Skip to main content
Top
Published in: BMC Medicine 1/2009

Open Access 01-12-2009 | Review

Modeling influenza epidemics and pandemics: insights into the future of swine flu (H1N1)

Authors: Brian J Coburn, Bradley G Wagner, Sally Blower

Published in: BMC Medicine | Issue 1/2009

Login to get access

Abstract

Here we present a review of the literature of influenza modeling studies, and discuss how these models can provide insights into the future of the currently circulating novel strain of influenza A (H1N1), formerly known as swine flu. We discuss how the feasibility of controlling an epidemic critically depends on the value of the Basic Reproduction Number (R 0). The R 0 for novel influenza A (H1N1) has recently been estimated to be between 1.4 and 1.6. This value is below values of R 0 estimated for the 1918–1919 pandemic strain (mean R 0~2: range 1.4 to 2.8) and is comparable to R 0 values estimated for seasonal strains of influenza (mean R 0 1.3: range 0.9 to 2.1). By reviewing results from previous modeling studies we conclude it is theoretically possible that a pandemic of H1N1 could be contained. However it may not be feasible, even in resource-rich countries, to achieve the necessary levels of vaccination and treatment for control. As a recent modeling study has shown, a global cooperative strategy will be essential in order to control a pandemic. This strategy will require resource-rich countries to share their vaccines and antivirals with resource-constrained and resource-poor countries. We conclude our review by discussing the necessity of developing new biologically complex models. We suggest that these models should simultaneously track the transmission dynamics of multiple strains of influenza in bird, pig and human populations. Such models could be critical for identifying effective new interventions, and informing pandemic preparedness planning. Finally, we show that by modeling cross-species transmission it may be possible to predict the emergence of pandemic strains of influenza.
Appendix
Available only for authorised users
Literature
2.
go back to reference Kermack WO, McKendrick AG: A contribution to the mathematical theory of epidemics. Proc Roy Soc Lond. 1927, 115: 700-721. 10.1098/rspa.1927.0118.CrossRef Kermack WO, McKendrick AG: A contribution to the mathematical theory of epidemics. Proc Roy Soc Lond. 1927, 115: 700-721. 10.1098/rspa.1927.0118.CrossRef
3.
go back to reference Dushoff J, Plotkin JB, Levin SA, Earn DJD: Dynamical resonance can account for seasonal influenza epidemics. Proc Natl Acad Sci USA. 2004, 101: 16915-16916. 10.1073/pnas.0407293101.CrossRefPubMedPubMedCentral Dushoff J, Plotkin JB, Levin SA, Earn DJD: Dynamical resonance can account for seasonal influenza epidemics. Proc Natl Acad Sci USA. 2004, 101: 16915-16916. 10.1073/pnas.0407293101.CrossRefPubMedPubMedCentral
4.
go back to reference Stone L, Olinky R, Huppert A: Seasonal dynamics of recurrent epidemics. Nature. 2007, 446: 533-536. 10.1038/nature05638.CrossRefPubMed Stone L, Olinky R, Huppert A: Seasonal dynamics of recurrent epidemics. Nature. 2007, 446: 533-536. 10.1038/nature05638.CrossRefPubMed
5.
go back to reference Rvachev LA: Modeling experiment of a large-scale epidemic by means of a computer. (In Russian.). Trans USSR Acad Sci Ser Mathematics and Physics. 1968, 180 (2): 294-296. Rvachev LA: Modeling experiment of a large-scale epidemic by means of a computer. (In Russian.). Trans USSR Acad Sci Ser Mathematics and Physics. 1968, 180 (2): 294-296.
6.
go back to reference Baroyan OV, Rvachev LA, Basilevsky UV, Ermakov VV, Frank KD, Rvachev MA, Shashkov VA: Modelling of Influenza Epidemics for the Whole Country (USSR). Adv Appl Probab. 1971, 2 (3): 224-226. 10.2307/1426167.CrossRef Baroyan OV, Rvachev LA, Basilevsky UV, Ermakov VV, Frank KD, Rvachev MA, Shashkov VA: Modelling of Influenza Epidemics for the Whole Country (USSR). Adv Appl Probab. 1971, 2 (3): 224-226. 10.2307/1426167.CrossRef
