Skip to main content
Top
Published in: Journal of the International Society of Sports Nutrition 1/2009

Open Access 01-12-2009 | Research article

Effects of β-alanine supplementation and high-intensity interval training on endurance performance and body composition in men; a double-blind trial

Authors: Abbie E Smith, Ashley A Walter, Jennifer L Graef, Kristina L Kendall, Jordan R Moon, Christopher M Lockwood, David H Fukuda, Travis W Beck, Joel T Cramer, Jeffrey R Stout

Published in: Journal of the International Society of Sports Nutrition | Issue 1/2009

Login to get access

Abstract

Background

Intermittent bouts of high-intensity exercise result in diminished stores of energy substrates, followed by an accumulation of metabolites, promoting chronic physiological adaptations. In addition, β-alanine has been accepted has an effective physiological hydrogen ion (H+) buffer. Concurrent high-intensity interval training (HIIT) and β-alanine supplementation may result in greater adaptations than HIIT alone. The purpose of the current study was to evaluate the effects of combining β-alanine supplementation with high-intensity interval training (HIIT) on endurance performance and aerobic metabolism in recreationally active college-aged men.

Methods

Forty-six men (Age: 22.2 ± 2.7 yrs; Ht: 178.1 ± 7.4 cm; Wt: 78.7 ± 11.9; VO2peak: 3.3 ± 0.59 l·min-1) were assessed for peak O2 utilization (VO2peak), time to fatigue (VO2TTE), ventilatory threshold (VT), and total work done at 110% of pre-training VO2peak (TWD). In a double-blind fashion, all subjects were randomly assigned into one either a placebo (PL – 16.5 g dextrose powder per packet; n = 18) or β-alanine (BA – 1.5 g β-alanine plus 15 g dextrose powder per packet; n = 18) group. All subjects supplemented four times per day (total of 6 g/day) for the first 21-days, followed by two times per day (3 g/day) for the subsequent 21 days, and engaged in a total of six weeks of HIIT training consisting of 5–6 bouts of a 2:1 minute cycling work to rest ratio.

Results

Significant improvements in VO2peak, VO2TTE, and TWD after three weeks of training were displayed (p < 0.05). Increases in VO2peak, VO2TTE, TWD and lean body mass were only significant for the BA group after the second three weeks of training.

