Skip to main content
Top
Published in: Journal of the International Society of Sports Nutrition 1/2004

Open Access 01-06-2004 | Review

High-Protein Weight Loss Diets and Purported Adverse Effects: Where is the Evidence?

Author: Anssi H Manninen

Published in: Journal of the International Society of Sports Nutrition | Issue 1/2004

Login to get access

Abstract

Results of several recent studies show that high-protein, low-carbohydrate weight loss diets indeed have their benefits. However, agencies such as the American Heart Association (AHA) have some concerns about possible health risks. The purpose of this review is to evaluate the scientific validity of AHA Nutrition Committee's statement on dietary protein and weight reduction (St. Jeor ST et al. Circulation 2001;104:1869–1874), which states: "Individuals who follow these [high-protein] diets are risk for ... potential cardiac, renal, bone, and liver abnormalities overall. Simply stated, there is no scientific evidence whatsoever that high-protein intake has adverse effects on liver function. Relative to renal function, there are no data in the scientific literature demonstrating that healthy kidneys are damaged by the increased demands of protein consumed in quantities 2–3 times above the Recommended Dietary Allowance (RDA). In contrast with the earlier hypothesis that high-protein intake promotes osteoporosis, some epidemiological studies found a positive association between protein intake and bone mineral density. Further, recent studies studies suggest, at least in the short term, that RDA for protein (0.8 g/kg) does not support normal calcium homeostasis. Finally, a negative correlation has been shown between protein intake and systolic and diastolic blood pressures in several epidemiological surveys. In conclusion, there is little if any scientific evidence supporting above mentioned statement. Certainly, such public warnings should be based on a thorough analysis of the scientific literature, not unsubstantiated fears and misrepresentations. For individuals with normal renal function, the risks are minimal and must be balanced against the real and established risk of continued obesity.
Literature
1.
go back to reference Manninen AH: Protein metabolism in exercising humans with special reference to protein supplementation. 2002, Department of Physiology, Faculty of Medicine, University of Kuopio, Finland, 1–164. Manninen AH: Protein metabolism in exercising humans with special reference to protein supplementation. 2002, Department of Physiology, Faculty of Medicine, University of Kuopio, Finland, 1–164.
2.
go back to reference St Jeor ST, Howard BV, Prewitt E: Dietary protein and weight reduction: A statement for health care professionals from the Nutrition Committee of the Council on Nutrition, Physical Activity, and Metabolism of the American Heart Association. Circulation. 2001, 104: 1869–1874. 10.1161/hc4001.096152.CrossRef St Jeor ST, Howard BV, Prewitt E: Dietary protein and weight reduction: A statement for health care professionals from the Nutrition Committee of the Council on Nutrition, Physical Activity, and Metabolism of the American Heart Association. Circulation. 2001, 104: 1869–1874. 10.1161/hc4001.096152.CrossRef
3.
go back to reference Street C: High-protein intake – Is it safe?. Sports Supplements. Edited by: Antonio J, Stout JR. 2001, Philadelphia: Lippincott Williams & Wilkins, 311–312. Street C: High-protein intake – Is it safe?. Sports Supplements. Edited by: Antonio J, Stout JR. 2001, Philadelphia: Lippincott Williams & Wilkins, 311–312.
4.