7.
go back to reference Rvachev LA, Longini IM: A mathematical model for the global spread of influenza. Math Biosci. 1985, 75: 3-22. 10.1016/0025-5564(85)90064-1.CrossRef Rvachev LA, Longini IM: A mathematical model for the global spread of influenza. Math Biosci. 1985, 75: 3-22. 10.1016/0025-5564(85)90064-1.CrossRef
8.
go back to reference Flahault A, Deguen S, Valleron AJ: A mathematical model for the European spread of influenza. Eur J Epidemiol. 1994, 10: 471-474. 10.1007/BF01719679.CrossRefPubMed Flahault A, Deguen S, Valleron AJ: A mathematical model for the European spread of influenza. Eur J Epidemiol. 1994, 10: 471-474. 10.1007/BF01719679.CrossRefPubMed
9.
10.
go back to reference Viboud C, Bjornstad ON, Smith DL, Simonsen L, Miller MA, Grenfell BT: Synchrony, waves and spatial hierarchies in the spread of influenza. Science. 2006, 312: 447-451. 10.1126/science.1125237.CrossRefPubMed Viboud C, Bjornstad ON, Smith DL, Simonsen L, Miller MA, Grenfell BT: Synchrony, waves and spatial hierarchies in the spread of influenza. Science. 2006, 312: 447-451. 10.1126/science.1125237.CrossRefPubMed
11.
go back to reference Chowell G, Miller MA, Viboud C: Seasonal influenza in the United States, France and Australia: transmission and prospects for control. Epidemiol Infect. 2007, 136: 852-864.PubMedPubMedCentral Chowell G, Miller MA, Viboud C: Seasonal influenza in the United States, France and Australia: transmission and prospects for control. Epidemiol Infect. 2007, 136: 852-864.PubMedPubMedCentral
12.
go back to reference Bootsma MC, Ferguson NM: The effect of public health measures on the 1918 influenza pandemic in US cities. Proc Natl Acad Sci U S A. 2007, 104 (18): 7588-7593. 10.1073/pnas.0611071104.CrossRefPubMedPubMedCentral Bootsma MC, Ferguson NM: The effect of public health measures on the 1918 influenza pandemic in US cities. Proc Natl Acad Sci U S A. 2007, 104 (18): 7588-7593. 10.1073/pnas.0611071104.CrossRefPubMedPubMedCentral
13.
go back to reference Chowell G, Ammon CE, Hengartner NW, Hyman JM: Transmission dynamics of the great influenza pandemic of 1918 in Geneva, Switzerland: assessing the effects of hypothetical interventions. J Theor Biol. 2006, 241: 193-204. 10.1016/j.jtbi.2005.11.026.CrossRefPubMed Chowell G, Ammon CE, Hengartner NW, Hyman JM: Transmission dynamics of the great influenza pandemic of 1918 in Geneva, Switzerland: assessing the effects of hypothetical interventions. J Theor Biol. 2006, 241: 193-204. 10.1016/j.jtbi.2005.11.026.CrossRefPubMed
14.
go back to reference Mills CE, Robins JM, Lipsitch M: Transmissibility of 1918 pandemic influenza. Nature. 2004, 432: 904-906. 10.1038/nature03063.CrossRefPubMed Mills CE, Robins JM, Lipsitch M: Transmissibility of 1918 pandemic influenza. Nature. 2004, 432: 904-906. 10.1038/nature03063.CrossRefPubMed
15.
go back to reference Vynnycky E, Edmunds WJ: Analyses of the 1957 (Asian) influenza pandemic in the United Kingdom and the impact of school closures. Epidemiol Infect. 2008, 136: 166-179.PubMed Vynnycky E, Edmunds WJ: Analyses of the 1957 (Asian) influenza pandemic in the United Kingdom and the impact of school closures. Epidemiol Infect. 2008, 136: 166-179.PubMed
16.
go back to reference Longini IM, Fine PE, Thacker SB: Predicting the global spread of new infectious agents. Am J Epidemiol. 1986, 123: 383-391.PubMed Longini IM, Fine PE, Thacker SB: Predicting the global spread of new infectious agents. Am J Epidemiol. 1986, 123: 383-391.PubMed
17.