Conclusion

The use of HIIT to induce significant aerobic improvements is effective and efficient. Chronic BA supplementation may further enhance HIIT, improving endurance performance and lean body mass.
Appendix
Available only for authorised users
Literature
1.
go back to reference Robergs RA, Ghiasvand F, Parker D: Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol. 2004, 287 (3): R502-516.CrossRefPubMed Robergs RA, Ghiasvand F, Parker D: Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol. 2004, 287 (3): R502-516.CrossRefPubMed
2.
go back to reference Spriet LL, Lindinger MI, McKelvie RS, Heigenhauser GJ, Jones NL: Muscle glycogenolysis and H+ concentration during maximal intermittent cycling. Journal of applied physiology. 1989, 66 (1): 8-13.PubMed Spriet LL, Lindinger MI, McKelvie RS, Heigenhauser GJ, Jones NL: Muscle glycogenolysis and H+ concentration during maximal intermittent cycling. Journal of applied physiology. 1989, 66 (1): 8-13.PubMed
3.
go back to reference Allen DG, Lamb GD, Westerblad H: Skeletal muscle fatigue: cellular mechanisms. Physiological reviews. 2008, 88 (1): 287-332. 10.1152/physrev.00015.2007.CrossRefPubMed Allen DG, Lamb GD, Westerblad H: Skeletal muscle fatigue: cellular mechanisms. Physiological reviews. 2008, 88 (1): 287-332. 10.1152/physrev.00015.2007.CrossRefPubMed
4.
go back to reference Messonnier L, Kristensen M, Juel C, Denis C: Importance of pH regulation and lactate/H+ transport capacity for work production during supramaximal exercise in humans. J Appl Physiol. 2007, 102 (5): 1936-1944. 10.1152/japplphysiol.00691.2006.CrossRefPubMed Messonnier L, Kristensen M, Juel C, Denis C: Importance of pH regulation and lactate/H+ transport capacity for work production during supramaximal exercise in humans. J Appl Physiol. 2007, 102 (5): 1936-1944. 10.1152/japplphysiol.00691.2006.CrossRefPubMed
5.
go back to reference Potteiger JA, Webster MJ, Nickel GL, Haub MD, Palmer RJ: The effects of buffer ingestion on metabolic factors related to distance running performance. European journal of applied physiology and occupational physiology. 1996, 72 (4): 365-371. 10.1007/BF00599698.CrossRefPubMed Potteiger JA, Webster MJ, Nickel GL, Haub MD, Palmer RJ: The effects of buffer ingestion on metabolic factors related to distance running performance. European journal of applied physiology and occupational physiology. 1996, 72 (4): 365-371. 10.1007/BF00599698.CrossRefPubMed
6.
go back to reference Hill CA, Harris RC, Kim HJ, Harris BD, Sale C, Boobis LH, Kim CK, Wise JA: Influence of beta-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity. Amino acids. 2007, 32 (2): 225-233. 10.1007/s00726-006-0364-4.CrossRefPubMed Hill CA, Harris RC, Kim HJ, Harris BD, Sale C, Boobis LH, Kim CK, Wise JA: Influence of beta-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity. Amino acids. 2007, 32 (2): 225-233. 10.1007/s00726-006-0364-4.CrossRefPubMed
7.
go back to reference Abe H: Role of histidine-related compounds as intracellular proton buffering constituents in vertebrate muscle. Biochemistry. 2000, 65 (7): 757-765.PubMed Abe H: Role of histidine-related compounds as intracellular proton buffering constituents in vertebrate muscle. Biochemistry. 2000, 65 (7): 757-765.PubMed
8.
go back to reference Suzuki Y, Nakao T, Maemura H, Sato M, Kamahara K, Morimatsu F, Takamatsu K: Carnosine and anserine ingestion enhances contribution of nonbicarbonate buffering. Medicine and science in sports and exercise. 2006, 38 (2): 334-338.PubMed Suzuki Y, Nakao T, Maemura H, Sato M, Kamahara K, Morimatsu F, Takamatsu K: Carnosine and anserine ingestion enhances contribution of nonbicarbonate buffering. Medicine and science in sports and exercise. 2006, 38 (2): 334-338.PubMed
9.
