Skip to main content
Top
Published in: Journal of Cardiovascular Magnetic Resonance 1/2012

Open Access 01-12-2012 | Research

High-resolution motion compensated MRA in patients with congenital heart disease using extracellular contrast agent at 3 Tesla

Authors: Darius Dabir, Claas Philip Naehle, Ralf Clauberg, Juergen Gieseke, Hans H Schild, Daniel Thomas

Published in: Journal of Cardiovascular Magnetic Resonance | Issue 1/2012

Login to get access

Abstract

Background

Using first-pass MRA (FP-MRA) spatial resolution is limited by breath-hold duration. In addition, image quality may be hampered by respiratory and cardiac motion artefacts. In order to overcome these limitations an ECG- and navigator-gated high-resolution-MRA sequence (HR-MRA) with slow infusion of extracellular contrast agent was implemented at 3 Tesla for the assessment of congenital heart disease and compared to standard first-pass-MRA (FP-MRA).

Methods

34 patients (median age: 13 years) with congenital heart disease (CHD) were prospectively examined on a 3 Tesla system. The CMR-protocol comprised functional imaging, FP- and HR-MRA, and viability imaging. After the acquisition of the FP-MRA sequence using a single dose of extracellular contrast agent the motion compensated HR-MRA sequence with isotropic resolution was acquired while injecting the second single dose, utilizing the timeframe before viability imaging. Qualitative scores for image quality (two independent reviewers) as well as quantitative measurements of vessel sharpness and relative contrast were compared using the Wilcoxon signed-rank test. Quantitative measurements of vessel diameters were compared using the Bland-Altman test.

Results

The mean image quality score revealed significantly better image quality of the HR-MRA sequence compared to the FP-MRA sequence in all vessels of interest (ascending aorta (AA), left pulmonary artery (LPA), left superior pulmonary vein (LSPV), coronary sinus (CS), and coronary ostia (CO); all p < 0.0001). In comparison to FP-MRA, HR-MRA revealed significantly better vessel sharpness for all considered vessels (AA, LSPV and LPA; all p < 0.0001). The relative contrast of the HR-MRA sequence was less compared to the FP-MRA sequence (AA: p <0.028, main pulmonary artery: p <0.004, LSPV: p <0.005). Both, the results of the intra- and interobserver measurements of the vessel diameters revealed closer correlation and closer 95 % limits of agreement for the HR-MRA. HR-MRA revealed one additional clinical finding, missed by FP-MRA.

