Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2014

Open Access 01-12-2014 | Research

Cell-selective knockout and 3D confocal image analysis reveals separate roles for astrocyte-and endothelial-derived CCL2 in neuroinflammation

Authors: Debayon Paul, Shujun Ge, Yen Lemire, Evan R Jellison, David R Serwanski, Nancy H Ruddle, Joel S Pachter

Published in: Journal of Neuroinflammation | Issue 1/2014

Login to get access

Abstract

Background

Expression of chemokine CCL2 in the normal central nervous system (CNS) is nearly undetectable, but is significantly upregulated and drives neuroinflammation during experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis which is considered a contributing factor in the human disease. As astrocytes and brain microvascular endothelial cells (BMEC) forming the blood–brain barrier (BBB) are sources of CCL2 in EAE and other neuroinflammatory conditions, it is unclear if one or both CCL2 pools are critical to disease and by what mechanism(s).

Methods

Mice with selective CCL2 gene knockout (KO) in astrocytes (Astro KO) or endothelial cells (Endo KO) were used to evaluate the respective contributions of these sources to neuroinflammation, i.e., clinical disease progression, BBB damage, and parenchymal leukocyte invasion in a myelin oligodendrocyte glycoprotein peptide (MOG35-55)-induced EAE model. High-resolution 3-dimensional (3D) immunofluorescence confocal microscopy and colloidal gold immuno-electron microscopy were employed to confirm sites of CCL2 expression, and 3D immunofluorescence confocal microscopy utilized to assess inflammatory responses along the CNS microvasculature.

Results

Cell-selective loss of CCL2 immunoreactivity was demonstrated in the respective KO mice. Compared to wild-type (WT) mice, Astro KO mice showed reduced EAE severity but similar onset, while Endo KO mice displayed near normal severity but significantly delayed onset. Neither of the KO mice showed deficits in T cell proliferation, or IL-17 and IFN-γ production, following MOG35-55 exposure in vitro, or altered MOG-major histocompatibility complex class II tetramer binding. 3D confocal imaging further revealed distinct actions of the two CCL2 pools in the CNS. Astro KOs lacked the CNS leukocyte penetration and disrupted immunostaining of CLN-5 at the BBB seen during early EAE in WT mice, while Endo KOs uniquely displayed leukocytes stalled in the microvascular lumen.

