Skip to main content
Top
Published in: Journal of the International Society of Sports Nutrition 1/2006

Open Access 01-06-2006 | Review

Contemporary Issues in Protein Requirements and Consumption for Resistance Trained Athletes

Authors: Jacob Wilson, Gabriel J Wilson

Published in: Journal of the International Society of Sports Nutrition | Issue 1/2006

Login to get access

Abstract

In recent years an explosion of research papers concerning protein consumption has been published. The need to consolidate this information has become critical from both practical and future research standpoints. For this reason, the following paper presents an in depth analysis of contemporary issues in protein requirements and consumption for resistance trained athletes. Specifically, the paper covers: 1.) protein requirements for resistance trained athletes; 2.) the effect of the digestion rate of protein on muscular protein balance; 3.) the optimal timing of protein intake relative to exercise; 4.) the optimal pattern of protein ingestion, relative to how an individual should consume their protein throughout a 24 hour period, and what sources are utilized during this time frame; 5.) protein composition and its interaction with measures of protein balance and strength performance; 6.) the combination of protein and carbohydrates on plasma insulin levels and protein balance; 7.) the efficacy of protein supplements and whole food protein sources. Our goal is to provide the reader with practical information in optimizing protein intake as well as for provision of sound advice to their clients. Finally, special care was taken to provide future research implications.
Literature
1.
go back to reference Tipton KD, Wolfe RR: Protein and amino acids for athletes. J Sports Sci. 2004, 22 (1): 65–79. 10.1080/0264041031000140554.PubMed Tipton KD, Wolfe RR: Protein and amino acids for athletes. J Sports Sci. 2004, 22 (1): 65–79. 10.1080/0264041031000140554.PubMed
2.
go back to reference Esmarck , Andersen JL, Olsen S, Richter EA, Mizuno M, Kjær M: Timing of postexercise protein intake is important for muscle hypertrophy with resistance training in elderly humans. Physiol (Lond). 2001, 535: 301–311. 10.1111/j.1469-7793.2001.00301.x. Esmarck , Andersen JL, Olsen S, Richter EA, Mizuno M, Kjær M: Timing of postexercise protein intake is important for muscle hypertrophy with resistance training in elderly humans. Physiol (Lond). 2001, 535: 301–311. 10.1111/j.1469-7793.2001.00301.x.
3.
go back to reference Levenhagen DK, Gresham JD, Carlson MG, Maron DJ: Postexercise nutrient intake timing in humans is critical to recovery of leg glucose and protein homeostasis. Am J Physiol Endocrinol Metab. 2001, 280: E982–E993.PubMed Levenhagen DK, Gresham JD, Carlson MG, Maron DJ: Postexercise nutrient intake timing in humans is critical to recovery of leg glucose and protein homeostasis. Am J Physiol Endocrinol Metab. 2001, 280: E982–E993.PubMed
4.
go back to reference Rennie MJ: Grandad, it ain't what you eat, it depends when you eat it – that's how muscles grow!. J Physiol. 2001, 535 (Pt 1): 2–2. 10.1111/j.1469-7793.2001.t01-2-00002.x.PubMedPubMedCentral Rennie MJ: Grandad, it ain't what you eat, it depends when you eat it – that's how muscles grow!. J Physiol. 2001, 535 (Pt 1): 2–2. 10.1111/j.1469-7793.2001.t01-2-00002.x.PubMedPubMedCentral
5.
go back to reference Layman DK, Baum JI: Influence of the protein digestion rate on protein turnover in young and elderly subjects. J Nutr. 2002, 132: 3228S–33S. Layman DK, Baum JI: Influence of the protein digestion rate on protein turnover in young and elderly subjects. J Nutr. 2002, 132: 3228S–33S.
6.
go back to reference Dangin M, Boirie Y, Guillet C, Beaufrere B: Influence of the protein digestion rate on protein turnover in young and elderly subjects. J Nutr. 2002, 132: 3228S–33S.PubMed Dangin M, Boirie Y, Guillet C, Beaufrere B: Influence of the protein digestion rate on protein turnover in young and elderly subjects. J Nutr. 2002, 132: 3228S–33S.PubMed
7.
go back to reference Phillips SM, Hartman JW, Wilkinson SB: Dietary protein to support anabolism with resistance exercise in young men. J Am Coll Nutr. 2005, 24: 134S–139S.PubMed Phillips SM, Hartman JW, Wilkinson SB: Dietary protein to support anabolism with resistance exercise in young men. J Am Coll Nutr. 2005, 24: 134S–139S.PubMed
8.
go back to reference Rand WM, Pellett PL, Young VR: Meta-analysis of nitrogen balance studies for estimating protein requirements in healthy adults. Am J Clin Nutr. 2003, 77: 109–127.PubMed Rand WM, Pellett PL, Young VR: Meta-analysis of nitrogen balance studies for estimating protein requirements in healthy adults. Am J Clin Nutr. 2003, 77: 109–127.PubMed
9.
go back to reference Brody T: Nutritional Biochemistry. 1999, San Diego: Academic Press, 2 Brody T: Nutritional Biochemistry. 1999, San Diego: Academic Press, 2
10.
go back to reference Tomé D, Bos C: Dietary protein and nitrogen utilization. J Nutr. 2000, 130: 1868S–1873S.PubMed Tomé D, Bos C: Dietary protein and nitrogen utilization. J Nutr. 2000, 130: 1868S–1873S.PubMed
11.
go back to reference Alway SE, Grumbt WH, Stray-Gundersen J, Gonyea WJ: J Appl Physiol. 1992, 72: 1512–21. 10.1063/1.351718.PubMed Alway SE, Grumbt WH, Stray-Gundersen J, Gonyea WJ: J Appl Physiol. 1992, 72: 1512–21. 10.1063/1.351718.PubMed
12.