go back to reference McNaughton L, Backx K, Palmer G, Strange N: Effects of chronic bicarbonate ingestion on the performance of high-intensity work. European journal of applied physiology and occupational physiology. 1999, 80 (4): 333-336. 10.1007/s004210050600.CrossRefPubMed McNaughton L, Backx K, Palmer G, Strange N: Effects of chronic bicarbonate ingestion on the performance of high-intensity work. European journal of applied physiology and occupational physiology. 1999, 80 (4): 333-336. 10.1007/s004210050600.CrossRefPubMed
10.
go back to reference Beaver WL, Wasserman K, Whipp BJ: Bicarbonate buffering of lactic acid generated during exercise. J Appl Physiol. 1986, 60 (2): 472-478.PubMed Beaver WL, Wasserman K, Whipp BJ: Bicarbonate buffering of lactic acid generated during exercise. J Appl Physiol. 1986, 60 (2): 472-478.PubMed
11.
go back to reference Juel C: Regulation of pH in human skeletal muscle: adaptations to physical activity. Acta physiologica (Oxford, England). 2008, 193 (1): 17-24.CrossRef Juel C: Regulation of pH in human skeletal muscle: adaptations to physical activity. Acta physiologica (Oxford, England). 2008, 193 (1): 17-24.CrossRef
12.
go back to reference Juel C, Klarskov C, Nielsen JJ, Krustrup P, Mohr M, Bangsbo J: Effect of high-intensity intermittent training on lactate and H+ release from human skeletal muscle. American journal of physiology. 2004, 286 (2): E245-251.PubMed Juel C, Klarskov C, Nielsen JJ, Krustrup P, Mohr M, Bangsbo J: Effect of high-intensity intermittent training on lactate and H+ release from human skeletal muscle. American journal of physiology. 2004, 286 (2): E245-251.PubMed
13.
go back to reference Bate-Smith EC: The buffering of muscle in rigor: Protein, phosphate and carnosine. The Journal of physiology. 1938, 92: 336-343.CrossRef Bate-Smith EC: The buffering of muscle in rigor: Protein, phosphate and carnosine. The Journal of physiology. 1938, 92: 336-343.CrossRef
14.
go back to reference Suzuki Y, Ito O, Mukai N, Takahashi H, Takamatsu K: High level of skeletal muscle carnosine contributes to the latter half of exercise performance during 30-s maximal cycle ergometer sprinting. The Japanese journal of physiology. 2002, 52 (2): 199-205. 10.2170/jjphysiol.52.199.CrossRefPubMed Suzuki Y, Ito O, Mukai N, Takahashi H, Takamatsu K: High level of skeletal muscle carnosine contributes to the latter half of exercise performance during 30-s maximal cycle ergometer sprinting. The Japanese journal of physiology. 2002, 52 (2): 199-205. 10.2170/jjphysiol.52.199.CrossRefPubMed
15.
go back to reference Derave W, Ozdemir MS, Harris RC, Pottier A, Reyngoudt H, Koppo K, Wise JA, Achten E: beta-Alanine supplementation augments muscle carnosine content and attenuates fatigue during repeated isokinetic contraction bouts in trained sprinters. J Appl Physiol. 2007, 103 (5): 1736-1743. 10.1152/japplphysiol.00397.2007.CrossRefPubMed Derave W, Ozdemir MS, Harris RC, Pottier A, Reyngoudt H, Koppo K, Wise JA, Achten E: beta-Alanine supplementation augments muscle carnosine content and attenuates fatigue during repeated isokinetic contraction bouts in trained sprinters. J Appl Physiol. 2007, 103 (5): 1736-1743. 10.1152/japplphysiol.00397.2007.CrossRefPubMed
16.
go back to reference Harris RC, Edge J, Kendrick IP, Bishop D, Goodman C, Wise JA: The Effect of Very High Interval Training on the Carnosine Content and Buffereing Capacity of V Lateralis from Humans. FASEB J. 2007, 21: 769-10.1096/fj.06-6925com.CrossRef Harris RC, Edge J, Kendrick IP, Bishop D, Goodman C, Wise JA: The Effect of Very High Interval Training on the Carnosine Content and Buffereing Capacity of V Lateralis from Humans. FASEB J. 2007, 21: 769-10.1096/fj.06-6925com.CrossRef
17.
go back to reference Kendrick IP, Harris RC, Kim HJ, Kim CK, Dang VH, Lam TQ, Bui TT, Smith M, Wise JA: The effects of 10 weeks of resistance training combined with beta-alanine supplementation on whole body strength, force production, muscular endurance and body composition. Amino acids. 2008, 34 (4): 547-554. 10.1007/s00726-007-0008-3.CrossRefPubMed Kendrick IP, Harris RC, Kim HJ, Kim CK, Dang VH, Lam TQ, Bui TT, Smith M, Wise JA: The effects of 10 weeks of resistance training combined with beta-alanine supplementation on whole body strength, force production, muscular endurance and body composition. Amino acids. 2008, 34 (4): 547-554. 10.1007/s00726-007-0008-3.CrossRefPubMed