Conclusions

These results point to astrocyte and endothelial pools of CCL2 each regulating different stages of neuroinflammation in EAE, and carry implications for drug delivery in neuroinflammatory disease.
Appendix
Available only for authorised users
Literature
1.
go back to reference Leonard EJ, Skeel A, Yoshimura T: Biological aspects of monocyte chemoattractant protein-1 (MCP-1). Adv Exp Med Biol. 1991, 305: 57-64. 10.1007/978-1-4684-6009-4_7.CrossRefPubMed Leonard EJ, Skeel A, Yoshimura T: Biological aspects of monocyte chemoattractant protein-1 (MCP-1). Adv Exp Med Biol. 1991, 305: 57-64. 10.1007/978-1-4684-6009-4_7.CrossRefPubMed
2.
go back to reference Mantovani A, Sozzani S, Bottazzi B, Peri G, Sciacca FL, Locati M, Colotta F: Monocyte chemotactic protein-1 (MCP-1): signal transduction and involvement in the regulation of macrophage traffic in normal and neoplastic tissues. Adv Exp Med Biol. 1993, 351: 47-54. 10.1007/978-1-4615-2952-1_6.CrossRefPubMed Mantovani A, Sozzani S, Bottazzi B, Peri G, Sciacca FL, Locati M, Colotta F: Monocyte chemotactic protein-1 (MCP-1): signal transduction and involvement in the regulation of macrophage traffic in normal and neoplastic tissues. Adv Exp Med Biol. 1993, 351: 47-54. 10.1007/978-1-4615-2952-1_6.CrossRefPubMed
3.
go back to reference Bennett JL, Elhofy A, Canto MC, Tani M, Ransohoff RM, Karpus WJ: CCL2 transgene expression in the central nervous system directs diffuse infiltration of CD45(high)CD11b(+) monocytes and enhanced Theiler’s murine encephalomyelitis virus-induced demyelinating disease. J Neurovirol. 2003, 9: 623-636.PubMed Bennett JL, Elhofy A, Canto MC, Tani M, Ransohoff RM, Karpus WJ: CCL2 transgene expression in the central nervous system directs diffuse infiltration of CD45(high)CD11b(+) monocytes and enhanced Theiler’s murine encephalomyelitis virus-induced demyelinating disease. J Neurovirol. 2003, 9: 623-636.PubMed
4.
go back to reference Toft-Hansen H, Buist R, Sun XJ, Schellenberg A, Peeling J, Owens T: Metalloproteinases control brain inflammation induced by pertussis toxin in mice overexpressing the chemokine CCL2 in the central nervous system. J Immunol. 2006, 177: 7242-7249.CrossRefPubMed Toft-Hansen H, Buist R, Sun XJ, Schellenberg A, Peeling J, Owens T: Metalloproteinases control brain inflammation induced by pertussis toxin in mice overexpressing the chemokine CCL2 in the central nervous system. J Immunol. 2006, 177: 7242-7249.CrossRefPubMed
5.
go back to reference Yadav A, Saini V, Arora S: MCP-1: chemoattractant with a role beyond immunity: a review. Clin Chim Acta. 2010, 411: 1570-1579. 10.1016/j.cca.2010.07.006.CrossRefPubMed Yadav A, Saini V, Arora S: MCP-1: chemoattractant with a role beyond immunity: a review. Clin Chim Acta. 2010, 411: 1570-1579. 10.1016/j.cca.2010.07.006.CrossRefPubMed
6.
go back to reference Izikson L, Klein RS, Luster AD, Weiner HL: Targeting monocyte recruitment in CNS autoimmune disease. Clin Immunol. 2002, 103: 125-131. 10.1006/clim.2001.5167.CrossRefPubMed Izikson L, Klein RS, Luster AD, Weiner HL: Targeting monocyte recruitment in CNS autoimmune disease. Clin Immunol. 2002, 103: 125-131. 10.1006/clim.2001.5167.CrossRefPubMed
7.
go back to reference Mahad DJ, Ransohoff RM: The role of MCP-1 (CCL2) and CCR2 in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). Semin Immunol. 2003, 15: 23-32. 10.1016/S1044-5323(02)00125-2.CrossRefPubMed Mahad DJ, Ransohoff RM: The role of MCP-1 (CCL2) and CCR2 in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). Semin Immunol. 2003, 15: 23-32. 10.1016/S1044-5323(02)00125-2.CrossRefPubMed
8.
go back to reference Conductier G, Blondeau N, Guyon A, Nahon JL, Rovere C: The role of monocyte chemoattractant protein MCP1/CCL2 in neuroinflammatory diseases. J Neuroimmunol. 2010, 224: 93-100. 10.1016/j.jneuroim.2010.05.010.CrossRefPubMed Conductier G, Blondeau N, Guyon A, Nahon JL, Rovere C: The role of monocyte chemoattractant protein MCP1/CCL2 in neuroinflammatory diseases. J Neuroimmunol. 2010, 224: 93-100. 10.1016/j.jneuroim.2010.05.010.CrossRefPubMed
9.