go back to reference McArdle WD, Katch FI, Katch VL: Sports and exercise nutrition. 1999, Philadelphia, PA: Lippincott, Williams, & Wilkins Publishing Co McArdle WD, Katch FI, Katch VL: Sports and exercise nutrition. 1999, Philadelphia, PA: Lippincott, Williams, & Wilkins Publishing Co
13.
go back to reference Tarnopolsky MA, Atkinson SA, MacDougall JD, Chesley A, Phillips S, Schwarcz HP: Evaluation of protein requirements for trained strength athletes. J Appl Physiol. 1992, 73: 1986–95.PubMed Tarnopolsky MA, Atkinson SA, MacDougall JD, Chesley A, Phillips S, Schwarcz HP: Evaluation of protein requirements for trained strength athletes. J Appl Physiol. 1992, 73: 1986–95.PubMed
14.
go back to reference Lemon PW, Proctor DN: Protein intake and athletic performance. Sports Med. 1991, 12: 313–25. 10.2165/00007256-199112050-00004.PubMed Lemon PW, Proctor DN: Protein intake and athletic performance. Sports Med. 1991, 12: 313–25. 10.2165/00007256-199112050-00004.PubMed
15.
go back to reference Tarnopolsky MA, MacDougall JD, Atkinson SA: Influence of protein intake and training status on nitrogen balance and lean body mass. J Appl Physiol. 1988, 64: 187–93.PubMed Tarnopolsky MA, MacDougall JD, Atkinson SA: Influence of protein intake and training status on nitrogen balance and lean body mass. J Appl Physiol. 1988, 64: 187–93.PubMed
16.
go back to reference Hegsted DM: Assessment of nitrogen requirements. Am J Clin Nutr. 1978, 31: 1669–77.PubMed Hegsted DM: Assessment of nitrogen requirements. Am J Clin Nutr. 1978, 31: 1669–77.PubMed
17.
go back to reference Waterlow JC: The mysteries of nitrogen balance. Nutr Res. 1999, 12: 25–54. 10.1079/095442299108728857. Waterlow JC: The mysteries of nitrogen balance. Nutr Res. 1999, 12: 25–54. 10.1079/095442299108728857.
18.
go back to reference Wolfe RR: Protein supplements and exercise. Am J Clin Nutr. 2000, 72 (Suppl): 551S–7S.PubMed Wolfe RR: Protein supplements and exercise. Am J Clin Nutr. 2000, 72 (Suppl): 551S–7S.PubMed
19.
go back to reference Tome D, Bos C: Dietary protein and nitrogen utilization. J Nutr. 2000, 130: 1868S–73S.PubMed Tome D, Bos C: Dietary protein and nitrogen utilization. J Nutr. 2000, 130: 1868S–73S.PubMed
20.
go back to reference Wolfe RR, Wolfe MH, Nadel ER, Shaw JH: Isotopic determination of amino acid-urea interactions in exercise in humans. J Appl Physiol. 1984, 56: 221–9.PubMed Wolfe RR, Wolfe MH, Nadel ER, Shaw JH: Isotopic determination of amino acid-urea interactions in exercise in humans. J Appl Physiol. 1984, 56: 221–9.PubMed
21.
go back to reference Carraro F, Hartl WH, Stuart CA, Layman DK: Whole body and plasma protein synthesis in exercise and recovery in human subjects. Am J Physiol. 1990, 258 (5 Pt 1): E821–31.PubMed Carraro F, Hartl WH, Stuart CA, Layman DK: Whole body and plasma protein synthesis in exercise and recovery in human subjects. Am J Physiol. 1990, 258 (5 Pt 1): E821–31.PubMed
22.
go back to reference Carraro F, Kimbrough TD, Wolfe RR: Urea kinetics in humans at two levels of exercise intensity. J Appl Physiol. 1993, 75: 1180–5.PubMed Carraro F, Kimbrough TD, Wolfe RR: Urea kinetics in humans at two levels of exercise intensity. J Appl Physiol. 1993, 75: 1180–5.PubMed
23.
go back to reference Lemon PW: Beyond the zone: protein needs of active individuals. J Am Coll Nutr. 2000, 19 (Suppl): 513S–521S.PubMed Lemon PW: Beyond the zone: protein needs of active individuals. J Am Coll Nutr. 2000, 19 (Suppl): 513S–521S.PubMed
24.
go back to reference Lemon PW: Protein requirements of strength athletes. Sports Supplements. Edited by: Antonio J, Stout J. Philadelphia, PA: Lippincott, Williams, & Wilkins Publishing Co Lemon PW: Protein requirements of strength athletes. Sports Supplements. Edited by: Antonio J, Stout J. Philadelphia, PA: Lippincott, Williams, & Wilkins Publishing Co
25.
go back to reference Boirie Y, Dangin M, Gachon P, Vasson MP: Slow and fast dietary proteins differently modulate postprandial protein accretion. Proc Natl Acad Sci USA. 1997, 94: 14930–14935. 10.1073/pnas.94.26.14930.PubMedPubMedCentral Boirie Y, Dangin M, Gachon P, Vasson MP: Slow and fast dietary proteins differently modulate postprandial protein accretion. Proc Natl Acad Sci USA. 1997, 94: 14930–14935. 10.1073/pnas.94.26.14930.PubMedPubMedCentral
26.
go back to reference Dangin M, Boirie Y, Garcia-Rodenas C, Gachon P: The digestion rate of protein is an independent regulating factor of postprandial protein retention. Am J Physiol. 2001, 280: E340–E348. Dangin M, Boirie Y, Garcia-Rodenas C, Gachon P: The digestion rate of protein is an independent regulating factor of postprandial protein retention. Am J Physiol. 2001, 280: E340–E348.