go back to reference Walser M: Effects of protein intake on renal function and on the development of renal disease. The Role of Protein and Amino Acids in Sustaining and Enhancing Performance. 1999, Committee on Military Nutrition Research, Institute of Medicine. Washington, DC: National Academies Press, 137–154. Walser M: Effects of protein intake on renal function and on the development of renal disease. The Role of Protein and Amino Acids in Sustaining and Enhancing Performance. 1999, Committee on Military Nutrition Research, Institute of Medicine. Washington, DC: National Academies Press, 137–154.
5.
go back to reference Poortmans JR, Dellalieux O: Do regular high-protein diets have potential health risks on kidney function in athletes?. Int J Sports Nutr. 2000, 10: 28–38. Poortmans JR, Dellalieux O: Do regular high-protein diets have potential health risks on kidney function in athletes?. Int J Sports Nutr. 2000, 10: 28–38.
6.
go back to reference Ikizler TA: Nutrition support and management of renal disorders. Nutritional Aspects and Clinical Management of Chronic Disorders and Diseases. Edited by: Bronner F. 2003, Boca Raton, FL: CRC Press, 156–175. Ikizler TA: Nutrition support and management of renal disorders. Nutritional Aspects and Clinical Management of Chronic Disorders and Diseases. Edited by: Bronner F. 2003, Boca Raton, FL: CRC Press, 156–175.
7.
go back to reference Klahr S, Levey AS, Beck GJ: The effects of dietary protein restriction and blood-pressure control on the progression of chronic renal failure. N Engl J Med. 1994, 330: 877–884. 10.1056/NEJM199403313301301.CrossRef Klahr S, Levey AS, Beck GJ: The effects of dietary protein restriction and blood-pressure control on the progression of chronic renal failure. N Engl J Med. 1994, 330: 877–884. 10.1056/NEJM199403313301301.CrossRef
8.
go back to reference American Diabetic Association: Evidence-based nutrition principles and recommendations for the treatment and prevention of diabetes and related complications. Diabetes Care. 2002, 25: S50–S60. 10.2337/diacare.25.4.742.CrossRef American Diabetic Association: Evidence-based nutrition principles and recommendations for the treatment and prevention of diabetes and related complications. Diabetes Care. 2002, 25: S50–S60. 10.2337/diacare.25.4.742.CrossRef
9.
go back to reference Cooper C, Atkinson EJ, Hensrud DD: Dietary protein intake and bone mass in women. Calcif Tissue Int. 1996, 58: 320–325.CrossRef Cooper C, Atkinson EJ, Hensrud DD: Dietary protein intake and bone mass in women. Calcif Tissue Int. 1996, 58: 320–325.CrossRef
10.
go back to reference Kerstetter JE, O'Brien KO, Insogna KL: Dietary protein affects intestinal calcium absorption. Am J Clin Nutr. 1998, 68: 859–865.CrossRef Kerstetter JE, O'Brien KO, Insogna KL: Dietary protein affects intestinal calcium absorption. Am J Clin Nutr. 1998, 68: 859–865.CrossRef
11.
go back to reference Kerstetter JE, Svastislee C, Caseria D: A threshold for low-protein-diet-induced elevations in parathyroid hormone. Am J Clin Nutr. 2000, 72: 168–173.CrossRef Kerstetter JE, Svastislee C, Caseria D: A threshold for low-protein-diet-induced elevations in parathyroid hormone. Am J Clin Nutr. 2000, 72: 168–173.CrossRef
12.
go back to reference Giannini S, Nobile M, Sartori L: Acute effects of moderate dietary protein restriction in patients with idiopathic hypercalciuria and calcium nephrolithiasis. Am J Clin Nutr. 1999, 69: 267–271.CrossRef Giannini S, Nobile M, Sartori L: Acute effects of moderate dietary protein restriction in patients with idiopathic hypercalciuria and calcium nephrolithiasis. Am J Clin Nutr. 1999, 69: 267–271.CrossRef
13.