18.
go back to reference Harris RC, Tallon MJ, Dunnett M, Boobis L, Coakley J, Kim HJ, Fallowfield JL, Hill CA, Sale C, Wise JA: The absorption of orally supplied beta-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino acids. 2006, 30 (3): 279-289. 10.1007/s00726-006-0299-9.CrossRefPubMed Harris RC, Tallon MJ, Dunnett M, Boobis L, Coakley J, Kim HJ, Fallowfield JL, Hill CA, Sale C, Wise JA: The absorption of orally supplied beta-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino acids. 2006, 30 (3): 279-289. 10.1007/s00726-006-0299-9.CrossRefPubMed
19.
go back to reference Bakardjiev A, Bauer K: Transport of beta-alanine and biosynthesis of carnosine by skeletal muscle cells in primary culture. European journal of biochemistry/FEBS. 1994, 225 (2): 617-623. 10.1111/j.1432-1033.1994.00617.x.CrossRefPubMed Bakardjiev A, Bauer K: Transport of beta-alanine and biosynthesis of carnosine by skeletal muscle cells in primary culture. European journal of biochemistry/FEBS. 1994, 225 (2): 617-623. 10.1111/j.1432-1033.1994.00617.x.CrossRefPubMed
20.
go back to reference Dunnett M, Harris RC, Soliman MZ, Suwar AA: Carnosine, anserine and taurine contents in individual fibres from the middle gluteal muscle of the camel. Research in veterinary science. 1997, 62 (3): 213-216. 10.1016/S0034-5288(97)90192-2.CrossRefPubMed Dunnett M, Harris RC, Soliman MZ, Suwar AA: Carnosine, anserine and taurine contents in individual fibres from the middle gluteal muscle of the camel. Research in veterinary science. 1997, 62 (3): 213-216. 10.1016/S0034-5288(97)90192-2.CrossRefPubMed
21.
go back to reference Kim HJ, Kim CK, Lee YW, Harris RC, Sale C, Harris BD, Wise JA: The effect of a supplement containing B-alanine on muscle carnosine synthesis and exercise capacity, during 12 week combined endurance and weight training. J Int Soc Sports Nutr. 2006, 3: S9- Kim HJ, Kim CK, Lee YW, Harris RC, Sale C, Harris BD, Wise JA: The effect of a supplement containing B-alanine on muscle carnosine synthesis and exercise capacity, during 12 week combined endurance and weight training. J Int Soc Sports Nutr. 2006, 3: S9-
22.
go back to reference Stout JR, Cramer JT, Mielke M, O'Kroy J, Torok DJ, Zoeller RF: Effects of twenty-eight days of beta-alanine and creatine monohydrate supplementation on the physical working capacity at neuromuscular fatigue threshold. Journal of strength and conditioning research/National Strength & Conditioning Association. 2006, 20 (4): 928-931. Stout JR, Cramer JT, Mielke M, O'Kroy J, Torok DJ, Zoeller RF: Effects of twenty-eight days of beta-alanine and creatine monohydrate supplementation on the physical working capacity at neuromuscular fatigue threshold. Journal of strength and conditioning research/National Strength & Conditioning Association. 2006, 20 (4): 928-931.
23.
go back to reference Stout JR, Cramer JT, Zoeller RF, Torok D, Costa P, Hoffman JR, Harris RC, O'Kroy J: Effects of beta-alanine supplementation on the onset of neuromuscular fatigue and ventilatory threshold in women. Amino acids. 2007, 32 (3): 381-386. 10.1007/s00726-006-0474-z.CrossRefPubMed Stout JR, Cramer JT, Zoeller RF, Torok D, Costa P, Hoffman JR, Harris RC, O'Kroy J: Effects of beta-alanine supplementation on the onset of neuromuscular fatigue and ventilatory threshold in women. Amino acids. 2007, 32 (3): 381-386. 10.1007/s00726-006-0474-z.CrossRefPubMed
24.
go back to reference Zoeller RF, Stout JR, O'Kroy JA, Torok DJ, Mielke M: Effects of 28 days of beta-alanine and creatine monohydrate supplementation on aerobic power, ventilatory and lactate thresholds, and time to exhaustion. Amino acids. 2007, 33 (3): 505-510. 10.1007/s00726-006-0399-6.CrossRefPubMed Zoeller RF, Stout JR, O'Kroy JA, Torok DJ, Mielke M: Effects of 28 days of beta-alanine and creatine monohydrate supplementation on aerobic power, ventilatory and lactate thresholds, and time to exhaustion. Amino acids. 2007, 33 (3): 505-510. 10.1007/s00726-006-0399-6.CrossRefPubMed