27.
go back to reference Lemon PWR, Tarnopolsky MA, MacDougall JD, Atkinson SA: Protein requirements and muscle mass/strength changes during intensive training in novice bodybuilders. J Appl Physiol. 1992, 73: 767–775.PubMed Lemon PWR, Tarnopolsky MA, MacDougall JD, Atkinson SA: Protein requirements and muscle mass/strength changes during intensive training in novice bodybuilders. J Appl Physiol. 1992, 73: 767–775.PubMed
28.
go back to reference Falvo MJ, Hoffman JR, Ratamess NA, Kang J: Effect Of Protein Supplementation On Strength, Power And Body Composition Changes In Experienced Resistance Trained Men. Med Sci Sports Exercise. 2005, S45-10.1097/00005768-200505001-00239. Suppl 37 Falvo MJ, Hoffman JR, Ratamess NA, Kang J: Effect Of Protein Supplementation On Strength, Power And Body Composition Changes In Experienced Resistance Trained Men. Med Sci Sports Exercise. 2005, S45-10.1097/00005768-200505001-00239. Suppl 37
29.
go back to reference Vukovich MD, Tausz SM, Ballard TL, Stevermer CL: Effect of Protein Supplementation During a 6-month Strength and Conditioning Program on Muscular Strength. Med Sci Sports Exercise. 2004, S193-Suppl 36 Vukovich MD, Tausz SM, Ballard TL, Stevermer CL: Effect of Protein Supplementation During a 6-month Strength and Conditioning Program on Muscular Strength. Med Sci Sports Exercise. 2004, S193-Suppl 36
30.
go back to reference Burke DG, Chilibeck PD, Davidson KS, Candow DG, Farthing J, Smith-Palmer T: The effect of whey protein supplementation with and without creatine monohydrate combined with resistance training on lean tissue mass and muscle strength. Int J Sport Nutr Exerc Metab. 2001, 11 (3): 349–64.PubMed Burke DG, Chilibeck PD, Davidson KS, Candow DG, Farthing J, Smith-Palmer T: The effect of whey protein supplementation with and without creatine monohydrate combined with resistance training on lean tissue mass and muscle strength. Int J Sport Nutr Exerc Metab. 2001, 11 (3): 349–64.PubMed
31.
go back to reference Batheja, and Stout Food: The Ultimate Drug. Sports Supplements. Edited by: Antonio J, Stout J. 2001, Philadelphia, PA: Lippincott, Williams, & Wilkins Publishing Co, 18–42. Batheja, and Stout Food: The Ultimate Drug. Sports Supplements. Edited by: Antonio J, Stout J. 2001, Philadelphia, PA: Lippincott, Williams, & Wilkins Publishing Co, 18–42.
33.
go back to reference Phillips SM: Protein requirements and supplementation in strength sports. Nutrition. 2004, 20 (7–8): 689–95. 10.1016/j.nut.2004.04.009. Review.PubMed Phillips SM: Protein requirements and supplementation in strength sports. Nutrition. 2004, 20 (7–8): 689–95. 10.1016/j.nut.2004.04.009. Review.PubMed
34.
go back to reference Millward DJ: Macronutrient intakes as determinants of dietary protein and amino acid adequacy. Nutr. 2004, 134 (Suppl): 1588S–1596S. Millward DJ: Macronutrient intakes as determinants of dietary protein and amino acid adequacy. Nutr. 2004, 134 (Suppl): 1588S–1596S.
35.
go back to reference Munro HN: Carbohydrate and fat as factors in protein utilization and metabolism. Physiol Rev. 1951, 31: 449–488.PubMed Munro HN: Carbohydrate and fat as factors in protein utilization and metabolism. Physiol Rev. 1951, 31: 449–488.PubMed
36.
go back to reference Consolazio CF, Johnson HL, Nelson RA, Dramise JG: Protein metabolism during intensive physical training in the young adult. Am J Clin Nutr. 1975, 28: 29–35.PubMed Consolazio CF, Johnson HL, Nelson RA, Dramise JG: Protein metabolism during intensive physical training in the young adult. Am J Clin Nutr. 1975, 28: 29–35.PubMed
37.
go back to reference Ingwall JS: Creatine and the control of muscle-specific protein synthesis in cardiac and skeletal muscle. Circ Res. 1976, 38 (Suppl 1): I115–23.PubMed Ingwall JS: Creatine and the control of muscle-specific protein synthesis in cardiac and skeletal muscle. Circ Res. 1976, 38 (Suppl 1): I115–23.PubMed
38.
go back to reference Millar ID: Mammary protein synthesis is acutely regulated by the cellular hydration state. Biochem Biophys Res Commun. 1997, 230: 351–355. 10.1006/bbrc.1996.5959.PubMed Millar ID: Mammary protein synthesis is acutely regulated by the cellular hydration state. Biochem Biophys Res Commun. 1997, 230: 351–355. 10.1006/bbrc.1996.5959.PubMed
39.
go back to reference Waldegger S: Effect of cellular hydration on protein metabolism. Miner Electrolyte Metab. 1997, 23: 201–205.PubMed Waldegger S: Effect of cellular hydration on protein metabolism. Miner Electrolyte Metab. 1997, 23: 201–205.PubMed
40.
go back to reference Wolfe RR: Regulation of muscle protein by amino acids. J Nutr. 2002, 132: 3219S–24S.PubMed Wolfe RR: Regulation of muscle protein by amino acids. J Nutr. 2002, 132: 3219S–24S.PubMed
41.
go back to reference Hakkinen K, Kallinen M: Distribution of strength training volume into one or two daily sessions and neuromuscular adaptations in female athletes. Electromyogr Clin Neurophysiol. 1994, 34: 117–124.PubMed Hakkinen K, Kallinen M: Distribution of strength training volume into one or two daily sessions and neuromuscular adaptations in female athletes. Electromyogr Clin Neurophysiol. 1994, 34: 117–124.PubMed
44.
go back to reference Dangin M, Boirie Y, Garcia-Rodenas C, Gachon P, Fauquant J, Callier P, Ballevre O, Beaufrere B: The digestion rate of protein is an independent regulating factor of postprandial protein retention. Am J Physiol Endocrinol Metab. 2001, 280: E340–E348.PubMed Dangin M, Boirie Y, Garcia-Rodenas C, Gachon P, Fauquant J, Callier P, Ballevre O, Beaufrere B: The digestion rate of protein is an independent regulating factor of postprandial protein retention. Am J Physiol Endocrinol Metab. 2001, 280: E340–E348.PubMed
45.
