Skip to main content
Top
Published in: Allergy, Asthma & Clinical Immunology 1/2008

Open Access 01-03-2008 | Research

Epigenetics, Behaviour, and Health

Authors: Moshe Szyf, Michael J Meaney

Published in: Allergy, Asthma & Clinical Immunology | Issue 1/2008

Login to get access

Abstract

The long-term effects of behaviour and environmental exposures, particularly during childhood, on health outcomes are well documented. Particularly thought provoking is the notion that exposures to different social environments have a long-lasting impact on human physical health. However, the mechanisms mediating the effects of the environment are still unclear. In the last decade, the main focus of attention was the genome, and interindividual genetic polymorphisms were sought after as the principal basis for susceptibility to disease. However, it is becoming clear that recent dramatic increases in the incidence of certain human pathologies, such as asthma and type 2 diabetes, cannot be explained just on the basis of a genetic drift. It is therefore extremely important to unravel the molecular links between the "environmental" exposure, which is believed to be behind this emerging incidence in certain human pathologies, and the disease's molecular mechanisms. Although it is clear that most human pathologies involve long-term changes in gene function, these might be caused by mechanisms other than changes in the deoxyribonucleic acid (DNA) sequence. The genome is programmed by the epigenome, which is composed of chromatin and a covalent modification of DNA by methylation. It is postulated here that "epigenetic" mechanisms mediate the effects of behavioural and environmental exposures early in life, as well as lifelong environmental exposures and the susceptibility to disease later in life. In contrast to genetic sequence differences, epigenetic aberrations are potentially reversible, raising the hope for interventions that will be able to reverse deleterious epigenetic programming.
Literature
1.
go back to reference Szyf M: Towards a pharmacology of DNA methylation. Trends Pharmacol Sci. 2001, 22: 350-4. 10.1016/S0165-6147(00)01713-2.CrossRefPubMed Szyf M: Towards a pharmacology of DNA methylation. Trends Pharmacol Sci. 2001, 22: 350-4. 10.1016/S0165-6147(00)01713-2.CrossRefPubMed
2.
go back to reference Weidle UH, Grossmann A: Inhibition of histone deacetylases: a new strategy to target epigenetic modifications for anticancer treatment. Anticancer Res. 2000, 20: 1471-85.PubMed Weidle UH, Grossmann A: Inhibition of histone deacetylases: a new strategy to target epigenetic modifications for anticancer treatment. Anticancer Res. 2000, 20: 1471-85.PubMed
3.
go back to reference Kramer OH, Gottlicher M, Heinzel T: Histone deacetylase as a therapeutic target. Trends Endocrinol Metab. 2001, 12: 294-300. 10.1016/S1043-2760(01)00438-6.CrossRefPubMed Kramer OH, Gottlicher M, Heinzel T: Histone deacetylase as a therapeutic target. Trends Endocrinol Metab. 2001, 12: 294-300. 10.1016/S1043-2760(01)00438-6.CrossRefPubMed
4.
go back to reference Simonini MV, Camargo LM, Dong E: The benzamide MS-275 is a potent, long-lasting brain region-selective inhibitor of histone deacetylases. Proc Natl Acad Sci USA. 2006, 103: 1587-92. 10.1073/pnas.0510341103.PubMedCentralCrossRefPubMed Simonini MV, Camargo LM, Dong E: The benzamide MS-275 is a potent, long-lasting brain region-selective inhibitor of histone deacetylases. Proc Natl Acad Sci USA. 2006, 103: 1587-92. 10.1073/pnas.0510341103.PubMedCentralCrossRefPubMed
5.
go back to reference Razin A, Riggs AD: DNA methylation and gene function. Science. 1980, 210: 604-10. 10.1126/science.6254144.CrossRefPubMed Razin A, Riggs AD: DNA methylation and gene function. Science. 1980, 210: 604-10. 10.1126/science.6254144.CrossRefPubMed
6.
go back to reference Razin A, Szyf M: DNA methylation patterns. Formation and function. Biochim Biophys Acta. 1984, 782: 331-42.CrossRefPubMed Razin A, Szyf M: DNA methylation patterns. Formation and function. Biochim Biophys Acta. 1984, 782: 331-42.CrossRefPubMed
7.
go back to reference Neel JV, Falls HF: The rate of mutation of the gene responsible for retinoblastoma in man. Science. 1951, 114: 419-22. 10.1126/science.114.2964.419.CrossRefPubMed Neel JV, Falls HF: The rate of mutation of the gene responsible for retinoblastoma in man. Science. 1951, 114: 419-22. 10.1126/science.114.2964.419.CrossRefPubMed
8.
go back to reference Sparkes RS, Murphree AL, Lingua RW: Gene for hereditary retinoblastoma assigned to human chromosome 13 by linkage to esterase D. Science. 1983, 219: 971-3. 10.1126/science.6823558.CrossRefPubMed Sparkes RS, Murphree AL, Lingua RW: Gene for hereditary retinoblastoma assigned to human chromosome 13 by linkage to esterase D. Science. 1983, 219: 971-3. 10.1126/science.6823558.CrossRefPubMed
9.
go back to reference Gonzalez-Zulueta M, Bender CM, Yang AS: Methylation of the 59 CpG island of the p16/CDKN2 tumor suppressor gene in normal and transformed human tissues correlates with gene silencing. Cancer Res. 1995, 55: 4531-5.PubMed Gonzalez-Zulueta M, Bender CM, Yang AS: Methylation of the 59 CpG island of the p16/CDKN2 tumor suppressor gene in normal and transformed human tissues correlates with gene silencing. Cancer Res. 1995, 55: 4531-5.PubMed
10.