go back to reference Obarzaneck E, Velletri PA, Cutler JA: Dietary protein and blood pressure. JAMA. 1996, 275: 1598–1603. 10.1001/jama.275.20.1598.CrossRef Obarzaneck E, Velletri PA, Cutler JA: Dietary protein and blood pressure. JAMA. 1996, 275: 1598–1603. 10.1001/jama.275.20.1598.CrossRef
14.
go back to reference Reed D, McGee D, Yano K, Hankin J: Diet, blood pressure, and multicollinearity. Hypertension. 1985, 7: 405–410.CrossRef Reed D, McGee D, Yano K, Hankin J: Diet, blood pressure, and multicollinearity. Hypertension. 1985, 7: 405–410.CrossRef
15.
go back to reference Zhou B, Wu X, Tao SQ: Dietary patterns in 10 groups and the relationship with blood pressure. Collaborative Study Group for Cardiovascular Diseases and their Risk Factors. Chin Med J. 1989, 102: 257–261.PubMed Zhou B, Wu X, Tao SQ: Dietary patterns in 10 groups and the relationship with blood pressure. Collaborative Study Group for Cardiovascular Diseases and their Risk Factors. Chin Med J. 1989, 102: 257–261.PubMed
16.
go back to reference Stamler JS, Caggiuala A, Grandist GA: Relationship of dietary variables to blood pressure (BP) findings of the Multiple Risk Factors Intervention Study (MRFIT). Circulation. 1992, 85: 867-Abstract 23 Stamler JS, Caggiuala A, Grandist GA: Relationship of dietary variables to blood pressure (BP) findings of the Multiple Risk Factors Intervention Study (MRFIT). Circulation. 1992, 85: 867-Abstract 23
17.
go back to reference Debry G: Data on hypertension. Dietary Proteins and Atherosclerosis. 2004, Boca Raton, FL: CRC Press, 191–203. Debry G: Data on hypertension. Dietary Proteins and Atherosclerosis. 2004, Boca Raton, FL: CRC Press, 191–203.
18.
go back to reference Kuchel O: Differential catecholamine responses to protein intake in healthy and hypertensive subjects. Am J Physiol. 1998, R1164–R1173. Kuchel O: Differential catecholamine responses to protein intake in healthy and hypertensive subjects. Am J Physiol. 1998, R1164–R1173.
19.
go back to reference Navder KP, Lieber CS: Nutritional support in chronic disease of the gastrointestinal tract and the liver. Nutritional Aspects and Clinical Management of Chronic Disorders and Diseases. Edited by: Bronner F. 2003, Boca Raton, FL: CRC Press, 45–68. Navder KP, Lieber CS: Nutritional support in chronic disease of the gastrointestinal tract and the liver. Nutritional Aspects and Clinical Management of Chronic Disorders and Diseases. Edited by: Bronner F. 2003, Boca Raton, FL: CRC Press, 45–68.
20.
go back to reference Navder KP, Lieber CS: Nutrition and alcoholism. Nutritional Aspects and Clinical Management of Chronic Disorders and Diseases. Edited by: Bronner F. 2003, Boca Raton, FL: CRC Press, 307–320. Navder KP, Lieber CS: Nutrition and alcoholism. Nutritional Aspects and Clinical Management of Chronic Disorders and Diseases. Edited by: Bronner F. 2003, Boca Raton, FL: CRC Press, 307–320.
21.
go back to reference Mendellhall C, Moritz T, Roselle GA: A study of oral nutrition support with oxadrolone in malnourished patients with alcoholic hepatitis: results of a Department of Veterans Affairs Cooperative Study. Hepatology. 1993, 17: 564–576. 10.1002/hep.1840170407.CrossRef Mendellhall C, Moritz T, Roselle GA: A study of oral nutrition support with oxadrolone in malnourished patients with alcoholic hepatitis: results of a Department of Veterans Affairs Cooperative Study. Hepatology. 1993, 17: 564–576. 10.1002/hep.1840170407.CrossRef
22.
go back to reference Volek JS, Sharman MJ, Love DM: Body composition and hormonal responses to a carbohydrate-restricted diet. Metabolism. 2002, 51: 864–870. 10.1053/meta.2002.32037.CrossRef Volek JS, Sharman MJ, Love DM: Body composition and hormonal responses to a carbohydrate-restricted diet. Metabolism. 2002, 51: 864–870. 10.1053/meta.2002.32037.CrossRef