go back to reference Bohe J, Low A, Wolfe RR, Rennie MJ: Human muscle protein synthesis is modulated by extracellular, not intramuscular amino acid availability: a dose-response study. J Physiol. 2003, 552: 315–324. 10.1113/jphysiol.2003.050674.PubMedPubMedCentral Bohe J, Low A, Wolfe RR, Rennie MJ: Human muscle protein synthesis is modulated by extracellular, not intramuscular amino acid availability: a dose-response study. J Physiol. 2003, 552: 315–324. 10.1113/jphysiol.2003.050674.PubMedPubMedCentral
46.
go back to reference Layman DK, Baum JI: Dietary Protein Impact on Glycemic Control during Weight Loss. The American Society for Nutritional Sciences. J Nutr. 2004, 134: 968S–973S.PubMed Layman DK, Baum JI: Dietary Protein Impact on Glycemic Control during Weight Loss. The American Society for Nutritional Sciences. J Nutr. 2004, 134: 968S–973S.PubMed
47.
go back to reference Daniel H, Vohwinkel M, Rehner G: Effect of casein and β-casomorphins on gastrointestinal motility in rats. J Nutr. 1990, 120: 252–257.PubMed Daniel H, Vohwinkel M, Rehner G: Effect of casein and β-casomorphins on gastrointestinal motility in rats. J Nutr. 1990, 120: 252–257.PubMed
48.
go back to reference Fouillet H, Mariotti F, Gaudichon C, Bos C, Tome D: Peripheral and splanchnic metabolism of dietary nitrogen are differently affected by the protein source in humans as assessed by compartmental modeling. J Nutr. 2002, 132: 125–33.PubMed Fouillet H, Mariotti F, Gaudichon C, Bos C, Tome D: Peripheral and splanchnic metabolism of dietary nitrogen are differently affected by the protein source in humans as assessed by compartmental modeling. J Nutr. 2002, 132: 125–33.PubMed
49.
go back to reference Tipton KD, Elliott TA, Cree MG, Wolf SE, Sanford AP, Wolfe RR: Ingestion of casein and whey proteins result in muscle anabolism after resistance exercise. Med Sci Sports Exerc. 2004, 36: 2073–81. 10.1249/01.MSS.0000147582.99810.C5.PubMed Tipton KD, Elliott TA, Cree MG, Wolf SE, Sanford AP, Wolfe RR: Ingestion of casein and whey proteins result in muscle anabolism after resistance exercise. Med Sci Sports Exerc. 2004, 36: 2073–81. 10.1249/01.MSS.0000147582.99810.C5.PubMed
50.
go back to reference Nair KS, Halliday D, Griggs RC: Leucine incorporation into mixed skeletal muscle protein in humans. Am J Physiol. 1988, 254: E208–213.PubMed Nair KS, Halliday D, Griggs RC: Leucine incorporation into mixed skeletal muscle protein in humans. Am J Physiol. 1988, 254: E208–213.PubMed
51.
go back to reference Daenzer M, Petzke KJ, Bequette BJ, Metges CC: Whole-body nitrogen and splanchnic amino acid metabolism differs in rats fed mixed diets containing casein or its corresponding amino acid mixture. J Nutr. 2001, 131: 1965–1972.PubMed Daenzer M, Petzke KJ, Bequette BJ, Metges CC: Whole-body nitrogen and splanchnic amino acid metabolism differs in rats fed mixed diets containing casein or its corresponding amino acid mixture. J Nutr. 2001, 131: 1965–1972.PubMed
52.
go back to reference De Feo P, Volpi E, Lucidi P, Cruciani G, Reboldi G, Siepi D, Mannarino E, Santeusanio F, Brunetti P, Bolli GB: Physiological increments in plasma insulin concentrations have selective and different effects on synthesis of hepatic proteins in normal humans. Diabetes. 1993, 42: 995–1002. 10.2337/diabetes.42.7.995.PubMed De Feo P, Volpi E, Lucidi P, Cruciani G, Reboldi G, Siepi D, Mannarino E, Santeusanio F, Brunetti P, Bolli GB: Physiological increments in plasma insulin concentrations have selective and different effects on synthesis of hepatic proteins in normal humans. Diabetes. 1993, 42: 995–1002. 10.2337/diabetes.42.7.995.PubMed
53.
go back to reference Phillips SM, Tipton KD, Aarsland A, Wolf SE: Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am J Physiol. 1997, 273: E99–107.PubMed Phillips SM, Tipton KD, Aarsland A, Wolf SE: Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am J Physiol. 1997, 273: E99–107.PubMed
54.
go back to reference Biolo G, Tipton KD, Klein S, Wolfe RR: An abundant supply of amino acids enhances the metabolic effect of exercise on muscle protein. Am J Physiol. 1997, 273: E122–9.PubMed Biolo G, Tipton KD, Klein S, Wolfe RR: An abundant supply of amino acids enhances the metabolic effect of exercise on muscle protein. Am J Physiol. 1997, 273: E122–9.PubMed
55.
go back to reference Dipietro L, Dziura J, Yeckel CW, Neufer PD: Exercise and improved insulin sensitivity in older women: evidence of the enduring benefits of higher intensity training. J Appl Physiol. 2006, 100: 142–9. 10.1152/japplphysiol.00474.2005.PubMed Dipietro L, Dziura J, Yeckel CW, Neufer PD: Exercise and improved insulin sensitivity in older women: evidence of the enduring benefits of higher intensity training. J Appl Physiol. 2006, 100: 142–9. 10.1152/japplphysiol.00474.2005.PubMed
56.