go back to reference Sattenspiel L, Herring DA: Simulating the effect of quarantine on the spread of the 1918 flu in central Canada. Bull Math Biol. 2003, 65: 1-26. 10.1006/bulm.2002.0317.CrossRefPubMed Sattenspiel L, Herring DA: Simulating the effect of quarantine on the spread of the 1918 flu in central Canada. Bull Math Biol. 2003, 65: 1-26. 10.1006/bulm.2002.0317.CrossRefPubMed
18.
go back to reference Ferguson NM, Cummings DA, Fraser C, Cajka JC, Cooley PC, Burke DS: Strategies for mitigating an influenza pandemic. Nature. 2006, 442: 448-452. 10.1038/nature04795.CrossRefPubMed Ferguson NM, Cummings DA, Fraser C, Cajka JC, Cooley PC, Burke DS: Strategies for mitigating an influenza pandemic. Nature. 2006, 442: 448-452. 10.1038/nature04795.CrossRefPubMed
19.
go back to reference Arino J, Brauer F, Driessche van den P, Watmough J, Wu J: A model for influenza with vaccination and antiviral treatment. J Theor Biol. 2008, 253: 118-130. 10.1016/j.jtbi.2008.02.026.CrossRefPubMed Arino J, Brauer F, Driessche van den P, Watmough J, Wu J: A model for influenza with vaccination and antiviral treatment. J Theor Biol. 2008, 253: 118-130. 10.1016/j.jtbi.2008.02.026.CrossRefPubMed
20.
go back to reference Cauchemez S, Valleron AJ, Boelle PY, Flahault A, Ferguson NM: Estimating the impact of school closure on influenza transmission from Sentinel data. Nature. 2008, 452: 750-754. 10.1038/nature06732.CrossRefPubMed Cauchemez S, Valleron AJ, Boelle PY, Flahault A, Ferguson NM: Estimating the impact of school closure on influenza transmission from Sentinel data. Nature. 2008, 452: 750-754. 10.1038/nature06732.CrossRefPubMed
21.
go back to reference Epstein JM, Goedecke DM, Yu F, Morris RJ, Wagener DK, Bobashev GV: Controlling pandemic flu: the value of international air travel restrictions. PLoS ONE. 2007, 2: e401-10.1371/journal.pone.0000401.CrossRefPubMedPubMedCentral Epstein JM, Goedecke DM, Yu F, Morris RJ, Wagener DK, Bobashev GV: Controlling pandemic flu: the value of international air travel restrictions. PLoS ONE. 2007, 2: e401-10.1371/journal.pone.0000401.CrossRefPubMedPubMedCentral
22.
go back to reference Longini IM, Nizam A, Xu S, Ungchusak K, Hanshaoworakul W, Cummings DA, Halloran ME: Containing pandemic influenza at the source. Science. 2005 Aug 12;309(5737):1083-7. 2005, 309 (5737): 1083-1087. Longini IM, Nizam A, Xu S, Ungchusak K, Hanshaoworakul W, Cummings DA, Halloran ME: Containing pandemic influenza at the source. Science. 2005 Aug 12;309(5737):1083-7. 2005, 309 (5737): 1083-1087.
23.
go back to reference Halloran ME, Ferguson NM, Eubank S, Longini IM, Cummings DA, Lewis B, Xu S, Fraser C, Vullikanti A, Germann TC, Wagener D, Beckman R, Kadau K, Barrett C, Macken CA, Burke DS, Cooley PC: Modeling targeted layered containment of an influenza pandemic in the United States. Proc Natl Acad Sci USA. 2008, 105: 4639-4644. 10.1073/pnas.0706849105.CrossRefPubMedPubMedCentral Halloran ME, Ferguson NM, Eubank S, Longini IM, Cummings DA, Lewis B, Xu S, Fraser C, Vullikanti A, Germann TC, Wagener D, Beckman R, Kadau K, Barrett C, Macken CA, Burke DS, Cooley PC: Modeling targeted layered containment of an influenza pandemic in the United States. Proc Natl Acad Sci USA. 2008, 105: 4639-4644. 10.1073/pnas.0706849105.CrossRefPubMedPubMedCentral
24.
go back to reference Longini IM, Halloran ME, Nizam A, Yang Y: Containing pandemic influenza with antiviral agents. Am J Epidemiol. 2004, 159: 623-633. 10.1093/aje/kwh092.CrossRefPubMed Longini IM, Halloran ME, Nizam A, Yang Y: Containing pandemic influenza with antiviral agents. Am J Epidemiol. 2004, 159: 623-633. 10.1093/aje/kwh092.CrossRefPubMed
25.
go back to reference Riley S, Wu JT, Leung GM: Optimizing the dose of pre-pandemic influenza vaccines to reduce the infection attack rate. PLoS Med. 2007, 4: e218-10.1371/journal.pmed.0040218.CrossRefPubMedPubMedCentral Riley S, Wu JT, Leung GM: Optimizing the dose of pre-pandemic influenza vaccines to reduce the infection attack rate. PLoS Med. 2007, 4: e218-10.1371/journal.pmed.0040218.CrossRefPubMedPubMedCentral