11.
go back to reference Groudine M, Eisenman R, Gelinas R, Weintraub H: Developmental aspects of chromatin structure and gene expression. Prog Clin Biol Res. 1983, 134: 159-82.PubMed Groudine M, Eisenman R, Gelinas R, Weintraub H: Developmental aspects of chromatin structure and gene expression. Prog Clin Biol Res. 1983, 134: 159-82.PubMed
12.
go back to reference Marks PA, Sheffery M, Rifkind RA: Modulation of gene expression during terminal cell differentiation. Prog Clin Biol Res. 1985, 191: 185-203.PubMed Marks PA, Sheffery M, Rifkind RA: Modulation of gene expression during terminal cell differentiation. Prog Clin Biol Res. 1985, 191: 185-203.PubMed
13.
go back to reference Ramain P, Bourouis M, Dretzen G: Changes in the chromatin structure of Drosophila glue genes accompany developmental cessation of transcription in wild type and transformed strains. Cell. 1986, 45: 545-53. 10.1016/0092-8674(86)90286-2.CrossRefPubMed Ramain P, Bourouis M, Dretzen G: Changes in the chromatin structure of Drosophila glue genes accompany developmental cessation of transcription in wild type and transformed strains. Cell. 1986, 45: 545-53. 10.1016/0092-8674(86)90286-2.CrossRefPubMed
14.
go back to reference Grunstein M: Histone acetylation in chromatin structure and transcription. Nature. 1997, 389: 349-52. 10.1038/38664.CrossRefPubMed Grunstein M: Histone acetylation in chromatin structure and transcription. Nature. 1997, 389: 349-52. 10.1038/38664.CrossRefPubMed
15.
go back to reference Varga-Weisz PD, Becker PB: Regulation of higher-order chromatin structures by nucleosome-remodelling factors. Curr Opin Genet Dev. 2006, 16: 151-6. 10.1016/j.gde.2006.02.006.CrossRefPubMed Varga-Weisz PD, Becker PB: Regulation of higher-order chromatin structures by nucleosome-remodelling factors. Curr Opin Genet Dev. 2006, 16: 151-6. 10.1016/j.gde.2006.02.006.CrossRefPubMed
16.
go back to reference Bergmann A, Lane ME: HIDden targets of microRNAs for growth control. Trends Biochem Sci. 2003, 28: 461-3. 10.1016/S0968-0004(03)00175-0.CrossRefPubMed Bergmann A, Lane ME: HIDden targets of microRNAs for growth control. Trends Biochem Sci. 2003, 28: 461-3. 10.1016/S0968-0004(03)00175-0.CrossRefPubMed
17.
go back to reference Zhang B, Pan X, Cobb GP, Anderson TA: MicroRNAs as oncogenes and tumor suppressors. Dev Biol. 2007, 302: 1-12. 10.1016/j.ydbio.2006.08.028.CrossRefPubMed Zhang B, Pan X, Cobb GP, Anderson TA: MicroRNAs as oncogenes and tumor suppressors. Dev Biol. 2007, 302: 1-12. 10.1016/j.ydbio.2006.08.028.CrossRefPubMed
18.
go back to reference Vo N, Klein ME, Varlamova O: A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc Natl Acad Sci USA. 2005, 102: 16426-31. 10.1073/pnas.0508448102.PubMedCentralCrossRefPubMed Vo N, Klein ME, Varlamova O: A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc Natl Acad Sci USA. 2005, 102: 16426-31. 10.1073/pnas.0508448102.PubMedCentralCrossRefPubMed
19.
go back to reference Finch JT, Lutter LC, Rhodes D: Structure of nucleosome core particles of chromatin. Nature. 1977, 269: 29-36. 10.1038/269029a0.CrossRefPubMed Finch JT, Lutter LC, Rhodes D: Structure of nucleosome core particles of chromatin. Nature. 1977, 269: 29-36. 10.1038/269029a0.CrossRefPubMed
20.
go back to reference Sarma K, Reinberg D: Histone variants meet their match. Nat Rev Mol Cell Biol. 2005, 6: 139-49. 10.1038/nrm1567.CrossRefPubMed Sarma K, Reinberg D: Histone variants meet their match. Nat Rev Mol Cell Biol. 2005, 6: 139-49. 10.1038/nrm1567.CrossRefPubMed
21.
go back to reference Jenuwein T: Re-SET-ting heterochromatin by histone methyltransferases. Trends Cell Biol. 2001, 11: 266-73. 10.1016/S0962-8924(01)02001-3.CrossRefPubMed Jenuwein T: Re-SET-ting heterochromatin by histone methyltransferases. Trends Cell Biol. 2001, 11: 266-73. 10.1016/S0962-8924(01)02001-3.CrossRefPubMed
22.