go back to reference Huang DR, Wang J, Kivisakk P, Rollins BJ, Ransohoff RM: Absence of monocyte chemoattractant protein 1 in mice leads to decreased local macrophage recruitment and antigen-specific T helper cell type 1 immune response in experimental autoimmune encephalomyelitis. J Exp Med. 2001, 193: 713-726. 10.1084/jem.193.6.713.PubMedCentralCrossRefPubMed Huang DR, Wang J, Kivisakk P, Rollins BJ, Ransohoff RM: Absence of monocyte chemoattractant protein 1 in mice leads to decreased local macrophage recruitment and antigen-specific T helper cell type 1 immune response in experimental autoimmune encephalomyelitis. J Exp Med. 2001, 193: 713-726. 10.1084/jem.193.6.713.PubMedCentralCrossRefPubMed
10.
go back to reference Dogan RN, Elhofy A, Karpus WJ: Production of CCL2 by central nervous system cells regulates development of murine experimental autoimmune encephalomyelitis through the recruitment of TNF- and iNOS-expressing macrophages and myeloid dendritic cells. J Immunol. 2008, 180: 7376-7384.CrossRefPubMed Dogan RN, Elhofy A, Karpus WJ: Production of CCL2 by central nervous system cells regulates development of murine experimental autoimmune encephalomyelitis through the recruitment of TNF- and iNOS-expressing macrophages and myeloid dendritic cells. J Immunol. 2008, 180: 7376-7384.CrossRefPubMed
11.
go back to reference Giraud SN, Caron CM, Pham-Dinh D, Kitabgi P, Nicot AB: Estradiol inhibits ongoing autoimmune neuroinflammation and NFkappaB-dependent CCL2 expression in reactive astrocytes. Proc Natl Acad Sci USA. 2010, 107: 8416-8421. 10.1073/pnas.0910627107.PubMedCentralCrossRefPubMed Giraud SN, Caron CM, Pham-Dinh D, Kitabgi P, Nicot AB: Estradiol inhibits ongoing autoimmune neuroinflammation and NFkappaB-dependent CCL2 expression in reactive astrocytes. Proc Natl Acad Sci USA. 2010, 107: 8416-8421. 10.1073/pnas.0910627107.PubMedCentralCrossRefPubMed
12.
go back to reference Hermann DM, ElAli A: The abluminal endothelial membrane in neurovascular remodeling in health and disease. Sci Signal. 2012, 5: re4.CrossRefPubMed Hermann DM, ElAli A: The abluminal endothelial membrane in neurovascular remodeling in health and disease. Sci Signal. 2012, 5: re4.CrossRefPubMed
13.
go back to reference Song L, Pachter JS: Monocyte chemoattractant protein-1 alters expression of tight junction-associated proteins in brain microvascular endothelial cells. Microvasc Res. 2004, 67: 78-89. 10.1016/j.mvr.2003.07.001.CrossRefPubMed Song L, Pachter JS: Monocyte chemoattractant protein-1 alters expression of tight junction-associated proteins in brain microvascular endothelial cells. Microvasc Res. 2004, 67: 78-89. 10.1016/j.mvr.2003.07.001.CrossRefPubMed
14.
go back to reference Stamatovic SM, Keep RF, Kunkel SL, Andjelkovic AV: Potential role of MCP-1 in endothelial cell tight junction ‘opening’: signaling via Rho and Rho kinase. J Cell Sci. 2003, 116: 4615-4628. 10.1242/jcs.00755.CrossRefPubMed Stamatovic SM, Keep RF, Kunkel SL, Andjelkovic AV: Potential role of MCP-1 in endothelial cell tight junction ‘opening’: signaling via Rho and Rho kinase. J Cell Sci. 2003, 116: 4615-4628. 10.1242/jcs.00755.CrossRefPubMed
15.
go back to reference Yao Y, Tsirka SE: Truncation of monocyte chemoattractant protein 1 by plasmin promotes blood–brain barrier disruption. J Cell Sci. 2011, 124: 1486-1495. 10.1242/jcs.082834.PubMedCentralCrossRefPubMed Yao Y, Tsirka SE: Truncation of monocyte chemoattractant protein 1 by plasmin promotes blood–brain barrier disruption. J Cell Sci. 2011, 124: 1486-1495. 10.1242/jcs.082834.PubMedCentralCrossRefPubMed
16.
go back to reference Bennett J, Basivireddy J, Kollar A, Biron KE, Reickmann P, Jefferies WA, McQuaid S: Blood–brain barrier disruption and enhanced vascular permeability in the multiple sclerosis model EAE. J Neuroimmunol. 2010, 229: 180-191. 10.1016/j.jneuroim.2010.08.011.CrossRefPubMed Bennett J, Basivireddy J, Kollar A, Biron KE, Reickmann P, Jefferies WA, McQuaid S: Blood–brain barrier disruption and enhanced vascular permeability in the multiple sclerosis model EAE. J Neuroimmunol. 2010, 229: 180-191. 10.1016/j.jneuroim.2010.08.011.CrossRefPubMed
17.