26.
go back to reference Lipsitch M, Cohen T, Murray M, Levin BR: Antiviral resistance and the control of pandemic influenza. PLoS Med. 2007, 4: e15-10.1371/journal.pmed.0040015.CrossRefPubMedPubMedCentral Lipsitch M, Cohen T, Murray M, Levin BR: Antiviral resistance and the control of pandemic influenza. PLoS Med. 2007, 4: e15-10.1371/journal.pmed.0040015.CrossRefPubMedPubMedCentral
27.
go back to reference Ferguson NM, Mallet S, Jackson H, Roberts N, Ward P: A population-dynamic model for evaluating the potential spread of drug-resistant influenza virus infections during community-based use of antivirals. J Antimicrob Chemother. 2003, 51: 977-990. 10.1093/jac/dkg136.CrossRefPubMed Ferguson NM, Mallet S, Jackson H, Roberts N, Ward P: A population-dynamic model for evaluating the potential spread of drug-resistant influenza virus infections during community-based use of antivirals. J Antimicrob Chemother. 2003, 51: 977-990. 10.1093/jac/dkg136.CrossRefPubMed
28.
go back to reference Regoes RR, Bonhoeffer S: Emergence of drug-resistant influenza virus: population dynamical considerations. Science. 2006, 312: 389-391. 10.1126/science.1122947.CrossRefPubMed Regoes RR, Bonhoeffer S: Emergence of drug-resistant influenza virus: population dynamical considerations. Science. 2006, 312: 389-391. 10.1126/science.1122947.CrossRefPubMed
29.
go back to reference Wu JT, Leung GM, Lipsitch M, Cooper BS, Riley S: Hedging against antiviral resistance during the next influenza pandemic using small stockpiles of an alternative chemotherapy. PLoS Medicine. 2009, 19: e1000085-10.1371/journal.pmed.1000085.CrossRef Wu JT, Leung GM, Lipsitch M, Cooper BS, Riley S: Hedging against antiviral resistance during the next influenza pandemic using small stockpiles of an alternative chemotherapy. PLoS Medicine. 2009, 19: e1000085-10.1371/journal.pmed.1000085.CrossRef
30.
go back to reference Stilianakis NI, Perelson AS, Hayden FG: Emergence of drug resistance during an influenza epidemic: insights from a mathematical model. J Infect Dis. 1998, 177: 863-73.CrossRefPubMed Stilianakis NI, Perelson AS, Hayden FG: Emergence of drug resistance during an influenza epidemic: insights from a mathematical model. J Infect Dis. 1998, 177: 863-73.CrossRefPubMed
31.
go back to reference McCaw JM, Wood JG, McCaw CT, McVernon J: Impact of emerging antiviral drug resistance on influenza containment and spread: influence of subclinical infection and strategic use of a stockpile containing one or two drugs. PLoS ONE. 2008, 4: e2362-10.1371/journal.pone.0002362.CrossRef McCaw JM, Wood JG, McCaw CT, McVernon J: Impact of emerging antiviral drug resistance on influenza containment and spread: influence of subclinical infection and strategic use of a stockpile containing one or two drugs. PLoS ONE. 2008, 4: e2362-10.1371/journal.pone.0002362.CrossRef
32.
go back to reference Ferguson NM, Cummings DAT, Cauchemez S, Fraser C, Riley S, Aronrag M, Iamsirithaworn S, Burke DS: Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature. 2005, 437: 209-214. 10.1038/nature04017.CrossRefPubMed Ferguson NM, Cummings DAT, Cauchemez S, Fraser C, Riley S, Aronrag M, Iamsirithaworn S, Burke DS: Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature. 2005, 437: 209-214. 10.1038/nature04017.CrossRefPubMed
33.
go back to reference Cooper BS, Pitman RJ, Edmunds WJ, Gay NJ: Delaying the international spread of a pandemic influenza. PLoS Med. 2006, 3: e212-10.1371/journal.pmed.0030212.CrossRefPubMedPubMedCentral Cooper BS, Pitman RJ, Edmunds WJ, Gay NJ: Delaying the international spread of a pandemic influenza. PLoS Med. 2006, 3: e212-10.1371/journal.pmed.0030212.CrossRefPubMedPubMedCentral
34.