go back to reference Wade PA, Pruss D, Wolffe AP: Histone acetylation: chromatin in action. Trends Biochem Sci. 1997, 22: 128-32. 10.1016/S0968-0004(97)01016-5.CrossRefPubMed Wade PA, Pruss D, Wolffe AP: Histone acetylation: chromatin in action. Trends Biochem Sci. 1997, 22: 128-32. 10.1016/S0968-0004(97)01016-5.CrossRefPubMed
23.
go back to reference Shilatifard A: Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu Rev Biochem. 2006, 75: 243-69. 10.1146/annurev.biochem.75.103004.142422.CrossRefPubMed Shilatifard A: Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu Rev Biochem. 2006, 75: 243-69. 10.1146/annurev.biochem.75.103004.142422.CrossRefPubMed
24.
go back to reference Henikoff S, McKittrick E, Ahmad K: Epigenetics, histone H3 variants, and the inheritance of chromatin states. Cold Spring Harb Symp Quant Biol. 2004, 69: 235-43. 10.1101/sqb.2004.69.235.CrossRefPubMed Henikoff S, McKittrick E, Ahmad K: Epigenetics, histone H3 variants, and the inheritance of chromatin states. Cold Spring Harb Symp Quant Biol. 2004, 69: 235-43. 10.1101/sqb.2004.69.235.CrossRefPubMed
25.
go back to reference Jenuwein T, Allis CD: Translating the histone code. Science. 2001, 293: 1074-80. 10.1126/science.1063127.CrossRefPubMed Jenuwein T, Allis CD: Translating the histone code. Science. 2001, 293: 1074-80. 10.1126/science.1063127.CrossRefPubMed
26.
go back to reference Kuo MH, Allis CD: Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays. 1998, 20: 615-26. 10.1002/(SICI)1521-1878(199808)20:8<615::AID-BIES4>3.0.CO;2-H.CrossRefPubMed Kuo MH, Allis CD: Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays. 1998, 20: 615-26. 10.1002/(SICI)1521-1878(199808)20:8<615::AID-BIES4>3.0.CO;2-H.CrossRefPubMed
27.
go back to reference Perry M, Chalkley R: Histone acetylation increases the solubility of chromatin and occurs sequentially over most of the chromatin. A novel model for the biological role of histone acetylation. J Biol Chem. 1982, 257: 7336-47.PubMed Perry M, Chalkley R: Histone acetylation increases the solubility of chromatin and occurs sequentially over most of the chromatin. A novel model for the biological role of histone acetylation. J Biol Chem. 1982, 257: 7336-47.PubMed
28.
go back to reference Lee DY, Hayes JJ, Pruss D, Wolffe AP: A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell. 1993, 72: 73-84. 10.1016/0092-8674(93)90051-Q.CrossRefPubMed Lee DY, Hayes JJ, Pruss D, Wolffe AP: A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell. 1993, 72: 73-84. 10.1016/0092-8674(93)90051-Q.CrossRefPubMed
29.
go back to reference Wolffe AP: Histone deacetylase: a regulator of transcription. Science. 1996, 272: 371-2. 10.1126/science.272.5260.371.CrossRefPubMed Wolffe AP: Histone deacetylase: a regulator of transcription. Science. 1996, 272: 371-2. 10.1126/science.272.5260.371.CrossRefPubMed
30.
go back to reference Lachner M, O'Carroll D, Rea S: Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature. 2001, 410: 116-20. 10.1038/35065132.CrossRefPubMed Lachner M, O'Carroll D, Rea S: Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature. 2001, 410: 116-20. 10.1038/35065132.CrossRefPubMed
31.
go back to reference Shi Y, Lan F, Matson C: Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell. 2004, 119: 941-53. 10.1016/j.cell.2004.12.012.CrossRefPubMed Shi Y, Lan F, Matson C: Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell. 2004, 119: 941-53. 10.1016/j.cell.2004.12.012.CrossRefPubMed
32.
go back to reference Tsukada Y, Fang J, Erdjument-Bromage H: Histone demethylation by a family of JmjC domain-containing proteins. Nature. 2006, 439: 811-6. 10.1038/nature04433.CrossRefPubMed Tsukada Y, Fang J, Erdjument-Bromage H: Histone demethylation by a family of JmjC domain-containing proteins. Nature. 2006, 439: 811-6. 10.1038/nature04433.CrossRefPubMed
33.
go back to reference Bultman SJ, Gebuhr TC, Magnuson T: A Brg1 mutation that uncouples ATPase activity from chromatin remodeling reveals an essential role for SWI/SNF-related complexes in beta-globin expression and erythroid development. Genes Dev. 2005, 19: 2849-61. 10.1101/gad.1364105.PubMedCentralCrossRefPubMed Bultman SJ, Gebuhr TC, Magnuson T: A Brg1 mutation that uncouples ATPase activity from chromatin remodeling reveals an essential role for SWI/SNF-related complexes in beta-globin expression and erythroid development. Genes Dev. 2005, 19: 2849-61. 10.1101/gad.1364105.PubMedCentralCrossRefPubMed
34.