23.
go back to reference Feinman RD, Fine EJ: Thermodynamics and metabolic advantage of weight loss diets. Metab Synd Relat Disord. 2003, 1: 209–219. 10.1089/154041903322716688.CrossRef Feinman RD, Fine EJ: Thermodynamics and metabolic advantage of weight loss diets. Metab Synd Relat Disord. 2003, 1: 209–219. 10.1089/154041903322716688.CrossRef
24.
go back to reference Jorda A, Zaragosa R, Manuel P: Long-term high-protein diet induces biochemical and ultrastructural changes in rat liver mitochondria. Arch Biochem Biophys. 1988, 265: 241–248. 10.1016/0003-9861(88)90124-5.CrossRef Jorda A, Zaragosa R, Manuel P: Long-term high-protein diet induces biochemical and ultrastructural changes in rat liver mitochondria. Arch Biochem Biophys. 1988, 265: 241–248. 10.1016/0003-9861(88)90124-5.CrossRef
25.
go back to reference Hu FB, Stampfer MJ, Manson JA: Dietary protein and risk of ischemic heart disease in women. Am J Clin Nutr. 1999, 70: 221–227.CrossRef Hu FB, Stampfer MJ, Manson JA: Dietary protein and risk of ischemic heart disease in women. Am J Clin Nutr. 1999, 70: 221–227.CrossRef
26.
go back to reference Mohanty P, Ghanim H, Hamouda W: Both lipid and protein intake stimulates increased generation of reactive oxygen species by polymorphonuclear leukocytes and mononuclear cells. Am J Clin Nutr. 2002, 75: 767–772.CrossRef Mohanty P, Ghanim H, Hamouda W: Both lipid and protein intake stimulates increased generation of reactive oxygen species by polymorphonuclear leukocytes and mononuclear cells. Am J Clin Nutr. 2002, 75: 767–772.CrossRef
27.
go back to reference Aljada A, Mohanty P, Dandona P: Lipids, carbohydrates, and heart disease. Metab Synd Relat Disord. 2003, 1: 185–188. 10.1089/154041903322716651.CrossRef Aljada A, Mohanty P, Dandona P: Lipids, carbohydrates, and heart disease. Metab Synd Relat Disord. 2003, 1: 185–188. 10.1089/154041903322716651.CrossRef
28.
go back to reference Schurch MA, Rizzoli R, Slosman D: Protein supplements increase serum insulin-like growth factor-I levels and attenuate proximal femur bone loss in patients with recent hip fracture: A randomized, double-blind, placebo-controlled trial. Annals Internal Med. 1998, 128: 801–809.CrossRef Schurch MA, Rizzoli R, Slosman D: Protein supplements increase serum insulin-like growth factor-I levels and attenuate proximal femur bone loss in patients with recent hip fracture: A randomized, double-blind, placebo-controlled trial. Annals Internal Med. 1998, 128: 801–809.CrossRef
29.
go back to reference Srivastava N, Singh N, Joshi YK: Nutrition in management of hepatic encephalopathy. Trop Gastoenterol. 2003, 24: 59–62. Srivastava N, Singh N, Joshi YK: Nutrition in management of hepatic encephalopathy. Trop Gastoenterol. 2003, 24: 59–62.
30.
go back to reference Butterfield GE: Whole-body protein utilization in humans. Med Sci Sports Exer. 1987, 19: S167–S165.CrossRef Butterfield GE: Whole-body protein utilization in humans. Med Sci Sports Exer. 1987, 19: S167–S165.CrossRef
31.
go back to reference Gannon MC, Nuttall FQ, Saeed A: An increase in dietary protein improves the blood glucose response in persons with type 2 diabetes. Am J Clin Nutr. 2003, 78: 734–41.CrossRef Gannon MC, Nuttall FQ, Saeed A: An increase in dietary protein improves the blood glucose response in persons with type 2 diabetes. Am J Clin Nutr. 2003, 78: 734–41.CrossRef
32.
go back to reference Knight EL, Stampfer MJ, Hankinson SE: The impact of protein intake on renal function decline in women with normal renal function or mild renal insufficiency. Ann Intern Med. 2003, 138: 460–7.CrossRef Knight EL, Stampfer MJ, Hankinson SE: The impact of protein intake on renal function decline in women with normal renal function or mild renal insufficiency. Ann Intern Med. 2003, 138: 460–7.CrossRef