25.
go back to reference Edge J, Bishop D, Goodman C: The effects of training intensity on muscle buffer capacity in females. European journal of applied physiology. 2006, 96 (1): 97-105. 10.1007/s00421-005-0068-6.CrossRefPubMed Edge J, Bishop D, Goodman C: The effects of training intensity on muscle buffer capacity in females. European journal of applied physiology. 2006, 96 (1): 97-105. 10.1007/s00421-005-0068-6.CrossRefPubMed
26.
go back to reference Laursen PB, Jenkins DG: The scientific basis for high-intensity interval training: optimising training programmes and maximising performance in highly trained endurance athletes. Sports medicine (Auckland, NZ). 2002, 32 (1): 53-73. 10.2165/00007256-200232010-00003.CrossRef Laursen PB, Jenkins DG: The scientific basis for high-intensity interval training: optimising training programmes and maximising performance in highly trained endurance athletes. Sports medicine (Auckland, NZ). 2002, 32 (1): 53-73. 10.2165/00007256-200232010-00003.CrossRef
27.
go back to reference Weston AR, Myburgh KH, Lindsay FH, Dennis SC, Noakes TD, Hawley JA: Skeletal muscle buffering capacity and endurance performance after high-intensity interval training by well-trained cyclists. European journal of applied physiology and occupational physiology. 1997, 75 (1): 7-13.CrossRefPubMed Weston AR, Myburgh KH, Lindsay FH, Dennis SC, Noakes TD, Hawley JA: Skeletal muscle buffering capacity and endurance performance after high-intensity interval training by well-trained cyclists. European journal of applied physiology and occupational physiology. 1997, 75 (1): 7-13.CrossRefPubMed
28.
go back to reference Costill DL, Verstappen F, Kuipers H, Janssen E, Fink W: Acid-base balance during repeated bouts of exercise: influence of HCO3. International journal of sports medicine. 1984, 5 (5): 228-231. 10.1055/s-2008-1025910.CrossRefPubMed Costill DL, Verstappen F, Kuipers H, Janssen E, Fink W: Acid-base balance during repeated bouts of exercise: influence of HCO3. International journal of sports medicine. 1984, 5 (5): 228-231. 10.1055/s-2008-1025910.CrossRefPubMed
29.
go back to reference Talanian JL, Galloway SD, Heigenhauser GJ, Bonen A, Spriet LL: Two weeks of high-intensity aerobic interval training increases the capacity for fat oxidation during exercise in women. Journal of applied physiology. 2007, 102 (4): 1439-1447. 10.1152/japplphysiol.01098.2006.CrossRefPubMed Talanian JL, Galloway SD, Heigenhauser GJ, Bonen A, Spriet LL: Two weeks of high-intensity aerobic interval training increases the capacity for fat oxidation during exercise in women. Journal of applied physiology. 2007, 102 (4): 1439-1447. 10.1152/japplphysiol.01098.2006.CrossRefPubMed
30.
go back to reference Day JR, Rossiter HB, Coats EM, Skasick A, Whipp BJ: The maximally attainable VO2 during exercise in humans: the peak vs. maximum issue. J Appl Physiol. 2003, 95 (5): 1901-1907.CrossRefPubMed Day JR, Rossiter HB, Coats EM, Skasick A, Whipp BJ: The maximally attainable VO2 during exercise in humans: the peak vs. maximum issue. J Appl Physiol. 2003, 95 (5): 1901-1907.CrossRefPubMed
31.
go back to reference Orr GW, Green HJ, Hughson RL, Bennett GW: A computer linear regression model to determine ventilatory anaerobic threshold. J Appl Physiol. 1982, 52 (5): 1349-1352.PubMed Orr GW, Green HJ, Hughson RL, Bennett GW: A computer linear regression model to determine ventilatory anaerobic threshold. J Appl Physiol. 1982, 52 (5): 1349-1352.PubMed
32.
go back to reference Brown L, Greenwood M: Periodization Essentials and Innovations in Resistance Training Protocols. JSCR. 2005, 27 (4): 80-85. Brown L, Greenwood M: Periodization Essentials and Innovations in Resistance Training Protocols. JSCR. 2005, 27 (4): 80-85.