go back to reference Poehlman ET, Dvorak RV, DeNino WF, Brochu M: Effects of resistance training and endurance training on insulin sensitivity in non-obese, young women: a controlled randomized trial. J Clin Endocrinol Metab. 2000, 85: 2463–2468. 10.1210/jc.85.7.2463.PubMed Poehlman ET, Dvorak RV, DeNino WF, Brochu M: Effects of resistance training and endurance training on insulin sensitivity in non-obese, young women: a controlled randomized trial. J Clin Endocrinol Metab. 2000, 85: 2463–2468. 10.1210/jc.85.7.2463.PubMed
57.
go back to reference Rasmussen BB, Tipton KD, Miller SL, Wolf SE, Wolfe RR: An oral essential amino acid-carbohydrate supplement enhances muscle protein anabolism after resistance exercise. J Appl Physiol. 2000, 88 (2): 386–92.PubMed Rasmussen BB, Tipton KD, Miller SL, Wolf SE, Wolfe RR: An oral essential amino acid-carbohydrate supplement enhances muscle protein anabolism after resistance exercise. J Appl Physiol. 2000, 88 (2): 386–92.PubMed
60.
go back to reference Tipton KD, Rasmussen BB, Miller SL, Wolf SE, Owens-Stovall SK, Petrini BE, Wolfe RR: Timing of amino acid-carbohydrate ingestion alters anabolic response of muscle to resistance exercise. Am J Physiol Endocrinol Metab. 2001, 281: E197–E206.PubMed Tipton KD, Rasmussen BB, Miller SL, Wolf SE, Owens-Stovall SK, Petrini BE, Wolfe RR: Timing of amino acid-carbohydrate ingestion alters anabolic response of muscle to resistance exercise. Am J Physiol Endocrinol Metab. 2001, 281: E197–E206.PubMed
61.
go back to reference Miller SL, Tipton KD, Chinkes DL, Wolf SE, Wolfe RR: Independent and combined effects of amino acids and glucose after resistance exercise. Med Sci Sports Exerc. 2003, 35: 449–455. 10.1249/01.MSS.0000053910.63105.45.PubMed Miller SL, Tipton KD, Chinkes DL, Wolf SE, Wolfe RR: Independent and combined effects of amino acids and glucose after resistance exercise. Med Sci Sports Exerc. 2003, 35: 449–455. 10.1249/01.MSS.0000053910.63105.45.PubMed
62.
go back to reference Borsheim E, Tipton KD, Wolf SE, Wolfe RR: Essential amino acids and muscle protein recovery from resistance exercise. Am J Physiol Endocrinol Metab. 2002, 283: E648–57.PubMed Borsheim E, Tipton KD, Wolf SE, Wolfe RR: Essential amino acids and muscle protein recovery from resistance exercise. Am J Physiol Endocrinol Metab. 2002, 283: E648–57.PubMed
63.
go back to reference Bohe J, Low JF, Wolfe RR, Rennie MJ: Latency and duration of stimulation of human muscle protein synthesis during continuous infusion of amino acids. J Physiol. 2001, 15;532: 575–9. 10.1111/j.1469-7793.2001.0575f.x. Bohe J, Low JF, Wolfe RR, Rennie MJ: Latency and duration of stimulation of human muscle protein synthesis during continuous infusion of amino acids. J Physiol. 2001, 15;532: 575–9. 10.1111/j.1469-7793.2001.0575f.x.
64.
go back to reference Paddon-Jones D, Sheffield-Moore M, Aarsland A, Wolfe RR, Ferrando AA: Exogenous amino acids stimulate human muscle anabolism without interfering with the response to mixed meal ingestion. Am J Physiol Endocrinol Metab. 2005, 288 (4): E761–7. 10.1152/ajpendo.00291.2004.PubMed Paddon-Jones D, Sheffield-Moore M, Aarsland A, Wolfe RR, Ferrando AA: Exogenous amino acids stimulate human muscle anabolism without interfering with the response to mixed meal ingestion. Am J Physiol Endocrinol Metab. 2005, 288 (4): E761–7. 10.1152/ajpendo.00291.2004.PubMed
65.
go back to reference Ha E, Zemel MB: Functional properties of whey, whey components, and essential amino acids: mechanisms underlying health benefits for active people (review). J Nutr Biochem. 2003, 14: 251–8. 10.1016/S0955-2863(03)00030-5.PubMed Ha E, Zemel MB: Functional properties of whey, whey components, and essential amino acids: mechanisms underlying health benefits for active people (review). J Nutr Biochem. 2003, 14: 251–8. 10.1016/S0955-2863(03)00030-5.PubMed
66.
go back to reference Schaafsma Gertjan: The Protein Digestibility-Corrected Amino Acid Score. J Nutr. 2000, 130: 1865S–1867S.PubMed Schaafsma Gertjan: The Protein Digestibility-Corrected Amino Acid Score. J Nutr. 2000, 130: 1865S–1867S.PubMed
67.
go back to reference Reeds P, Schaafsma G, Tome D, Young V: Criteria and significance of dietary protein sources in humans. Summary of the workshop with recommendations. J Nutr. 2000, 130: 1874S–6S.PubMed Reeds P, Schaafsma G, Tome D, Young V: Criteria and significance of dietary protein sources in humans. Summary of the workshop with recommendations. J Nutr. 2000, 130: 1874S–6S.PubMed
68.
go back to reference Block RJ, Mitchell HH: The correlation of the amino-acid composition of protein with their nutritive value. Nutr Abstr Rev. 1946, 16: 249–278. Block RJ, Mitchell HH: The correlation of the amino-acid composition of protein with their nutritive value. Nutr Abstr Rev. 1946, 16: 249–278.