go back to reference Meinl E, Krumbholz M, Derfuss T, Junker A, Hohlfeld R: Compartmentalization of inflammation in the CNS: a major mechanism driving progressive multiple sclerosis. J Neurol Sci. 2008, 274: 42-44. 10.1016/j.jns.2008.06.032.CrossRefPubMed Meinl E, Krumbholz M, Derfuss T, Junker A, Hohlfeld R: Compartmentalization of inflammation in the CNS: a major mechanism driving progressive multiple sclerosis. J Neurol Sci. 2008, 274: 42-44. 10.1016/j.jns.2008.06.032.CrossRefPubMed
18.
go back to reference Carrillo-de Sauvage MA, Gomez A, Ros CM, Ros-Bernal F, Martin ED, Perez-Valles A, Gallego-Sanchez JM, Fernandez-Villalba E, Barcia C, Barcia C, Herrero MT: CCL2-expressing astrocytes mediate the extravasation of T lymphocytes in the brain. Evidence from patients with glioma and experimental models in vivo. PLoS One. 2012, 7: e30762-10.1371/journal.pone.0030762.PubMedCentralCrossRefPubMed Carrillo-de Sauvage MA, Gomez A, Ros CM, Ros-Bernal F, Martin ED, Perez-Valles A, Gallego-Sanchez JM, Fernandez-Villalba E, Barcia C, Barcia C, Herrero MT: CCL2-expressing astrocytes mediate the extravasation of T lymphocytes in the brain. Evidence from patients with glioma and experimental models in vivo. PLoS One. 2012, 7: e30762-10.1371/journal.pone.0030762.PubMedCentralCrossRefPubMed
19.
go back to reference Berman JW, Guida MP, Warren J, Amat J, Brosnan CF: Localization of monocyte chemoattractant peptide-1 expression in the central nervous system in experimental autoimmune encephalomyelitis and trauma in the rat. J Immunol. 1996, 156: 3017-3023.PubMed Berman JW, Guida MP, Warren J, Amat J, Brosnan CF: Localization of monocyte chemoattractant peptide-1 expression in the central nervous system in experimental autoimmune encephalomyelitis and trauma in the rat. J Immunol. 1996, 156: 3017-3023.PubMed
20.
go back to reference Subileau EA, Rezaie P, Davies HA, Colyer FM, Greenwood J, Male DK, Romero IA: Expression of chemokines and their receptors by human brain endothelium: implications for multiple sclerosis. J Neuropathol Exp Neurol. 2009, 68: 227-240. 10.1097/NEN.0b013e318197eca7.CrossRefPubMed Subileau EA, Rezaie P, Davies HA, Colyer FM, Greenwood J, Male DK, Romero IA: Expression of chemokines and their receptors by human brain endothelium: implications for multiple sclerosis. J Neuropathol Exp Neurol. 2009, 68: 227-240. 10.1097/NEN.0b013e318197eca7.CrossRefPubMed
21.
go back to reference dos Santos AC, Barsante MM, Arantes RM, Bernard CC, Teixeira MM, Carvalho-Tavares J: CCL2 and CCL5 mediate leukocyte adhesion in experimental autoimmune encephalomyelitis–an intravital microscopy study. J Neuroimmunol. 2005, 162: 122-129. 10.1016/j.jneuroim.2005.01.020.CrossRefPubMed dos Santos AC, Barsante MM, Arantes RM, Bernard CC, Teixeira MM, Carvalho-Tavares J: CCL2 and CCL5 mediate leukocyte adhesion in experimental autoimmune encephalomyelitis–an intravital microscopy study. J Neuroimmunol. 2005, 162: 122-129. 10.1016/j.jneuroim.2005.01.020.CrossRefPubMed
22.
go back to reference Seguin R, Biernacki K, Rotondo RL, Prat A, Antel JP: Regulation and functional effects of monocyte migration across human brain-derived endothelial cells. J Neuropathol Exp Neurol. 2003, 62: 412-419.CrossRefPubMed Seguin R, Biernacki K, Rotondo RL, Prat A, Antel JP: Regulation and functional effects of monocyte migration across human brain-derived endothelial cells. J Neuropathol Exp Neurol. 2003, 62: 412-419.CrossRefPubMed
23.
go back to reference Shulman Z, Cohen SJ, Roediger B, Kalchenko V, Jain R, Grabovsky V, Klein E, Shinder V, Stoler-Barak L, Feigelson SW, Meshel T, Nurmi SM, Goldstein I, Hartley O, Gahmberg CG, Etzioni A, Weninger W, Ben-Baruch A, Alon R: Transendothelial migration of lymphocytes mediated by intraendothelial vesicle stores rather than by extracellular chemokine depots. Nat Immunol. 2012, 13: 67-76.CrossRef Shulman Z, Cohen SJ, Roediger B, Kalchenko V, Jain R, Grabovsky V, Klein E, Shinder V, Stoler-Barak L, Feigelson SW, Meshel T, Nurmi SM, Goldstein I, Hartley O, Gahmberg CG, Etzioni A, Weninger W, Ben-Baruch A, Alon R: Transendothelial migration of lymphocytes mediated by intraendothelial vesicle stores rather than by extracellular chemokine depots. Nat Immunol. 2012, 13: 67-76.CrossRef