33.
go back to reference Brozek J, Grande F, Anderson JT, Keys A: Densitometric Analysis of Body Composition: Revision of Some Quantitative Assumptions. Annals of the New York Academy of Sciences. 1963, 110: 113-140. 10.1111/j.1749-6632.1963.tb17079.x.CrossRefPubMed Brozek J, Grande F, Anderson JT, Keys A: Densitometric Analysis of Body Composition: Revision of Some Quantitative Assumptions. Annals of the New York Academy of Sciences. 1963, 110: 113-140. 10.1111/j.1749-6632.1963.tb17079.x.CrossRefPubMed
34.
go back to reference Helgerud J, Hoydal K, Wang E, Karlsen T, Berg P, Bjerkaas M, Simonsen T, Helgesen C, Hjorth N, Bach R: Aerobic high-intensity intervals improve VO2max more than moderate training. Medicine and science in sports and exercise. 2007, 39 (4): 665-671. 10.1249/mss.0b013e3180304570.CrossRefPubMed Helgerud J, Hoydal K, Wang E, Karlsen T, Berg P, Bjerkaas M, Simonsen T, Helgesen C, Hjorth N, Bach R: Aerobic high-intensity intervals improve VO2max more than moderate training. Medicine and science in sports and exercise. 2007, 39 (4): 665-671. 10.1249/mss.0b013e3180304570.CrossRefPubMed
35.
go back to reference Rognmo O, Hetland E, Helgerud J, Hoff J, Slordahl SA: High intensity aerobic interval exercise is superior to moderate intensity exercise for increasing aerobic capacity in patients with coronary artery disease. Eur J Cardiovasc Prev Rehabil. 2004, 11 (3): 216-222. 10.1097/01.hjr.0000131677.96762.0c.CrossRefPubMed Rognmo O, Hetland E, Helgerud J, Hoff J, Slordahl SA: High intensity aerobic interval exercise is superior to moderate intensity exercise for increasing aerobic capacity in patients with coronary artery disease. Eur J Cardiovasc Prev Rehabil. 2004, 11 (3): 216-222. 10.1097/01.hjr.0000131677.96762.0c.CrossRefPubMed
36.
go back to reference Thomas TR, Adeniran SB, Etheridge GL: Effects of different running programs on VO2 max, percent fat, and plasma lipids. Canadian journal of applied sport sciences. 1984, 9 (2): 55-62. Thomas TR, Adeniran SB, Etheridge GL: Effects of different running programs on VO2 max, percent fat, and plasma lipids. Canadian journal of applied sport sciences. 1984, 9 (2): 55-62.
37.
go back to reference Berger NJ, Tolfrey K, Williams AG, Jones AM: Influence of continuous and interval training on oxygen uptake on-kinetics. Medicine and science in sports and exercise. 2006, 38 (3): 504-512. 10.1249/01.mss.0000191418.37709.81.CrossRefPubMed Berger NJ, Tolfrey K, Williams AG, Jones AM: Influence of continuous and interval training on oxygen uptake on-kinetics. Medicine and science in sports and exercise. 2006, 38 (3): 504-512. 10.1249/01.mss.0000191418.37709.81.CrossRefPubMed
38.
go back to reference Burke J, Thayer R, Belcamino M: Comparison of effects of two interval-training programmes on lactate and ventilatory thresholds. British journal of sports medicine. 1994, 28 (1): 18-21. 10.1136/bjsm.28.1.18.PubMedCentralCrossRefPubMed Burke J, Thayer R, Belcamino M: Comparison of effects of two interval-training programmes on lactate and ventilatory thresholds. British journal of sports medicine. 1994, 28 (1): 18-21. 10.1136/bjsm.28.1.18.PubMedCentralCrossRefPubMed
39.
go back to reference Duffield R, Edge J, Bishop D: Effects of high-intensity interval training on the VO2 response during severe exercise. Journal of science and medicine in sport/Sports Medicine Australia. 2006, 9 (3): 249-255. 10.1016/j.jsams.2006.03.014.CrossRefPubMed Duffield R, Edge J, Bishop D: Effects of high-intensity interval training on the VO2 response during severe exercise. Journal of science and medicine in sport/Sports Medicine Australia. 2006, 9 (3): 249-255. 10.1016/j.jsams.2006.03.014.CrossRefPubMed
40.