69.
go back to reference Munaver SM, Harper AE: Amino acid balance and imbalance. II. Dietary level of protein and lysine requirement. J Nutr. 1959, 69: 58–64.PubMed Munaver SM, Harper AE: Amino acid balance and imbalance. II. Dietary level of protein and lysine requirement. J Nutr. 1959, 69: 58–64.PubMed
70.
go back to reference Mitchell GV, Jenkins MY, Grundel E: Protein efficiency ratios and net protein ratios of selected protein foods. Plant Foods Hum Nutr. 1989, 39: 53–8. 10.1007/BF01092401.PubMed Mitchell GV, Jenkins MY, Grundel E: Protein efficiency ratios and net protein ratios of selected protein foods. Plant Foods Hum Nutr. 1989, 39: 53–8. 10.1007/BF01092401.PubMed
71.
go back to reference Chiang AN, Huang PC: Excess energy and nitrogen balance at protein intakes above the requirement level in young men. Am J Clin Nutr. 1988, 48: 1015–22.PubMed Chiang AN, Huang PC: Excess energy and nitrogen balance at protein intakes above the requirement level in young men. Am J Clin Nutr. 1988, 48: 1015–22.PubMed
72.
go back to reference Campbell WW, Barton ML, Cyr-Campbell D, Davey SL: Effects of an omnivorous diet compared with a lactoovovegetarian diet on resistance-training-induced changes in body composition and skeletal muscle in older men. Am J Clin Nutr. 1999, 70: 1032–9.PubMed Campbell WW, Barton ML, Cyr-Campbell D, Davey SL: Effects of an omnivorous diet compared with a lactoovovegetarian diet on resistance-training-induced changes in body composition and skeletal muscle in older men. Am J Clin Nutr. 1999, 70: 1032–9.PubMed
73.
go back to reference Stoll B, Burrin DG, Henry J, Yu H, Jahoor F, Reeds PJ: Dietary amino acids are the preferential source of hepatic protein synthesis in piglets. J Nutr. 1998, 128: 1517–1524.PubMed Stoll B, Burrin DG, Henry J, Yu H, Jahoor F, Reeds PJ: Dietary amino acids are the preferential source of hepatic protein synthesis in piglets. J Nutr. 1998, 128: 1517–1524.PubMed
74.
go back to reference Scornik OA, Howell SK, Botbol E: Protein depletion and replenishment in mice: different roles of muscle and liver. Am J Physiol. 1997, 273: E1158–E1167.PubMed Scornik OA, Howell SK, Botbol E: Protein depletion and replenishment in mice: different roles of muscle and liver. Am J Physiol. 1997, 273: E1158–E1167.PubMed
75.
go back to reference Lecavalier L, De Feo P, Haymond MW: Isolated hypoisoleucinemia impairs whole body but not hepatic protein synthesis in humans. Am J Physiol. 1991, 261: E578–86.PubMed Lecavalier L, De Feo P, Haymond MW: Isolated hypoisoleucinemia impairs whole body but not hepatic protein synthesis in humans. Am J Physiol. 1991, 261: E578–86.PubMed
76.
go back to reference Bos C, Metges CC, Gaudichon C, Petzke KJ: Postprandial kinetics of dietary amino acids are the main determinant of their metabolism after soy or milk protein ingestion in humans. J Nutr. 2003, 133: 1308–15.PubMed Bos C, Metges CC, Gaudichon C, Petzke KJ: Postprandial kinetics of dietary amino acids are the main determinant of their metabolism after soy or milk protein ingestion in humans. J Nutr. 2003, 133: 1308–15.PubMed
77.
go back to reference Martinez JA, Goena M, Santidrian S, Larralde J: Response of muscle, liver and whole-body protein turnover to two different sources of protein in growing rats. Ann Nutr Metab. 1987, 31: 146–153.PubMed Martinez JA, Goena M, Santidrian S, Larralde J: Response of muscle, liver and whole-body protein turnover to two different sources of protein in growing rats. Ann Nutr Metab. 1987, 31: 146–153.PubMed
78.
go back to reference Biolo G, Tessari P: Splanchnic versus whole-body production of alpha-ketoisocaproate from leucine in the fed state. Metabolism. 1997, 46: 164–7. 10.1016/S0026-0495(97)90296-1.PubMed Biolo G, Tessari P: Splanchnic versus whole-body production of alpha-ketoisocaproate from leucine in the fed state. Metabolism. 1997, 46: 164–7. 10.1016/S0026-0495(97)90296-1.PubMed
79.
go back to reference Millward DJ, Rivers JP: The nutritional role of indispensable amino acids and the metabolic basis for their requirements. Eur J Clin Nutr. 1988, 42: 367–393.PubMed Millward DJ, Rivers JP: The nutritional role of indispensable amino acids and the metabolic basis for their requirements. Eur J Clin Nutr. 1988, 42: 367–393.PubMed
80.
go back to reference Wolfe RR, Miller SL: Amino acid availability controls muscle protein metabolism. Diabetes Nutr Metab. 1999, 12: 322–328.PubMed Wolfe RR, Miller SL: Amino acid availability controls muscle protein metabolism. Diabetes Nutr Metab. 1999, 12: 322–328.PubMed
81.
go back to reference Tipton KD, Gurkin BE, Matin S, Wolfe RR: Nonessential amino acids are not necessary to stimulate net muscle protein synthesis in healthy volunteers. J Nutr Biochem. 1999, 10: 89–95. 10.1016/S0955-2863(98)00087-4.PubMed Tipton KD, Gurkin BE, Matin S, Wolfe RR: Nonessential amino acids are not necessary to stimulate net muscle protein synthesis in healthy volunteers. J Nutr Biochem. 1999, 10: 89–95. 10.1016/S0955-2863(98)00087-4.PubMed
82.
go back to reference Volpi E, Sheffield-Moore M, Rasmussen BB, Wolfe RR: Basal muscle amino acid kinetics and protein synthesis in healthy young and older men. JAMA. 2001, 286: 1206–1212. 10.1001/jama.286.10.1206.PubMedPubMedCentral Volpi E, Sheffield-Moore M, Rasmussen BB, Wolfe RR: Basal muscle amino acid kinetics and protein synthesis in healthy young and older men. JAMA. 2001, 286: 1206–1212. 10.1001/jama.286.10.1206.PubMedPubMedCentral
83.