24.
go back to reference Ge S, Murugesan N, Pachter JS: Astrocyte- and endothelial-targeted CCL2 conditional knockout mice: critical tools for studying the pathogenesis of neuroinflammation. J Mol Neurosci. 2009, 39: 269-283. 10.1007/s12031-009-9197-4.PubMedCentralCrossRefPubMed Ge S, Murugesan N, Pachter JS: Astrocyte- and endothelial-targeted CCL2 conditional knockout mice: critical tools for studying the pathogenesis of neuroinflammation. J Mol Neurosci. 2009, 39: 269-283. 10.1007/s12031-009-9197-4.PubMedCentralCrossRefPubMed
25.
go back to reference Murugesan N, Paul D, Lemire Y, Shrestha B, Ge S, Pachter JS: Active induction of experimental autoimmune encephalomyelitis by MOG35-55 peptide immunization is associated with differential responses in separate compartments of the choroid plexus. Fluids Barriers CNS. 2012, 9: 15-31. 10.1186/2045-8118-9-15.PubMedCentralCrossRefPubMed Murugesan N, Paul D, Lemire Y, Shrestha B, Ge S, Pachter JS: Active induction of experimental autoimmune encephalomyelitis by MOG35-55 peptide immunization is associated with differential responses in separate compartments of the choroid plexus. Fluids Barriers CNS. 2012, 9: 15-31. 10.1186/2045-8118-9-15.PubMedCentralCrossRefPubMed
26.
go back to reference Goverman J, Brabb T, Paez A, Harrington C, von Dassow P: Initiation and regulation of CNS autoimmunity. Crit Rev Immunol. 1997, 17: 469-480.PubMed Goverman J, Brabb T, Paez A, Harrington C, von Dassow P: Initiation and regulation of CNS autoimmunity. Crit Rev Immunol. 1997, 17: 469-480.PubMed
27.
go back to reference Racke MK, Hu W, Lovett-Racke AE: PTX cruiser: driving autoimmunity via TLR4. Trends Immunol. 2005, 26: 289-291. 10.1016/j.it.2005.03.012.CrossRefPubMed Racke MK, Hu W, Lovett-Racke AE: PTX cruiser: driving autoimmunity via TLR4. Trends Immunol. 2005, 26: 289-291. 10.1016/j.it.2005.03.012.CrossRefPubMed
28.
go back to reference Suen WE, Bergman CM, Hjelmstrom P, Ruddle NH: A critical role for lymphotoxin in experimental allergic encephalomyelitis. J Exp Med. 1997, 186: 1233-1240. 10.1084/jem.186.8.1233.PubMedCentralCrossRefPubMed Suen WE, Bergman CM, Hjelmstrom P, Ruddle NH: A critical role for lymphotoxin in experimental allergic encephalomyelitis. J Exp Med. 1997, 186: 1233-1240. 10.1084/jem.186.8.1233.PubMedCentralCrossRefPubMed
29.
go back to reference Cravens PD, Hussain RZ, Zacharias TE, Ben LH, Herndon E, Vinnakota R, Lambracht-Washington D, Nessler S, Zamvil SS, Eagar TN, Stuve O: Lymph node-derived donor encephalitogenic CD4+ T cells in C57BL/6 mice adoptive transfer experimental autoimmune encephalomyelitis highly express GM-CSF and T-bet. J Neuroinflammation. 2011, 8: 73-87. 10.1186/1742-2094-8-73.PubMedCentralCrossRefPubMed Cravens PD, Hussain RZ, Zacharias TE, Ben LH, Herndon E, Vinnakota R, Lambracht-Washington D, Nessler S, Zamvil SS, Eagar TN, Stuve O: Lymph node-derived donor encephalitogenic CD4+ T cells in C57BL/6 mice adoptive transfer experimental autoimmune encephalomyelitis highly express GM-CSF and T-bet. J Neuroinflammation. 2011, 8: 73-87. 10.1186/1742-2094-8-73.PubMedCentralCrossRefPubMed
30.
go back to reference Paul D, Cowan AE, Ge S, Pachter JS: Novel 3D analysis of Claudin-5 reveals significant endothelial heterogeneity among CNS microvessels. Microvasc Res. 2013, 86: 1-10.PubMedCentralCrossRefPubMed Paul D, Cowan AE, Ge S, Pachter JS: Novel 3D analysis of Claudin-5 reveals significant endothelial heterogeneity among CNS microvessels. Microvasc Res. 2013, 86: 1-10.PubMedCentralCrossRefPubMed
31.
go back to reference Owens T, Bechmann I, Engelhardt B: Perivascular spaces and the two steps to neuroinflammation. J Neuropathol Exp Neurol. 2008, 67: 1113-1121. 10.1097/NEN.0b013e31818f9ca8.CrossRefPubMed Owens T, Bechmann I, Engelhardt B: Perivascular spaces and the two steps to neuroinflammation. J Neuropathol Exp Neurol. 2008, 67: 1113-1121. 10.1097/NEN.0b013e31818f9ca8.CrossRefPubMed
32.