go back to reference Eddy DO, Sparks KL, Adelizi DA: The effects of continuous and interval training in women and men. European journal of applied physiology and occupational physiology. 1977, 37 (2): 83-92. 10.1007/BF00421694.CrossRefPubMed Eddy DO, Sparks KL, Adelizi DA: The effects of continuous and interval training in women and men. European journal of applied physiology and occupational physiology. 1977, 37 (2): 83-92. 10.1007/BF00421694.CrossRefPubMed
41.
go back to reference Rozenek R, Funato K, Kubo J, Hoshikawa M, Matsuo A: Physiological responses to interval training sessions at velocities associated with VO2max. Journal of strength and conditioning research/National Strength & Conditioning Association. 2007, 21 (1): 188-192. Rozenek R, Funato K, Kubo J, Hoshikawa M, Matsuo A: Physiological responses to interval training sessions at velocities associated with VO2max. Journal of strength and conditioning research/National Strength & Conditioning Association. 2007, 21 (1): 188-192.
42.
go back to reference Gaitanos GC, Williams C, Boobis LH, Brooks S: Human muscle metabolism during intermittent maximal exercise. Journal of applied physiology. 1993, 75 (2): 712-719.PubMed Gaitanos GC, Williams C, Boobis LH, Brooks S: Human muscle metabolism during intermittent maximal exercise. Journal of applied physiology. 1993, 75 (2): 712-719.PubMed
43.
go back to reference Harmer AR, McKenna MJ, Sutton JR, Snow RJ, Ruell PA, Booth J, Thompson MW, Mackay NA, Stathis CG, Crameri RM: Skeletal muscle metabolic and ionic adaptations during intense exercise following sprint training in humans. Journal of applied physiology. 2000, 89 (5): 1793-1803.PubMed Harmer AR, McKenna MJ, Sutton JR, Snow RJ, Ruell PA, Booth J, Thompson MW, Mackay NA, Stathis CG, Crameri RM: Skeletal muscle metabolic and ionic adaptations during intense exercise following sprint training in humans. Journal of applied physiology. 2000, 89 (5): 1793-1803.PubMed
44.
go back to reference Henriksson J: Effects of physical training on the metabolism of skeletal muscle. Diabetes care. 1992, 15 (11): 1701-1711. 10.2337/diacare.15.11.1701.CrossRefPubMed Henriksson J: Effects of physical training on the metabolism of skeletal muscle. Diabetes care. 1992, 15 (11): 1701-1711. 10.2337/diacare.15.11.1701.CrossRefPubMed
45.
go back to reference Krustrup P, Hellsten Y, Bangsbo J: Intense interval training enhances human skeletal muscle oxygen uptake in the initial phase of dynamic exercise at high but not at low intensities. The Journal of physiology. 2004, 559 (Pt 1): 335-345. 10.1113/jphysiol.2004.062232.PubMedCentralCrossRefPubMed Krustrup P, Hellsten Y, Bangsbo J: Intense interval training enhances human skeletal muscle oxygen uptake in the initial phase of dynamic exercise at high but not at low intensities. The Journal of physiology. 2004, 559 (Pt 1): 335-345. 10.1113/jphysiol.2004.062232.PubMedCentralCrossRefPubMed
46.
go back to reference Nordsborg N, Bangsbo J, Pilegaard H: Effect of high-intensity training on exercise-induced gene expression specific to ion homeostasis and metabolism. Journal of applied physiology. 2003, 95 (3): 1201-1206.CrossRefPubMed Nordsborg N, Bangsbo J, Pilegaard H: Effect of high-intensity training on exercise-induced gene expression specific to ion homeostasis and metabolism. Journal of applied physiology. 2003, 95 (3): 1201-1206.CrossRefPubMed
47.
go back to reference Rodas G, Ventura JL, Cadefau JA, Cusso R, Parra J: A short training programme for the rapid improvement of both aerobic and anaerobic metabolism. European journal of applied physiology. 2000, 82 (5–6): 480-486. 10.1007/s004210000223.CrossRefPubMed Rodas G, Ventura JL, Cadefau JA, Cusso R, Parra J: A short training programme for the rapid improvement of both aerobic and anaerobic metabolism. European journal of applied physiology. 2000, 82 (5–6): 480-486. 10.1007/s004210000223.CrossRefPubMed
48.
go back to reference Coggan AR, Kohrt WM, Spina RJ, Kirwan JP, Bier DM, Holloszy JO: Plasma glucose kinetics during exercise in subjects with high and low lactate thresholds. Journal of applied physiology. 1992, 73 (5): 1873-1880.PubMed Coggan AR, Kohrt WM, Spina RJ, Kirwan JP, Bier DM, Holloszy JO: Plasma glucose kinetics during exercise in subjects with high and low lactate thresholds. Journal of applied physiology. 1992, 73 (5): 1873-1880.PubMed