Conclusions

An ECG- and navigator-gated HR-MRA-protocol with infusion of extracellular contrast agent at 3 Tesla is feasible. HR-MRA delivers significantly better image quality and vessel sharpness compared to FP-MRA. It may be integrated into a standard CMR-protocol for patients with CHD without the need for additional contrast agent injection and without any additional examination time.
Appendix
Available only for authorised users
Literature
1.
go back to reference Didier D, et al: Morphologic and functional evaluation of congenital heart disease by magnetic resonance imaging. J Magn Reson Imaging. 1999, 10 (5): 639-655. 10.1002/(SICI)1522-2586(199911)10:5<639::AID-JMRI7>3.0.CO;2-L.CrossRefPubMed Didier D, et al: Morphologic and functional evaluation of congenital heart disease by magnetic resonance imaging. J Magn Reson Imaging. 1999, 10 (5): 639-655. 10.1002/(SICI)1522-2586(199911)10:5<639::AID-JMRI7>3.0.CO;2-L.CrossRefPubMed
2.
go back to reference Chung T: Assessment of cardiovascular anatomy in patients with congenital heart disease by magnetic resonance imaging. Pediatr Cardiol. 2000, 21 (1): 18-26. 10.1007/s002469910004.CrossRefPubMed Chung T: Assessment of cardiovascular anatomy in patients with congenital heart disease by magnetic resonance imaging. Pediatr Cardiol. 2000, 21 (1): 18-26. 10.1007/s002469910004.CrossRefPubMed
3.
go back to reference Naehle CP, et al: First-pass and steady-state MR angiography of thoracic vasculature in children and adolescents. JACC Cardiovasc Imaging. 2010, 3 (5): 504-513. 10.1016/j.jcmg.2009.12.015.CrossRefPubMed Naehle CP, et al: First-pass and steady-state MR angiography of thoracic vasculature in children and adolescents. JACC Cardiovasc Imaging. 2010, 3 (5): 504-513. 10.1016/j.jcmg.2009.12.015.CrossRefPubMed
4.
go back to reference Harris MA, et al: Delayed-enhancement cardiovascular magnetic resonance identifies fibrous tissue in children after surgery for congenital heart disease. J Thorac Cardiovasc Surg. 2007, 133 (3): 676-681. 10.1016/j.jtcvs.2006.10.057.CrossRefPubMed Harris MA, et al: Delayed-enhancement cardiovascular magnetic resonance identifies fibrous tissue in children after surgery for congenital heart disease. J Thorac Cardiovasc Surg. 2007, 133 (3): 676-681. 10.1016/j.jtcvs.2006.10.057.CrossRefPubMed
5.
go back to reference Rathod RH, et al: Myocardial fibrosis identified by cardiac magnetic resonance late gadolinium enhancement is associated with adverse ventricular mechanics and ventricular tachycardia late after Fontan operation. J Am Coll Cardiol. 2010, 55 (16): 1721-1728. 10.1016/j.jacc.2009.12.036.PubMedCentralCrossRefPubMed Rathod RH, et al: Myocardial fibrosis identified by cardiac magnetic resonance late gadolinium enhancement is associated with adverse ventricular mechanics and ventricular tachycardia late after Fontan operation. J Am Coll Cardiol. 2010, 55 (16): 1721-1728. 10.1016/j.jacc.2009.12.036.PubMedCentralCrossRefPubMed
6.
go back to reference Rohrer M, et al: Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest. Radiol. 2005, 40 (11): 715-724. 10.1097/01.rli.0000184756.66360.d3.CrossRefPubMed Rohrer M, et al: Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest. Radiol. 2005, 40 (11): 715-724. 10.1097/01.rli.0000184756.66360.d3.CrossRefPubMed
7.
go back to reference Yang Q, et al: Contrast-enhanced whole-heart coronary magnetic resonance angiography at 3.0-T: a comparative study with X-ray angiography in a single center. J Am Coll Cardiol. 2009, 54 (1): 69-76. 10.1016/j.jacc.2009.03.016.PubMedCentralCrossRefPubMed Yang Q, et al: Contrast-enhanced whole-heart coronary magnetic resonance angiography at 3.0-T: a comparative study with X-ray angiography in a single center. J Am Coll Cardiol. 2009, 54 (1): 69-76. 10.1016/j.jacc.2009.03.016.PubMedCentralCrossRefPubMed
8.
go back to reference Himmrich E, et al: Proarrhythmic effect of pacemaker stimulation in patients with implanted cardioverter-defibrillators. Circulation. 2003, 108 (2): 192-197. 10.1161/01.CIR.0000080291.65638.CC.CrossRefPubMed Himmrich E, et al: Proarrhythmic effect of pacemaker stimulation in patients with implanted cardioverter-defibrillators. Circulation. 2003, 108 (2): 192-197. 10.1161/01.CIR.0000080291.65638.CC.CrossRefPubMed
9.
go back to reference Fenchel M, et al: Three-dimensional morphological magnetic resonance imaging in infants and children with congenital heart disease. Pediatr Radiol. 2006, 36 (12): 1265-1272. 10.1007/s00247-006-0314-z.CrossRefPubMed Fenchel M, et al: Three-dimensional morphological magnetic resonance imaging in infants and children with congenital heart disease. Pediatr Radiol. 2006, 36 (12): 1265-1272. 10.1007/s00247-006-0314-z.CrossRefPubMed
10.
go back to reference Boussel L, et al: 4D time-resolved magnetic resonance angiography for noninvasive assessment of pulmonary arteriovenous malformations patency. Journal of magnetic resonance imaging: JMRI. 2010, 32 (5): 1110-1116. 10.1002/jmri.22384.CrossRefPubMed Boussel L, et al: 4D time-resolved magnetic resonance angiography for noninvasive assessment of pulmonary arteriovenous malformations patency. Journal of magnetic resonance imaging: JMRI. 2010, 32 (5): 1110-1116. 10.1002/jmri.22384.CrossRefPubMed
11.
go back to reference Naehle CP, et al: First-pass and steady-state magnetic resonance angiography of the thoracic vasculature using gadofosveset trisodium. J Magn Reson Imaging. 2009, 30 (4): 809-816. 10.1002/jmri.21919.CrossRefPubMed Naehle CP, et al: First-pass and steady-state magnetic resonance angiography of the thoracic vasculature using gadofosveset trisodium. J Magn Reson Imaging. 2009, 30 (4): 809-816. 10.1002/jmri.21919.CrossRefPubMed
12.
go back to reference Sorensen TS, et al: Operator-independent isotropic three-dimensional magnetic resonance imaging for morphology in congenital heart disease: a validation study. Circulation. 2004, 110 (2): 163-169. 10.1161/01.CIR.0000134282.35183.AD.CrossRefPubMed Sorensen TS, et al: Operator-independent isotropic three-dimensional magnetic resonance imaging for morphology in congenital heart disease: a validation study. Circulation. 2004, 110 (2): 163-169. 10.1161/01.CIR.0000134282.35183.AD.CrossRefPubMed
13.
go back to reference Fenchel M, et al: Juvenile and adult congenital heart disease: time-resolved 3D contrast-enhanced MR angiography. Radiology. 2007, 244 (2): 399-410. 10.1148/radiol.2442061045.CrossRefPubMed Fenchel M, et al: Juvenile and adult congenital heart disease: time-resolved 3D contrast-enhanced MR angiography. Radiology. 2007, 244 (2): 399-410. 10.1148/radiol.2442061045.CrossRefPubMed
Metadata
Title
High-resolution motion compensated MRA in patients with congenital heart disease using extracellular contrast agent at 3 Tesla
Authors
Darius Dabir
Claas Philip Naehle
Ralf Clauberg
Juergen Gieseke
Hans H Schild
Daniel Thomas
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of Cardiovascular Magnetic Resonance / Issue 1/2012
Electronic ISSN: 1532-429X
DOI
https://doi.org/10.1186/1532-429X-14-75

Other articles of this Issue 1/2012

Journal of Cardiovascular Magnetic Resonance 1/2012 Go to the issue