go back to reference Ogryzko VV, Schiltz RL, Russanova V: The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell. 1996, 87: 953-9. 10.1016/S0092-8674(00)82001-2.CrossRefPubMed Ogryzko VV, Schiltz RL, Russanova V: The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell. 1996, 87: 953-9. 10.1016/S0092-8674(00)82001-2.CrossRefPubMed
36.
go back to reference Baylin SB, Esteller M, Rountree MR: Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum Mol Genet. 2001, 10: 687-92. 10.1093/hmg/10.7.687.CrossRefPubMed Baylin SB, Esteller M, Rountree MR: Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum Mol Genet. 2001, 10: 687-92. 10.1093/hmg/10.7.687.CrossRefPubMed
37.
go back to reference Okano M, Xie S, Li E: Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet. 1998, 19: 219-20. 10.1038/890.CrossRefPubMed Okano M, Xie S, Li E: Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet. 1998, 19: 219-20. 10.1038/890.CrossRefPubMed
38.
go back to reference Vilain A, Apiou F, Dutrillaux B, Malfoy B: Assignment of candidate DNA methyltransferase gene (DNMT2) to human chromosome band 10p15.1 by in situ hybridization. Cytogenet Cell Genet. 1998, 82: 120-10.1159/000015083.CrossRefPubMed Vilain A, Apiou F, Dutrillaux B, Malfoy B: Assignment of candidate DNA methyltransferase gene (DNMT2) to human chromosome band 10p15.1 by in situ hybridization. Cytogenet Cell Genet. 1998, 82: 120-10.1159/000015083.CrossRefPubMed
39.
go back to reference Bourc'his D, Xu GL, Lin CS: Dnmt3L and the establishment of maternal genomic imprints. Science. 2001, 294: 2536-9. 10.1126/science.1065848.CrossRefPubMed Bourc'his D, Xu GL, Lin CS: Dnmt3L and the establishment of maternal genomic imprints. Science. 2001, 294: 2536-9. 10.1126/science.1065848.CrossRefPubMed
40.
go back to reference Li E, Bestor TH, Jaenisch R: Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell. 1992, 69: 915-26. 10.1016/0092-8674(92)90611-F.CrossRefPubMed Li E, Bestor TH, Jaenisch R: Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell. 1992, 69: 915-26. 10.1016/0092-8674(92)90611-F.CrossRefPubMed
41.
go back to reference Okano M, Bell DW, Haber DA, Li E: DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999, 99: 247-57. 10.1016/S0092-8674(00)81656-6.CrossRefPubMed Okano M, Bell DW, Haber DA, Li E: DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999, 99: 247-57. 10.1016/S0092-8674(00)81656-6.CrossRefPubMed
42.
go back to reference Goto K, Numata M, Komura JI: Expression of DNA methyltransferase gene in mature and immature neurons as well as proliferating cells in mice. Differentiation. 1994, 56: 39-44.CrossRefPubMed Goto K, Numata M, Komura JI: Expression of DNA methyltransferase gene in mature and immature neurons as well as proliferating cells in mice. Differentiation. 1994, 56: 39-44.CrossRefPubMed
43.
go back to reference Veldic M, Guidotti A, Maloku E: In psychosis, cortical interneurons overexpress DNA-methyltransferase 1. Proc Natl Acad Sci USA. 2005, 102: 2152-7. 10.1073/pnas.0409665102.PubMedCentralCrossRefPubMed Veldic M, Guidotti A, Maloku E: In psychosis, cortical interneurons overexpress DNA-methyltransferase 1. Proc Natl Acad Sci USA. 2005, 102: 2152-7. 10.1073/pnas.0409665102.PubMedCentralCrossRefPubMed
44.
go back to reference Ramchandani S, Bhattacharya SK, Cervoni N, Szyf M: DNA methylation is a reversible biological signal. Proc Natl Acad Sci USA. 1999, 96: 6107-12. 10.1073/pnas.96.11.6107.PubMedCentralCrossRefPubMed Ramchandani S, Bhattacharya SK, Cervoni N, Szyf M: DNA methylation is a reversible biological signal. Proc Natl Acad Sci USA. 1999, 96: 6107-12. 10.1073/pnas.96.11.6107.PubMedCentralCrossRefPubMed
45.
go back to reference Lucarelli M, Fuso A, Strom R, Scarpa S: The dynamics of myogenin site-specific demethylation is strongly correlated with its expression and with muscle differentiation. J Biol Chem. 2001, 276: 7500-6. 10.1074/jbc.M008234200.CrossRefPubMed Lucarelli M, Fuso A, Strom R, Scarpa S: The dynamics of myogenin site-specific demethylation is strongly correlated with its expression and with muscle differentiation. J Biol Chem. 2001, 276: 7500-6. 10.1074/jbc.M008234200.CrossRefPubMed
46.
go back to reference Bruniquel D, Schwartz RH: Selective, stable demethylation of the interleukin-2 gene enhances transcription by an active process. Nat Immunol. 2003, 4: 235-40. 10.1038/ni887.CrossRefPubMed Bruniquel D, Schwartz RH: Selective, stable demethylation of the interleukin-2 gene enhances transcription by an active process. Nat Immunol. 2003, 4: 235-40. 10.1038/ni887.CrossRefPubMed
47.