go back to reference Li Y, Serwanski DR, Miralles CP, Fiondella CG, Loturco JJ, Rubio ME, De Blas AL: Synaptic and nonsynaptic localization of protocadherin-gammaC5 in the rat brain. J Comp Neurol. 2010, 518: 3439-3463. 10.1002/cne.22390.PubMedCentralCrossRefPubMed Li Y, Serwanski DR, Miralles CP, Fiondella CG, Loturco JJ, Rubio ME, De Blas AL: Synaptic and nonsynaptic localization of protocadherin-gammaC5 in the rat brain. J Comp Neurol. 2010, 518: 3439-3463. 10.1002/cne.22390.PubMedCentralCrossRefPubMed
33.
go back to reference Ge S, Shrestha B, Paul D, Keating C, Cone R, Guglielmotti A, Pachter JS: The CCL2 synthesis inhibitor bindarit targets cells of the neurovascular unit, and suppresses experimental autoimmune encephalomyelitis. J Neuroinflammation. 2012, 9: 17-184. 10.1186/1742-2094-9-17.CrossRef Ge S, Shrestha B, Paul D, Keating C, Cone R, Guglielmotti A, Pachter JS: The CCL2 synthesis inhibitor bindarit targets cells of the neurovascular unit, and suppresses experimental autoimmune encephalomyelitis. J Neuroinflammation. 2012, 9: 17-184. 10.1186/1742-2094-9-17.CrossRef
34.
go back to reference Ge S, Song L, Serwanski DR, Kuziel WA, Pachter JS: Transcellular transport of CCL2 across brain microvascular endothelial cells. J Neurochem. 2008, 104: 1219-1232. 10.1111/j.1471-4159.2007.05056.x.CrossRefPubMed Ge S, Song L, Serwanski DR, Kuziel WA, Pachter JS: Transcellular transport of CCL2 across brain microvascular endothelial cells. J Neurochem. 2008, 104: 1219-1232. 10.1111/j.1471-4159.2007.05056.x.CrossRefPubMed
35.
go back to reference Palframan RT, Jung S, Cheng G, Weninger W, Luo Y, Dorf M, Littman DR, Rollins BJ, Zweerink H, Rot A, von Andrian UH: Inflammatory chemokine transport and presentation in HEV: a remote control mechanism for monocyte recruitment to lymph nodes in inflamed tissues. J Exp Med. 2001, 194: 1361-1373. 10.1084/jem.194.9.1361.PubMedCentralCrossRefPubMed Palframan RT, Jung S, Cheng G, Weninger W, Luo Y, Dorf M, Littman DR, Rollins BJ, Zweerink H, Rot A, von Andrian UH: Inflammatory chemokine transport and presentation in HEV: a remote control mechanism for monocyte recruitment to lymph nodes in inflamed tissues. J Exp Med. 2001, 194: 1361-1373. 10.1084/jem.194.9.1361.PubMedCentralCrossRefPubMed
36.
go back to reference Jimenez F, Quinones MP, Martinez HG, Estrada CA, Clark K, Garavito E, Ibarra J, Melby PC, Ahuja SS: CCR2 plays a critical role in dendritic cell maturation: possible role of CCL2 and NF-kappa B. J Immunol. 2010, 184: 5571-5581. 10.4049/jimmunol.0803494.PubMedCentralCrossRefPubMed Jimenez F, Quinones MP, Martinez HG, Estrada CA, Clark K, Garavito E, Ibarra J, Melby PC, Ahuja SS: CCR2 plays a critical role in dendritic cell maturation: possible role of CCL2 and NF-kappa B. J Immunol. 2010, 184: 5571-5581. 10.4049/jimmunol.0803494.PubMedCentralCrossRefPubMed
37.
go back to reference Dal Secco V, Soldani C, Debrat C, Asperti-Boursin F, Donnadieu E, Viola A, Sarukhan A: Tunable chemokine production by antigen presenting dendritic cells in response to changes in regulatory T cell frequency in mouse reactive lymph nodes. PLoS One. 2009, 4: e7696-10.1371/journal.pone.0007696.PubMedCentralCrossRefPubMed Dal Secco V, Soldani C, Debrat C, Asperti-Boursin F, Donnadieu E, Viola A, Sarukhan A: Tunable chemokine production by antigen presenting dendritic cells in response to changes in regulatory T cell frequency in mouse reactive lymph nodes. PLoS One. 2009, 4: e7696-10.1371/journal.pone.0007696.PubMedCentralCrossRefPubMed
38.
go back to reference Damsker JM, Hansen AM, Caspi RR: Th1 and Th17 cells: adversaries and collaborators. Ann N Y Acad Sci. 2010, 1183: 211-221. 10.1111/j.1749-6632.2009.05133.x.PubMedCentralCrossRefPubMed Damsker JM, Hansen AM, Caspi RR: Th1 and Th17 cells: adversaries and collaborators. Ann N Y Acad Sci. 2010, 1183: 211-221. 10.1111/j.1749-6632.2009.05133.x.PubMedCentralCrossRefPubMed
39.
go back to reference Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, Furuse M, Tsukita S: Size-selective loosening of the blood–brain barrier in claudin-5-deficient mice. J Cell Biol. 2003, 161: 653-660. 10.1083/jcb.200302070.PubMedCentralCrossRefPubMed Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, Furuse M, Tsukita S: Size-selective loosening of the blood–brain barrier in claudin-5-deficient mice. J Cell Biol. 2003, 161: 653-660. 10.1083/jcb.200302070.PubMedCentralCrossRefPubMed