33.
go back to reference Lentine K, Wrone EM: New insights into protein intake and progression of renal disease. Curr Opin Nephrol Hypertens. 2004, 13: 333–336. 10.1097/00041552-200405000-00011.CrossRef Lentine K, Wrone EM: New insights into protein intake and progression of renal disease. Curr Opin Nephrol Hypertens. 2004, 13: 333–336. 10.1097/00041552-200405000-00011.CrossRef
34.
go back to reference Heaney RP: Protein intake and bone health: the influence of belief systems on the conduct of nutritional science. Am J Clin Nutr. 2001, 73: 5–6.CrossRef Heaney RP: Protein intake and bone health: the influence of belief systems on the conduct of nutritional science. Am J Clin Nutr. 2001, 73: 5–6.CrossRef
35.
go back to reference Ginty F: Dietary protein and bone health. Proc Nutr Soc. 2003, 62: 867–76. 10.1079/PNS2003307.CrossRef Ginty F: Dietary protein and bone health. Proc Nutr Soc. 2003, 62: 867–76. 10.1079/PNS2003307.CrossRef
36.
go back to reference Dawson-Hughes B, Harris SS, Rasmussen H: Effect of dietary protein supplements on calcium excretion in healthy older men and women. J Clin Endocrinol Metab. 2004, 89: 1169–73. 10.1210/jc.2003-031466.CrossRef Dawson-Hughes B, Harris SS, Rasmussen H: Effect of dietary protein supplements on calcium excretion in healthy older men and women. J Clin Endocrinol Metab. 2004, 89: 1169–73. 10.1210/jc.2003-031466.CrossRef
37.
go back to reference Geinoz G, Rapin CH, Rizzoli R: Relationship between bone mineral density and dietary intakes in the elderly. Osteoporos Int. 1993, 3: 242–8. 10.1007/BF01623827.CrossRef Geinoz G, Rapin CH, Rizzoli R: Relationship between bone mineral density and dietary intakes in the elderly. Osteoporos Int. 1993, 3: 242–8. 10.1007/BF01623827.CrossRef
38.
go back to reference Michaelsson K, Holmberg L, Mallmin H: Diet, bone mass, and osteocalcin: a cross-sectional study. Calcif Tissue Int. 1995, 57: 86–93. 10.1007/BF00298425.CrossRef Michaelsson K, Holmberg L, Mallmin H: Diet, bone mass, and osteocalcin: a cross-sectional study. Calcif Tissue Int. 1995, 57: 86–93. 10.1007/BF00298425.CrossRef
39.
go back to reference Åstrand P-O, Rodahl K, Dahl HA, Stromme SB: Our biological heritage. Textbook of Work Physiology. 2004, Champaign, IL: Human Kinetics, 1–7. Åstrand P-O, Rodahl K, Dahl HA, Stromme SB: Our biological heritage. Textbook of Work Physiology. 2004, Champaign, IL: Human Kinetics, 1–7.
40.
go back to reference O'Keefe JH, Cordain L: Cardiovascular disease resulting from a diet and lifestyle at odds with our Paleolithic genome: How to become a 21st-century hunter-gatherer. Mayo Clin Proc. 2004, 79: 101–108.CrossRef O'Keefe JH, Cordain L: Cardiovascular disease resulting from a diet and lifestyle at odds with our Paleolithic genome: How to become a 21st-century hunter-gatherer. Mayo Clin Proc. 2004, 79: 101–108.CrossRef
41.
go back to reference Avenell A, Handoll H: Nutritional supplementation for hip fracture aftercare in the elderly. Cochrane Database Syst Rev. 2004, 1: CD001880. Avenell A, Handoll H: Nutritional supplementation for hip fracture aftercare in the elderly. Cochrane Database Syst Rev. 2004, 1: CD001880.
Metadata
Title
High-Protein Weight Loss Diets and Purported Adverse Effects: Where is the Evidence?
Author
Anssi H Manninen
Publication date
01-06-2004
Publisher
BioMed Central
DOI
https://doi.org/10.1186/1550-2783-1-1-45

Other articles of this Issue 1/2004

Journal of the International Society of Sports Nutrition 1/2004 Go to the issue