go back to reference Kersh EN, Fitzpatrick DR, Murali-Krishna K: Rapid demethylation of the IFN-gamma gene occurs in memory but not naive CD8 T cells. J Immunol. 2006, 176: 4083-93.CrossRefPubMed Kersh EN, Fitzpatrick DR, Murali-Krishna K: Rapid demethylation of the IFN-gamma gene occurs in memory but not naive CD8 T cells. J Immunol. 2006, 176: 4083-93.CrossRefPubMed
48.
go back to reference Weaver IC, Cervoni N, Champagne FA: Epigenetic programming by maternal behavior. Nat Neurosci. 2004, 7: 847-54. 10.1038/nn1276.CrossRefPubMed Weaver IC, Cervoni N, Champagne FA: Epigenetic programming by maternal behavior. Nat Neurosci. 2004, 7: 847-54. 10.1038/nn1276.CrossRefPubMed
49.
go back to reference Jost JP: Nuclear extracts of chicken embryos promote an active demethylation of DNA by excision repair of 5-methyldeoxycytidine. Proc Natl Acad Sci USA. 1993, 90: 4684-8. 10.1073/pnas.90.10.4684.PubMedCentralCrossRefPubMed Jost JP: Nuclear extracts of chicken embryos promote an active demethylation of DNA by excision repair of 5-methyldeoxycytidine. Proc Natl Acad Sci USA. 1993, 90: 4684-8. 10.1073/pnas.90.10.4684.PubMedCentralCrossRefPubMed
50.
go back to reference Zhu B, Zheng Y, Hess D: 5-Methylcytosine-DNA glycosylase activity is present in a cloned G/T mismatch DNA glycosylase associated with the chicken embryo DNA demethylation complex. Proc Natl Acad Sci USA. 2000, 97: 5135-9. 10.1073/pnas.100107597.PubMedCentralCrossRefPubMed Zhu B, Zheng Y, Hess D: 5-Methylcytosine-DNA glycosylase activity is present in a cloned G/T mismatch DNA glycosylase associated with the chicken embryo DNA demethylation complex. Proc Natl Acad Sci USA. 2000, 97: 5135-9. 10.1073/pnas.100107597.PubMedCentralCrossRefPubMed
51.
go back to reference Bhattacharya SK, Ramchandani S, Cervoni N, Szyf M: A mammalian protein with specific demethylase activity for mCpG DNA. Nature. 1999, 397: 579-83. 10.1038/17533.CrossRefPubMed Bhattacharya SK, Ramchandani S, Cervoni N, Szyf M: A mammalian protein with specific demethylase activity for mCpG DNA. Nature. 1999, 397: 579-83. 10.1038/17533.CrossRefPubMed
52.
go back to reference Ng HH, Zhang Y, Hendrich B: MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nat Genet. 1999, 23: 58-61.PubMed Ng HH, Zhang Y, Hendrich B: MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nat Genet. 1999, 23: 58-61.PubMed
53.
go back to reference Detich N, Theberge J, Szyf M: Promoter-specific activation and demethylation by MBD2/demethylase. J Biol Chem. 2002, 277: 35791-4. 10.1074/jbc.C200408200.CrossRefPubMed Detich N, Theberge J, Szyf M: Promoter-specific activation and demethylation by MBD2/demethylase. J Biol Chem. 2002, 277: 35791-4. 10.1074/jbc.C200408200.CrossRefPubMed
54.
go back to reference Detich N, Bovenzi V, Szyf M: Valproate induces replicationindependent active DNA demethylation. J Biol Chem. 2003, 278: 27586-92. 10.1074/jbc.M303740200.CrossRefPubMed Detich N, Bovenzi V, Szyf M: Valproate induces replicationindependent active DNA demethylation. J Biol Chem. 2003, 278: 27586-92. 10.1074/jbc.M303740200.CrossRefPubMed
55.
go back to reference Detich N, Hamm S, Just G: The methyl donor Sadenosylmethionine inhibits active demethylation of DNA: a candidate novel mechanism for the pharmacological effects of Sadenosylmethionine. J Biol Chem. 2003, 278: 20812-20. 10.1074/jbc.M211813200.CrossRefPubMed Detich N, Hamm S, Just G: The methyl donor Sadenosylmethionine inhibits active demethylation of DNA: a candidate novel mechanism for the pharmacological effects of Sadenosylmethionine. J Biol Chem. 2003, 278: 20812-20. 10.1074/jbc.M211813200.CrossRefPubMed
56.
go back to reference Barreto G, Schafer A, Marhold J: Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature. 2007, 445: 671-5. 10.1038/nature05515.CrossRefPubMed Barreto G, Schafer A, Marhold J: Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature. 2007, 445: 671-5. 10.1038/nature05515.CrossRefPubMed
57.
go back to reference Cervoni N, Szyf M: Demethylase activity is directed by histone acetylation. J Biol Chem. 2001, 276: 40778-87. 10.1074/jbc.M103921200.CrossRefPubMed Cervoni N, Szyf M: Demethylase activity is directed by histone acetylation. J Biol Chem. 2001, 276: 40778-87. 10.1074/jbc.M103921200.CrossRefPubMed
58.