go back to reference Colizza V, Barrat A, Barthelemy M, Valleron AJ, Vespignani A: Modeling the worldwide spread of pandemic influenza: baseline case and containment interventions. PLoS Med. 2007, 4: e13-10.1371/journal.pmed.0040013.CrossRefPubMedPubMedCentral Colizza V, Barrat A, Barthelemy M, Valleron AJ, Vespignani A: Modeling the worldwide spread of pandemic influenza: baseline case and containment interventions. PLoS Med. 2007, 4: e13-10.1371/journal.pmed.0040013.CrossRefPubMedPubMedCentral
35.
go back to reference Vardavas R, Breban R, Blower S: Can influenza epidemics be prevented by voluntary vaccination?. PLoS Comp Biol. 2007, 3: e85-10.1371/journal.pcbi.0030085.CrossRef Vardavas R, Breban R, Blower S: Can influenza epidemics be prevented by voluntary vaccination?. PLoS Comp Biol. 2007, 3: e85-10.1371/journal.pcbi.0030085.CrossRef
36.
go back to reference Galvani AP, Reluga TC, Chapman GB: Long-standing influenza vaccination policy is in accord with individual self-interest but not with the utilitarian optimum. Proc Natl Acad Sci USA. 2007, 104: 5692-5697. 10.1073/pnas.0606774104.CrossRefPubMedPubMedCentral Galvani AP, Reluga TC, Chapman GB: Long-standing influenza vaccination policy is in accord with individual self-interest but not with the utilitarian optimum. Proc Natl Acad Sci USA. 2007, 104: 5692-5697. 10.1073/pnas.0606774104.CrossRefPubMedPubMedCentral
39.
go back to reference Fraser C, Donnelly C, Cauchemez S, Hanage WP, Van Kerkhove MD, Hollingsworth TD, Griffin J, Baggaley RF, Jenkins HE, Lyons EJ, Jombart T, Hinsley WR, Grassly NC, Balloux F, Ghani AC, Ferguson NM, Rambaut A, Pybus OG, Lopez-Gatell H, Apluche-Aranda CM, Bojorquez Chapela I, Palacios Zavala E, Espejo Guevara DM, Checchi F, Garcia E, Hugonnet S, Roth CJl: Pandemic potential of a strain of influenza A (H1N1): early findings. Science. 2009, 324 (5934): 1557-1561. 10.1126/science.1176062.CrossRefPubMedPubMedCentral Fraser C, Donnelly C, Cauchemez S, Hanage WP, Van Kerkhove MD, Hollingsworth TD, Griffin J, Baggaley RF, Jenkins HE, Lyons EJ, Jombart T, Hinsley WR, Grassly NC, Balloux F, Ghani AC, Ferguson NM, Rambaut A, Pybus OG, Lopez-Gatell H, Apluche-Aranda CM, Bojorquez Chapela I, Palacios Zavala E, Espejo Guevara DM, Checchi F, Garcia E, Hugonnet S, Roth CJl: Pandemic potential of a strain of influenza A (H1N1): early findings. Science. 2009, 324 (5934): 1557-1561. 10.1126/science.1176062.CrossRefPubMedPubMedCentral
40.
go back to reference Coburn BJ: Multi-species influenza models with recombination. PhD dissertation. 2009, Coral Gables, University of Miami, FL Coburn BJ: Multi-species influenza models with recombination. PhD dissertation. 2009, Coral Gables, University of Miami, FL
41.
go back to reference Iwami S, Takeuchi Y, Liu X: Avian-human influenza epidemic model. Math Biosci. 2007, 207: 1-25. 10.1016/j.mbs.2006.08.001.CrossRefPubMed Iwami S, Takeuchi Y, Liu X: Avian-human influenza epidemic model. Math Biosci. 2007, 207: 1-25. 10.1016/j.mbs.2006.08.001.CrossRefPubMed
42.
go back to reference Saenz RA, Hethcote HW, Gray GC: Confined animal feeding operations as amplifiers of influenza. Vector Borne Zoonotic Dis. 2006, 6: 338-346. 10.1089/vbz.2006.6.338.CrossRefPubMedPubMedCentral Saenz RA, Hethcote HW, Gray GC: Confined animal feeding operations as amplifiers of influenza. Vector Borne Zoonotic Dis. 2006, 6: 338-346. 10.1089/vbz.2006.6.338.CrossRefPubMedPubMedCentral
Metadata
Title
Modeling influenza epidemics and pandemics: insights into the future of swine flu (H1N1)
Authors
Brian J Coburn
Bradley G Wagner
Sally Blower
Publication date
01-12-2009
Publisher
BioMed Central
Published in
BMC Medicine / Issue 1/2009
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/1741-7015-7-30

Other articles of this Issue 1/2009

BMC Medicine 1/2009 Go to the issue