49.
go back to reference Demarle AP, Heugas AM, Slawinski JJ, Tricot VM, Koralsztein JP, Billat VL: Whichever the initial training status, any increase in velocity at lactate threshold appears as a major factor in improved time to exhaustion at the same severe velocity after training. Archives of physiology and biochemistry. 2003, 111 (2): 167-176. 10.1076/apab.111.2.167.14003.CrossRefPubMed Demarle AP, Heugas AM, Slawinski JJ, Tricot VM, Koralsztein JP, Billat VL: Whichever the initial training status, any increase in velocity at lactate threshold appears as a major factor in improved time to exhaustion at the same severe velocity after training. Archives of physiology and biochemistry. 2003, 111 (2): 167-176. 10.1076/apab.111.2.167.14003.CrossRefPubMed
50.
go back to reference Gaiga MC, Docherty D: The effect of an aerobic interval training program on intermittent anaerobic performance. Canadian journal of applied physiology = Revue canadienne de physiologie appliquee. 1995, 20 (4): 452-464.CrossRefPubMed Gaiga MC, Docherty D: The effect of an aerobic interval training program on intermittent anaerobic performance. Canadian journal of applied physiology = Revue canadienne de physiologie appliquee. 1995, 20 (4): 452-464.CrossRefPubMed
51.
go back to reference Caso G, Garlick PJ: Control of muscle protein kinetics by acid-base balance. Current opinion in clinical nutrition and metabolic care. 2005, 8 (1): 73-76. 10.1097/00075197-200501000-00011.CrossRefPubMed Caso G, Garlick PJ: Control of muscle protein kinetics by acid-base balance. Current opinion in clinical nutrition and metabolic care. 2005, 8 (1): 73-76. 10.1097/00075197-200501000-00011.CrossRefPubMed
52.
go back to reference Ballmer PE, Imoberdorf R: Influence of acidosis on protein metabolism. Nutrition (Burbank, Los Angeles County, Calif). 1995, 11 (5): 462-468. discussion 470. Ballmer PE, Imoberdorf R: Influence of acidosis on protein metabolism. Nutrition (Burbank, Los Angeles County, Calif). 1995, 11 (5): 462-468. discussion 470.
53.
go back to reference Hoffman J, Ratamess N, Faigenbaum A, Ross R, Kang J, Stout J, Wise JA: Short-duration beta-alanine supplementation increases training volume and reduces subjective feelings of fatigue in college football players. Nutrition Research. 2007, 28 (1): 31-35. 10.1016/j.nutres.2007.11.004.CrossRef Hoffman J, Ratamess N, Faigenbaum A, Ross R, Kang J, Stout J, Wise JA: Short-duration beta-alanine supplementation increases training volume and reduces subjective feelings of fatigue in college football players. Nutrition Research. 2007, 28 (1): 31-35. 10.1016/j.nutres.2007.11.004.CrossRef
54.
go back to reference Hoffman J, Ratamess N, Kang J, Mangine G, Faigenbaum A, Stout J: Effect of creatine and beta-alanine supplementation on performance and endocrine responses in strength/power athletes. International journal of sport nutrition and exercise metabolism. 2006, 16 (4): 430-446.PubMed Hoffman J, Ratamess N, Kang J, Mangine G, Faigenbaum A, Stout J: Effect of creatine and beta-alanine supplementation on performance and endocrine responses in strength/power athletes. International journal of sport nutrition and exercise metabolism. 2006, 16 (4): 430-446.PubMed
Metadata
Title
Effects of β-alanine supplementation and high-intensity interval training on endurance performance and body composition in men; a double-blind trial
Authors
Abbie E Smith
Ashley A Walter
Jennifer L Graef
Kristina L Kendall
Jordan R Moon
Christopher M Lockwood
David H Fukuda
Travis W Beck
Joel T Cramer
Jeffrey R Stout
Publication date
01-12-2009
Publisher
BioMed Central
DOI
https://doi.org/10.1186/1550-2783-6-5

Other articles of this Issue 1/2009

Journal of the International Society of Sports Nutrition 1/2009 Go to the issue