go back to reference McCargar LJ, Clandinin MT, Belcastro AN, Walker K: Dietary carbohydrate-to-fat ratio: influence on whole-body nitrogen retention, substrate utilization, and hormone response in healthy male subjects. Am J Clin Nutr. 1989, 49: 1169–1178.PubMed McCargar LJ, Clandinin MT, Belcastro AN, Walker K: Dietary carbohydrate-to-fat ratio: influence on whole-body nitrogen retention, substrate utilization, and hormone response in healthy male subjects. Am J Clin Nutr. 1989, 49: 1169–1178.PubMed
84.
go back to reference Jacobs I, Kaiser P, Tesch P: Muscle strength and fatigue after selective glycogen depletion in human skeletal muscle fibers. Eur J Appl Physiol. 1981, 46: 47–53. 10.1007/BF00422176. Jacobs I, Kaiser P, Tesch P: Muscle strength and fatigue after selective glycogen depletion in human skeletal muscle fibers. Eur J Appl Physiol. 1981, 46: 47–53. 10.1007/BF00422176.
85.
go back to reference Hickson RC, Rosenkoetter MA: Reduced training frequencies and maintenance of increased aerobic power. Med Sci Sports Exerc. 1981, 13: 13–16.PubMed Hickson RC, Rosenkoetter MA: Reduced training frequencies and maintenance of increased aerobic power. Med Sci Sports Exerc. 1981, 13: 13–16.PubMed
86.
go back to reference Hickson RC, Kanakis C, Davis JR, Moore AM, Rich S: Reduced training duration effects on aerobic power, endurance, and cardiac growth. J Appl Physiol. 1982, 53: 225–229.PubMed Hickson RC, Kanakis C, Davis JR, Moore AM, Rich S: Reduced training duration effects on aerobic power, endurance, and cardiac growth. J Appl Physiol. 1982, 53: 225–229.PubMed
87.
go back to reference Hickson RC, Foster C, Pollock ML, Galassi TM, Rich S: Reduced training intensities and loss of aerobic power. J Appl Physiol. 1985, 58: 492–9.PubMed Hickson RC, Foster C, Pollock ML, Galassi TM, Rich S: Reduced training intensities and loss of aerobic power. J Appl Physiol. 1985, 58: 492–9.PubMed
88.
go back to reference Shepley B, MacDougall JD, Cipriano N, Sutton JR, Tarnopolsky MA, Coates G: Physiological effects of tapering in highly trained athletes. J Appl Physiol. 1992, 72: 706–11.PubMed Shepley B, MacDougall JD, Cipriano N, Sutton JR, Tarnopolsky MA, Coates G: Physiological effects of tapering in highly trained athletes. J Appl Physiol. 1992, 72: 706–11.PubMed
89.
go back to reference Koopman R, Wagenmakers AJ, Manders RJ, Zorenc AH: Combined ingestion of protein and free leucine with carbohydrate increases postexercise muscle protein synthesis in vivo in male subjects. Am J Physiol Endocrinol Metab. 2005, 288: E645–53. 10.1152/ajpendo.00413.2004.PubMed Koopman R, Wagenmakers AJ, Manders RJ, Zorenc AH: Combined ingestion of protein and free leucine with carbohydrate increases postexercise muscle protein synthesis in vivo in male subjects. Am J Physiol Endocrinol Metab. 2005, 288: E645–53. 10.1152/ajpendo.00413.2004.PubMed
90.
go back to reference Crozier j, Scot Kimball, Sans Emmert, Joshua Anthony, Leonard Jefferson: Oral Leucine Administration Stimulates Protein Synthesis in Rat Skeletal Muscle. J Nutr. 2005, 135: 376–382.PubMed Crozier j, Scot Kimball, Sans Emmert, Joshua Anthony, Leonard Jefferson: Oral Leucine Administration Stimulates Protein Synthesis in Rat Skeletal Muscle. J Nutr. 2005, 135: 376–382.PubMed
91.
go back to reference Garlick J: The Role of Leucine in the Regulation of Protein Metabolism. J Nutr. 2005, 135: 1553S–1556S.PubMed Garlick J: The Role of Leucine in the Regulation of Protein Metabolism. J Nutr. 2005, 135: 1553S–1556S.PubMed
92.
go back to reference Biolo G, Williams BD, Fleming RY, Wolfe RR: Insulin action on muscle protein kinetics and amino acid transport during recovery after resistance exercise. Diabetes. 1999, 48: 949–957. 10.2337/diabetes.48.5.949.PubMed Biolo G, Williams BD, Fleming RY, Wolfe RR: Insulin action on muscle protein kinetics and amino acid transport during recovery after resistance exercise. Diabetes. 1999, 48: 949–957. 10.2337/diabetes.48.5.949.PubMed
93.
go back to reference Airhart J, Arnold JA, Stirewalt WS, Low RB: Insulin stimulation of protein synthesis in cultured skeletal and cardiac muscle cells. Am J Physiol. 1982, 243 (1): C81–C86.PubMed Airhart J, Arnold JA, Stirewalt WS, Low RB: Insulin stimulation of protein synthesis in cultured skeletal and cardiac muscle cells. Am J Physiol. 1982, 243 (1): C81–C86.PubMed
94.
go back to reference Manchester KL, Young FG: The effect of insulin on incorporation of amino acids into protein of normal rat diaphragm in vitro. Biochem J. 1958, 70: 353–358.PubMedPubMedCentral Manchester KL, Young FG: The effect of insulin on incorporation of amino acids into protein of normal rat diaphragm in vitro. Biochem J. 1958, 70: 353–358.PubMedPubMedCentral
95.