40.
go back to reference Dhillon NK, Peng F, Bokhari S, Callen S, Shin SH, Zhu X, Kim KJ, Buch SJ: Cocaine-mediated alteration in tight junction protein expression and modulation of CCL2/CCR2 axis across the blood–brain barrier: implications for HIV-dementia. J Neuroimmune Pharmacol. 2008, 3: 52-56. 10.1007/s11481-007-9091-1.CrossRefPubMed Dhillon NK, Peng F, Bokhari S, Callen S, Shin SH, Zhu X, Kim KJ, Buch SJ: Cocaine-mediated alteration in tight junction protein expression and modulation of CCL2/CCR2 axis across the blood–brain barrier: implications for HIV-dementia. J Neuroimmune Pharmacol. 2008, 3: 52-56. 10.1007/s11481-007-9091-1.CrossRefPubMed
41.
go back to reference Stamatovic SM, Shakui P, Keep RF, Moore BB, Kunkel SL, Van Rooijen N, Andjelkovic AV: Monocyte chemoattractant protein-1 regulation of blood–brain barrier permeability. J Cereb Blood Flow Metab. 2005, 25: 593-606. 10.1038/sj.jcbfm.9600055.CrossRefPubMed Stamatovic SM, Shakui P, Keep RF, Moore BB, Kunkel SL, Van Rooijen N, Andjelkovic AV: Monocyte chemoattractant protein-1 regulation of blood–brain barrier permeability. J Cereb Blood Flow Metab. 2005, 25: 593-606. 10.1038/sj.jcbfm.9600055.CrossRefPubMed
42.
go back to reference Dimitrijevic OB, Stamatovic SM, Keep RF, Andjelkovic AV: Effects of the chemokine CCL2 on blood–brain barrier permeability during ischemia-reperfusion injury. J Cereb Blood Flow Metab. 2006, 26: 797-810. 10.1038/sj.jcbfm.9600229.CrossRefPubMed Dimitrijevic OB, Stamatovic SM, Keep RF, Andjelkovic AV: Effects of the chemokine CCL2 on blood–brain barrier permeability during ischemia-reperfusion injury. J Cereb Blood Flow Metab. 2006, 26: 797-810. 10.1038/sj.jcbfm.9600229.CrossRefPubMed
43.
go back to reference Strecker JK, Minnerup J, Schutte-Nutgen K, Gess B, Schabitz WR, Schilling M: Monocyte chemoattractant protein-1-deficiency results in altered blood–brain barrier breakdown after experimental stroke. Stroke. 2013, 44: 2536-2544. 10.1161/STROKEAHA.111.000528.CrossRefPubMed Strecker JK, Minnerup J, Schutte-Nutgen K, Gess B, Schabitz WR, Schilling M: Monocyte chemoattractant protein-1-deficiency results in altered blood–brain barrier breakdown after experimental stroke. Stroke. 2013, 44: 2536-2544. 10.1161/STROKEAHA.111.000528.CrossRefPubMed
44.
go back to reference Schellenberg AE, Buist R, Del Bigio MR, Toft-Hansen H, Khorooshi R, Owens T, Peeling J: Blood–brain barrier disruption in CCL2 transgenic mice during pertussis toxin-induced brain inflammation. Fluids Barriers CNS. 2012, 9: 10-19. 10.1186/2045-8118-9-10.PubMedCentralCrossRefPubMed Schellenberg AE, Buist R, Del Bigio MR, Toft-Hansen H, Khorooshi R, Owens T, Peeling J: Blood–brain barrier disruption in CCL2 transgenic mice during pertussis toxin-induced brain inflammation. Fluids Barriers CNS. 2012, 9: 10-19. 10.1186/2045-8118-9-10.PubMedCentralCrossRefPubMed
45.
go back to reference Dzenko KA, Andjelkovic AV, Kuziel WA, Pachter JS: The chemokine receptor CCR2 mediates the binding and internalization of monocyte chemoattractant protein-1 along brain microvessels. J Neurosci. 2001, 21: 9214-9223.PubMed Dzenko KA, Andjelkovic AV, Kuziel WA, Pachter JS: The chemokine receptor CCR2 mediates the binding and internalization of monocyte chemoattractant protein-1 along brain microvessels. J Neurosci. 2001, 21: 9214-9223.PubMed
46.
go back to reference Yao Y, Tsirka SE: Monocyte chemoattractant protein-1 and the blood–brain barrier. Cell Mol Life Sci. 2013, [Ahead of print] Yao Y, Tsirka SE: Monocyte chemoattractant protein-1 and the blood–brain barrier. Cell Mol Life Sci. 2013, [Ahead of print]
47.
go back to reference Ge S, Song L, Pachter JS: Where is the blood–brain barrier … really?. J Neurosci Res. 2005, 79: 421-427. 10.1002/jnr.20313.CrossRefPubMed Ge S, Song L, Pachter JS: Where is the blood–brain barrier … really?. J Neurosci Res. 2005, 79: 421-427. 10.1002/jnr.20313.CrossRefPubMed
48.