go back to reference D'Alessio AC, Szyf M: Epigenetic tete-a-tete: the bilateral relationship between chromatin modifications and DNA methylation. Biochem Cell Biol. 2006, 84: 463-76. 10.1139/O06-090.CrossRefPubMed D'Alessio AC, Szyf M: Epigenetic tete-a-tete: the bilateral relationship between chromatin modifications and DNA methylation. Biochem Cell Biol. 2006, 84: 463-76. 10.1139/O06-090.CrossRefPubMed
59.
go back to reference Fuks F, Burgers WA, Brehm A: DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nat Genet. 2000, 24: 88-91. 10.1038/71750.CrossRefPubMed Fuks F, Burgers WA, Brehm A: DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nat Genet. 2000, 24: 88-91. 10.1038/71750.CrossRefPubMed
60.
go back to reference Fuks F, Hurd PJ, Wolf D: The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J Biol Chem. 2003, 278: 4035-40. 10.1074/jbc.M210256200.CrossRefPubMed Fuks F, Hurd PJ, Wolf D: The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J Biol Chem. 2003, 278: 4035-40. 10.1074/jbc.M210256200.CrossRefPubMed
61.
go back to reference Rountree MR, Bachman KE, Baylin SB: DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nat Genet. 2000, 25: 269-77. 10.1038/77023.CrossRefPubMed Rountree MR, Bachman KE, Baylin SB: DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nat Genet. 2000, 25: 269-77. 10.1038/77023.CrossRefPubMed
62.
go back to reference Vire E, Brenner C, Deplus R: The Polycomb group protein EZH2 directly controls DNA methylation. Nature. 2006, 439: 871-4. 10.1038/nature04431.CrossRefPubMed Vire E, Brenner C, Deplus R: The Polycomb group protein EZH2 directly controls DNA methylation. Nature. 2006, 439: 871-4. 10.1038/nature04431.CrossRefPubMed
63.
go back to reference Di Croce L, Raker VA, Corsaro M: Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science. 2002, 295: 1079-82. 10.1126/science.1065173.CrossRefPubMed Di Croce L, Raker VA, Corsaro M: Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science. 2002, 295: 1079-82. 10.1126/science.1065173.CrossRefPubMed
64.
go back to reference Lichtenstein M, Keini G, Cedar H, Bergman Y: B cell-specific demethylation: a novel role for the intronic kappa chain enhancer sequence. Cell. 1994, 76: 913-23. 10.1016/0092-8674(94)90365-4.CrossRefPubMed Lichtenstein M, Keini G, Cedar H, Bergman Y: B cell-specific demethylation: a novel role for the intronic kappa chain enhancer sequence. Cell. 1994, 76: 913-23. 10.1016/0092-8674(94)90365-4.CrossRefPubMed
65.
go back to reference Szyf M, Weaver I, Meaney M: Maternal care, the epigenome and phenotypic differences in behavior. Reprod Toxicol. 2007, 24: 9-19. 10.1016/j.reprotox.2007.05.001.CrossRefPubMed Szyf M, Weaver I, Meaney M: Maternal care, the epigenome and phenotypic differences in behavior. Reprod Toxicol. 2007, 24: 9-19. 10.1016/j.reprotox.2007.05.001.CrossRefPubMed
66.
go back to reference Comb M, Goodman HM: CpG methylation inhibits proenkephalin gene expression and binding of the transcription factor AP-2. Nucleic Acids Res. 1990, 18: 3975-82. 10.1093/nar/18.13.3975.PubMedCentralCrossRefPubMed Comb M, Goodman HM: CpG methylation inhibits proenkephalin gene expression and binding of the transcription factor AP-2. Nucleic Acids Res. 1990, 18: 3975-82. 10.1093/nar/18.13.3975.PubMedCentralCrossRefPubMed
67.
go back to reference Inamdar NM, Ehrlich KC, Ehrlich M: CpG methylation inhibits binding of several sequence-specific DNA-binding proteins from pea, wheat, soybean and cauliflower. Plant Mol Biol. 1991, 17: 111-23. 10.1007/BF00036811.CrossRefPubMed Inamdar NM, Ehrlich KC, Ehrlich M: CpG methylation inhibits binding of several sequence-specific DNA-binding proteins from pea, wheat, soybean and cauliflower. Plant Mol Biol. 1991, 17: 111-23. 10.1007/BF00036811.CrossRefPubMed
68.
go back to reference Nan X, Campoy FJ, Bird A: MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell. 1997, 88: 471-81. 10.1016/S0092-8674(00)81887-5.CrossRefPubMed Nan X, Campoy FJ, Bird A: MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell. 1997, 88: 471-81. 10.1016/S0092-8674(00)81887-5.CrossRefPubMed
69.
go back to reference Fujita N, Takebayashi S, Okumura K: Methylation-mediated transcriptional silencing in euchromatin by methyl-CpG binding protein MBD1 isoforms. Mol Cell Biol. 1999, 19: 6415-26.PubMedCentralPubMed Fujita N, Takebayashi S, Okumura K: Methylation-mediated transcriptional silencing in euchromatin by methyl-CpG binding protein MBD1 isoforms. Mol Cell Biol. 1999, 19: 6415-26.PubMedCentralPubMed
70.