go back to reference Jefferson LS, Koehler JO, Morgan HE: Effect of Insulin on Protein Synthesis in Skeletal Muscle of an Isolated Perfused Preparation of Rat Hemicorpus. Proc Natl Acad Sci USA. 1972, 69: 816–820. 10.1073/pnas.69.4.816.PubMedPubMedCentral Jefferson LS, Koehler JO, Morgan HE: Effect of Insulin on Protein Synthesis in Skeletal Muscle of an Isolated Perfused Preparation of Rat Hemicorpus. Proc Natl Acad Sci USA. 1972, 69: 816–820. 10.1073/pnas.69.4.816.PubMedPubMedCentral
96.
go back to reference Hillier TA, Fryburg DA, Jahn LA, Barrett EJ: Extreme hyperinsulinemia unmasks insulin effect to stimulate protein synthesis in the human forearm. Am J Physiol. 1998, 274: E1067–E1074.PubMed Hillier TA, Fryburg DA, Jahn LA, Barrett EJ: Extreme hyperinsulinemia unmasks insulin effect to stimulate protein synthesis in the human forearm. Am J Physiol. 1998, 274: E1067–E1074.PubMed
97.
go back to reference Biolo G, Fleming RY, Wolfe RR: Physiologic hyperinsulinemia stimulates protein synthesis and enhances transport of selected amino acids in human skeletal muscle. J Clin Invest. 1995, 95: 811–819.PubMedPubMedCentral Biolo G, Fleming RY, Wolfe RR: Physiologic hyperinsulinemia stimulates protein synthesis and enhances transport of selected amino acids in human skeletal muscle. J Clin Invest. 1995, 95: 811–819.PubMedPubMedCentral
98.
go back to reference Ivy JL, Goforth HW, Damon BM, McCauley TR: Early postexercise muscle glycogen recovery is enhanced with a carbohydrate-protein supplement. J Appl Physiol. 2002, 93: 1337–44.PubMed Ivy JL, Goforth HW, Damon BM, McCauley TR: Early postexercise muscle glycogen recovery is enhanced with a carbohydrate-protein supplement. J Appl Physiol. 2002, 93: 1337–44.PubMed
99.
go back to reference Zawadzki KM, Yaspelkis BB, Ivy JL: Carbohydrate-protein complex increases the rate of muscle glycogen storage after exercise. J Appl Physiol. 1992, 72: 1854–9.PubMed Zawadzki KM, Yaspelkis BB, Ivy JL: Carbohydrate-protein complex increases the rate of muscle glycogen storage after exercise. J Appl Physiol. 1992, 72: 1854–9.PubMed
100.
go back to reference Tarnopolsky MA, Bosman M, Macdonald JR, Vandeputte D, Martin J, Roy BD: Postexercise protein-carbohydrate and carbohydrate supplements increase muscle glycogen in men and women. J Appl Physiol. 1997, 83: 1877–83.PubMed Tarnopolsky MA, Bosman M, Macdonald JR, Vandeputte D, Martin J, Roy BD: Postexercise protein-carbohydrate and carbohydrate supplements increase muscle glycogen in men and women. J Appl Physiol. 1997, 83: 1877–83.PubMed
101.
go back to reference Silk DB, Grimble GK, Rees RG: Protein digestion and amino acid and peptide absorption. Proc Nutr Soc. 1985, 44: 63–72. 10.1079/PNS19850011.PubMed Silk DB, Grimble GK, Rees RG: Protein digestion and amino acid and peptide absorption. Proc Nutr Soc. 1985, 44: 63–72. 10.1079/PNS19850011.PubMed
102.
go back to reference Manninen AH: Protein hydrolysates in sports and exercise: a brief review. J Sports Sci & Med. 2004, 3: 60–63. Manninen AH: Protein hydrolysates in sports and exercise: a brief review. J Sports Sci & Med. 2004, 3: 60–63.
103.
go back to reference Collin-Vidal C, Cayol M, Obled C, Ziegler F, Bommelaer G, Beaufrere B: Leucine kinetics are different during feeding with whole protein or oligopeptides. Am J Physiol. 1994, 267 (6 Pt 1): E907–14.PubMed Collin-Vidal C, Cayol M, Obled C, Ziegler F, Bommelaer G, Beaufrere B: Leucine kinetics are different during feeding with whole protein or oligopeptides. Am J Physiol. 1994, 267 (6 Pt 1): E907–14.PubMed
104.
go back to reference Craft IL, Geddes D, Hyde CW, Wise IJ, Matthews DM: Absorption and malabsorption of glycine and glycine peptides in man. Gut. 1968, 9: 425–37. 10.1136/gut.9.4.425.PubMedPubMedCentral Craft IL, Geddes D, Hyde CW, Wise IJ, Matthews DM: Absorption and malabsorption of glycine and glycine peptides in man. Gut. 1968, 9: 425–37. 10.1136/gut.9.4.425.PubMedPubMedCentral
105.
go back to reference Calbet JA, MacLean DA: Plasma glucagon and insulin responses depend on the rate of appearance of amino acids after ingestion of different protein solutions in humans. J Nutr. 2002, 132: 2174–82.PubMed Calbet JA, MacLean DA: Plasma glucagon and insulin responses depend on the rate of appearance of amino acids after ingestion of different protein solutions in humans. J Nutr. 2002, 132: 2174–82.PubMed
106.
go back to reference De Feo P, Horber FF, Haymond MW: Meal stimulation of albumin synthesis: a significant contributor to whole body protein synthesis in humans. Am J Physiol. 1992, 263: E794–E799.PubMed De Feo P, Horber FF, Haymond MW: Meal stimulation of albumin synthesis: a significant contributor to whole body protein synthesis in humans. Am J Physiol. 1992, 263: E794–E799.PubMed
Metadata
Title
Contemporary Issues in Protein Requirements and Consumption for Resistance Trained Athletes
Authors
Jacob Wilson
Gabriel J Wilson
Publication date
01-06-2006
Publisher
BioMed Central
DOI
https://doi.org/10.1186/1550-2783-3-1-7

Other articles of this Issue 1/2006

Journal of the International Society of Sports Nutrition 1/2006 Go to the issue