Houkin K, Hamada H, Kocsis JD: Therapeutic benefits by human mesenchymal stem cells (hMSCs) and Ang-1 gene-modified hMSCs after cerebral ischemia. J Cereb Blood Flow Metab. 2007, 28: 329-340.PubMedCentralPubMed
146.
go back to reference van Velthoven CTJ, Kavelaars A, van Bel F, Heijnen CJ: Repeated mesenchymal stem cell treatment after neonatal hypoxia-ischemia has distinct effects on formation and maturation of new neurons and oligodendrocytes leading to restoration of damage, corticospinal motor tract activity, and sensorimotor function. J Neurosci. 2010, 30: 9603-9611. 10.1523/JNEUROSCI.1835-10.2010.PubMed van Velthoven CTJ, Kavelaars A, van Bel F, Heijnen CJ: Repeated mesenchymal stem cell treatment after neonatal hypoxia-ischemia has distinct effects on formation and maturation of new neurons and oligodendrocytes leading to restoration of damage, corticospinal motor tract activity, and sensorimotor function. J Neurosci. 2010, 30: 9603-9611. 10.1523/JNEUROSCI.1835-10.2010.PubMed
147.
go back to reference Donega V, Van Velthoven CT, Nijboer CH, Van BF, Kas MJ, Kavelaars A, Heijnen CJ: Intranasal mesenchymal stem cell treatment for neonatal brain damage: long-term cognitive and sensorimotor improvement. PLoS One. 2013, 8: e51253-10.1371/journal.pone.0051253.PubMedCentralPubMed Donega V, Van Velthoven CT, Nijboer CH, Van BF, Kas MJ, Kavelaars A, Heijnen CJ: Intranasal mesenchymal stem cell treatment for neonatal brain damage: long-term cognitive and sensorimotor improvement. PLoS One. 2013, 8: e51253-10.1371/journal.pone.0051253.PubMedCentralPubMed
148.
go back to reference Khalili MA, Anvari M, Hekmati-Moghadam SH, Sadeghian-Nodoushan F, Fesahat F, Miresmaeili SM: Therapeutic benefit of intravenous transplantation of mesenchymal stem cells after experimental subarachnoid hemorrhage in rats. J Stroke Cerebrovasc Dis. 2012, 21: 445-451. 10.1016/j.jstrokecerebrovasdis.2010.10.005.PubMed Khalili MA, Anvari M, Hekmati-Moghadam SH, Sadeghian-Nodoushan F, Fesahat F, Miresmaeili SM: Therapeutic benefit of intravenous transplantation of mesenchymal stem cells after experimental subarachnoid hemorrhage in rats. J Stroke Cerebrovasc Dis. 2012, 21: 445-451. 10.1016/j.jstrokecerebrovasdis.2010.10.005.PubMed
149.
go back to reference Keohane A, Ryan S, Maloney E, Sullivan AM, Nolan YM: Tumor necrosis factor-α impairs neuronal differentiation but not proliferation of hippocampal neural precursor cells: role of Hes1. Mol Cell Neurosci. 2010, 43: 127-135. 10.1016/j.mcn.2009.10.003.PubMed Keohane A, Ryan S, Maloney E, Sullivan AM, Nolan YM: Tumor necrosis factor-α impairs neuronal differentiation but not proliferation of hippocampal neural precursor cells: role of Hes1. Mol Cell Neurosci. 2010, 43: 127-135. 10.1016/j.mcn.2009.10.003.PubMed
150.
go back to reference Turbic A, Leong SY, Turnley AM: Chemokines and inflammatory mediators interact to regulate adult murine neural precursor cell proliferation, survival and differentiation. PLoS One. 2011, 6: e25406-10.1371/journal.pone.0025406.PubMedCentralPubMed Turbic A, Leong SY, Turnley AM: Chemokines and inflammatory mediators interact to regulate adult murine neural precursor cell proliferation, survival and differentiation. PLoS One. 2011, 6: e25406-10.1371/journal.pone.0025406.PubMedCentralPubMed
Metadata
Title
The rodent endovascular puncture model of subarachnoid hemorrhage: mechanisms of brain damage and therapeutic strategies
Authors
Elke Kooijman
Cora H Nijboer
Cindy TJ van Velthoven
Annemieke Kavelaars
Jozef Kesecioglu
Cobi J Heijnen
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2014
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-11-2

Other articles of this Issue 1/2014

Journal of Neuroinflammation 1/2014 Go to the issue