go back to reference Hendrich B, Bird A: Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol Cell Biol. 1998, 18: 6538-47.PubMedCentralPubMed Hendrich B, Bird A: Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol Cell Biol. 1998, 18: 6538-47.PubMedCentralPubMed
71.
go back to reference Liu D, Diorio J, Tannenbaum B: Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science. 1997, 277: 1659-62. 10.1126/science.277.5332.1659.CrossRefPubMed Liu D, Diorio J, Tannenbaum B: Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science. 1997, 277: 1659-62. 10.1126/science.277.5332.1659.CrossRefPubMed
72.
go back to reference Francis D, Diorio J, Liu D, Meaney MJ: Nongenomic transmission across generations of maternal behavior and stress responses in the rat. Science. 1999, 286: 1155-8. 10.1126/science.286.5442.1155.CrossRefPubMed Francis D, Diorio J, Liu D, Meaney MJ: Nongenomic transmission across generations of maternal behavior and stress responses in the rat. Science. 1999, 286: 1155-8. 10.1126/science.286.5442.1155.CrossRefPubMed
73.
go back to reference Meaney MJ, Szyf M: Maternal care as a model for experiencedependent chromatin plasticity?. Trends Neurosci. 2005, 28: 456-63. 10.1016/j.tins.2005.07.006.CrossRefPubMed Meaney MJ, Szyf M: Maternal care as a model for experiencedependent chromatin plasticity?. Trends Neurosci. 2005, 28: 456-63. 10.1016/j.tins.2005.07.006.CrossRefPubMed
74.
go back to reference Champagne FA, Weaver IC, Diorio J: Maternal care associated with methylation of the estrogen receptor-alpha1b promoter and estrogen receptor-alpha expression in the medial preoptic area of female offspring. Endocrinology. 2006, 147: 2909-15. 10.1210/en.2005-1119.CrossRefPubMed Champagne FA, Weaver IC, Diorio J: Maternal care associated with methylation of the estrogen receptor-alpha1b promoter and estrogen receptor-alpha expression in the medial preoptic area of female offspring. Endocrinology. 2006, 147: 2909-15. 10.1210/en.2005-1119.CrossRefPubMed
75.
go back to reference Cervoni N, Detich N, Seo SB: The oncoprotein Set/TAF-1beta, an inhibitor of histone acetyltransferase, inhibits active demethylation of DNA, integrating DNA methylation and transcriptional silencing. J Biol Chem. 2002, 277: 25026-31. 10.1074/jbc.M202256200.CrossRefPubMed Cervoni N, Detich N, Seo SB: The oncoprotein Set/TAF-1beta, an inhibitor of histone acetyltransferase, inhibits active demethylation of DNA, integrating DNA methylation and transcriptional silencing. J Biol Chem. 2002, 277: 25026-31. 10.1074/jbc.M202256200.CrossRefPubMed
76.
go back to reference Weaver IC, Diorio J, Seckl JR: Early environmental regulation of hippocampal glucocorticoid receptor gene expression: characterization of intracellular mediators and potential genomic target sites. Ann N Y Acad Sci. 2004, 1024: 182-212. 10.1196/annals.1321.099.CrossRefPubMed Weaver IC, Diorio J, Seckl JR: Early environmental regulation of hippocampal glucocorticoid receptor gene expression: characterization of intracellular mediators and potential genomic target sites. Ann N Y Acad Sci. 2004, 1024: 182-212. 10.1196/annals.1321.099.CrossRefPubMed
77.
go back to reference Tremolizzo L, Carboni G, Ruzicka WB: An epigenetic mouse model for molecular and behavioral neuropathologies related to schizophrenia vulnerability. Proc Natl Acad Sci USA. 2002, 99: 17095-100. 10.1073/pnas.262658999.PubMedCentralCrossRefPubMed Tremolizzo L, Carboni G, Ruzicka WB: An epigenetic mouse model for molecular and behavioral neuropathologies related to schizophrenia vulnerability. Proc Natl Acad Sci USA. 2002, 99: 17095-100. 10.1073/pnas.262658999.PubMedCentralCrossRefPubMed
78.
go back to reference Weaver IC, Champagne FA, Brown SE: Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: altering epigenetic marking later in life. J Neurosci. 2005, 25: 11045-54. 10.1523/JNEUROSCI.3652-05.2005.CrossRefPubMed Weaver IC, Champagne FA, Brown SE: Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: altering epigenetic marking later in life. J Neurosci. 2005, 25: 11045-54. 10.1523/JNEUROSCI.3652-05.2005.CrossRefPubMed
79.
go back to reference Meaney MJ, Aitken DH, Sapolsky RM: Thyroid hormones influence the development of hippocampal glucocorticoid receptors in the rat: a mechanism for the effects of postnatal handling on the development of the adrenocortical stress response. Neuroendocrinology. 1987, 45: 278-83. 10.1159/000124741.CrossRefPubMed Meaney MJ, Aitken DH, Sapolsky RM: Thyroid hormones influence the development of hippocampal glucocorticoid receptors in the rat: a mechanism for the effects of postnatal handling on the development of the adrenocortical stress response. Neuroendocrinology. 1987, 45: 278-83. 10.1159/000124741.CrossRefPubMed
80.