go back to reference Chui R, Dorovini-Zis K: Regulation of CCL2 and CCL3 expression in human brain endothelial cells by cytokines and lipopolysaccharide. J Neuroinflammation. 2010, 7: 1-10.1186/1742-2094-7-1.PubMedCentralCrossRefPubMed Chui R, Dorovini-Zis K: Regulation of CCL2 and CCL3 expression in human brain endothelial cells by cytokines and lipopolysaccharide. J Neuroinflammation. 2010, 7: 1-10.1186/1742-2094-7-1.PubMedCentralCrossRefPubMed
49.
go back to reference Tei N, Tanaka J, Sugimoto K, Nishihara T, Nishioka R, Takahashi H, Yano H, Matsumoto S, Ohue S, Watanabe H, Kumon Y, Ohnishi T: Expression of MCP-1 and fractalkine on endothelial cells and astrocytes may contribute to the invasion and migration of brain macrophages in ischemic rat brain lesions. J Neurosci Res. 2013, 91: 681-693. 10.1002/jnr.23202.CrossRefPubMed Tei N, Tanaka J, Sugimoto K, Nishihara T, Nishioka R, Takahashi H, Yano H, Matsumoto S, Ohue S, Watanabe H, Kumon Y, Ohnishi T: Expression of MCP-1 and fractalkine on endothelial cells and astrocytes may contribute to the invasion and migration of brain macrophages in ischemic rat brain lesions. J Neurosci Res. 2013, 91: 681-693. 10.1002/jnr.23202.CrossRefPubMed
50.
go back to reference Starossom SC, Mascanfroni ID, Imitola J, Cao L, Raddassi K, Hernandez SF, Bassil R, Croci DO, Cerliani JP, Delacour D, Wang Y, Elyaman W, Khoury SJ, Rabinovich GA: Galectin-1 deactivates classically activated microglia and protects from inflammation-induced neurodegeneration. Immunity. 2012, 37: 249-263. 10.1016/j.immuni.2012.05.023.PubMedCentralCrossRefPubMed Starossom SC, Mascanfroni ID, Imitola J, Cao L, Raddassi K, Hernandez SF, Bassil R, Croci DO, Cerliani JP, Delacour D, Wang Y, Elyaman W, Khoury SJ, Rabinovich GA: Galectin-1 deactivates classically activated microglia and protects from inflammation-induced neurodegeneration. Immunity. 2012, 37: 249-263. 10.1016/j.immuni.2012.05.023.PubMedCentralCrossRefPubMed
51.
go back to reference Tang Y, Harrington A, Yang X, Friesel RE, Liaw L: The contribution of the Tie2+ lineage to primitive and definitive hematopoietic cells. Genesis. 2010, 48: 563-567. 10.1002/dvg.20654.PubMedCentralCrossRefPubMed Tang Y, Harrington A, Yang X, Friesel RE, Liaw L: The contribution of the Tie2+ lineage to primitive and definitive hematopoietic cells. Genesis. 2010, 48: 563-567. 10.1002/dvg.20654.PubMedCentralCrossRefPubMed
53.
go back to reference Severini C, Passeri PP, Ciotti M, Florenzano F, Possenti R, Zona C, Di Matteo A, Guglielmotti A, Calissano P, Pachter J, Mercanti D: Bindarit, inhibitor of CCL2 synthesis, protects neurons against amyloid-beta-induced toxicity. J Alzheimers Dis. 2014, 38 (2): 281-293.PubMed Severini C, Passeri PP, Ciotti M, Florenzano F, Possenti R, Zona C, Di Matteo A, Guglielmotti A, Calissano P, Pachter J, Mercanti D: Bindarit, inhibitor of CCL2 synthesis, protects neurons against amyloid-beta-induced toxicity. J Alzheimers Dis. 2014, 38 (2): 281-293.PubMed
54.
go back to reference Ho L, Zhao W, Dams-O’Connor K, Tang CY, Gordon W, Peskind ER, Yemul S, Haroutunian V, Pasinetti GM: Elevated plasma MCP-1 concentration following traumatic brain injury as a potential “predisposition” factor associated with an increased risk for subsequent development of Alzheimer’s disease. J Alzheimers Dis. 2012, 31: 301-313.PubMedCentralPubMed Ho L, Zhao W, Dams-O’Connor K, Tang CY, Gordon W, Peskind ER, Yemul S, Haroutunian V, Pasinetti GM: Elevated plasma MCP-1 concentration following traumatic brain injury as a potential “predisposition” factor associated with an increased risk for subsequent development of Alzheimer’s disease. J Alzheimers Dis. 2012, 31: 301-313.PubMedCentralPubMed
Metadata
Title
Cell-selective knockout and 3D confocal image analysis reveals separate roles for astrocyte-and endothelial-derived CCL2 in neuroinflammation
Authors
Debayon Paul
Shujun Ge
Yen Lemire
Evan R Jellison
David R Serwanski
Nancy H Ruddle
Joel S Pachter
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2014
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-11-10

Other articles of this Issue 1/2014

Journal of Neuroinflammation 1/2014 Go to the issue