go back to reference Meaney MJ, Diorio J, Francis D: Postnatal handling increases the expression of cAMP-inducible transcription factors in the rat hippocampus: the effects of thyroid hormones and serotonin. J Neurosci. 2000, 20: 3926-35.PubMed Meaney MJ, Diorio J, Francis D: Postnatal handling increases the expression of cAMP-inducible transcription factors in the rat hippocampus: the effects of thyroid hormones and serotonin. J Neurosci. 2000, 20: 3926-35.PubMed
81.
go back to reference Laplante P, Diorio J, Meaney MJ: Serotonin regulates hippocampal glucocorticoid receptor expression via a 5-HT7 receptor. Brain Res Dev Brain Res. 2002, 139: 199-203. 10.1016/S0165-3806(02)00550-3.CrossRefPubMed Laplante P, Diorio J, Meaney MJ: Serotonin regulates hippocampal glucocorticoid receptor expression via a 5-HT7 receptor. Brain Res Dev Brain Res. 2002, 139: 199-203. 10.1016/S0165-3806(02)00550-3.CrossRefPubMed
82.
go back to reference McCormick JA, Lyons V, Jacobson MD: 59-Heterogeneity of glucocorticoid receptor messenger RNA is tissue specific: differential regulation of variant transcripts by early-life events. Mol Endocrinol. 2000, 14: 506-17. 10.1210/me.14.4.506.PubMed McCormick JA, Lyons V, Jacobson MD: 59-Heterogeneity of glucocorticoid receptor messenger RNA is tissue specific: differential regulation of variant transcripts by early-life events. Mol Endocrinol. 2000, 14: 506-17. 10.1210/me.14.4.506.PubMed
83.
go back to reference Richardson BC: Role of DNA methylation in the regulation of cell function: autoimmunity, aging and cancer. J Nutr. 2002, 132: Richardson BC: Role of DNA methylation in the regulation of cell function: autoimmunity, aging and cancer. J Nutr. 2002, 132:
84.
go back to reference Cornacchia E, Golbus J, Maybaum J: Hydralazine and procainamide inhibit T cell DNA methylation and induce autoreactivity. J Immunol. 1988, 140: 2197-200.PubMed Cornacchia E, Golbus J, Maybaum J: Hydralazine and procainamide inhibit T cell DNA methylation and induce autoreactivity. J Immunol. 1988, 140: 2197-200.PubMed
85.
go back to reference Scheinbart LS, Johnson MA, Gross LA: Procainamide inhibits DNA methyltransferase in a human T cell line. J Rheumatol. 1991, 18: 530-4.PubMed Scheinbart LS, Johnson MA, Gross LA: Procainamide inhibits DNA methyltransferase in a human T cell line. J Rheumatol. 1991, 18: 530-4.PubMed
86.
go back to reference Deng C, Lu Q, Zhang Z: Hydralazine may induce autoimmunity by inhibiting extracellular signal-regulated kinase pathway signaling. Arthritis Rheum. 2003, 48: 746-56. 10.1002/art.10833.CrossRefPubMed Deng C, Lu Q, Zhang Z: Hydralazine may induce autoimmunity by inhibiting extracellular signal-regulated kinase pathway signaling. Arthritis Rheum. 2003, 48: 746-56. 10.1002/art.10833.CrossRefPubMed
87.
go back to reference Quddus J, Johnson KJ, Gavalchin J: Treating activated CD4+ T cells with either of two distinct DNA methyltransferase inhibitors, 5-azacytidine or procainamide, is sufficient to cause a lupus-like disease in syngeneic mice. J Clin Invest. 1993, 92: 38-53. 10.1172/JCI116576.PubMedCentralCrossRefPubMed Quddus J, Johnson KJ, Gavalchin J: Treating activated CD4+ T cells with either of two distinct DNA methyltransferase inhibitors, 5-azacytidine or procainamide, is sufficient to cause a lupus-like disease in syngeneic mice. J Clin Invest. 1993, 92: 38-53. 10.1172/JCI116576.PubMedCentralCrossRefPubMed
88.
go back to reference Balada E, Ordi-Ros J, Serrano-Acedo S: Transcript overexpression of the MBD2 and MBD4 genes in CD4+ T cells from systemic lupus erythematosus patients. J Leukoc Biol. 2007, 81: 1609-16. 10.1189/jlb.0107064.CrossRefPubMed Balada E, Ordi-Ros J, Serrano-Acedo S: Transcript overexpression of the MBD2 and MBD4 genes in CD4+ T cells from systemic lupus erythematosus patients. J Leukoc Biol. 2007, 81: 1609-16. 10.1189/jlb.0107064.CrossRefPubMed
Metadata
Title
Epigenetics, Behaviour, and Health
Authors
Moshe Szyf
Michael J Meaney
Publication date
01-03-2008
Publisher
BioMed Central
Published in
Allergy, Asthma & Clinical Immunology / Issue 1/2008
Electronic ISSN: 1710-1492
DOI
https://doi.org/10.1186/1710-1492-4-1-37

Other articles of this Issue 1/2008

Allergy, Asthma & Clinical Immunology 1/2008 Go to the issue