Skip to main content
Top
Published in: Journal of Translational Medicine 1/2004

Open Access 01-12-2004 | Commentary

Changing paradigm through a genome-based approach to clinical and basic immunology

Authors: Ena Wang, András Falus

Published in: Journal of Translational Medicine | Issue 1/2004

Login to get access

Excerpt

Genomics or, in other words, genome-based biology offers an entirely new prospective on strategies applicable to the study of distinct physio-pathological conditions through a "discovery-driven" approach that may complement traditional "hypothesis-driven" scientific thinking [13]. Indeed, analysis of genomic variation at the DNA level and functional genomics that addresses transcriptional variations of biological material have been extensively used by bio-scientists to study distinct pathological conditions and this trend has spread, more recently to applications in basic and clinical immunology [49]. This shift in paradigm in the study of biology and, for the purpose of this Commentary, in immunology may very well be suitable for the understanding of immune regulation in sickness and in health which represents a particularly complicated biological matter due do the extreme versatility of the immune system in adaptation to environmental changes. The study of immune regulation in response to pathogen invasion, presence of malignant or allogeneic tissue and, in some cases, toward normal autologous tissue may require global approaches that could study in parallel the behavior of whole-systems. In fact, the study of single immunological parameters has, so far, failed to unlock several questions related to the immune-system complexity. This may be particularly true for tumor immunology that is a compound field in which the dynamic heterogeneity of cancer cells [10] supplements the complexity of polymorphic variation and epigenetic adaptation characteristic of human immunology [11]. In fact, new tools have been developed that allow a global vision of genetic processes in parallel at various levels that encompass genetic variation (single nucleotide polymorphism analysis), epigenetic changes (i.e. methylation-detection arrays or comparative genomic hybridization that can detect gene methylation or deletion / amplification respectively) and global transcription analysis (i.e. cDNA- or oligonucleotide-based microarrays like the lympho-chip or the peptide-MHC microarrays) that combined with bio-informatics tools provide a new approach to the description of complex immunological phenomena [3, 9, 1114]. …
Literature
1.
go back to reference Lander ES: The new genomics: global view of biology. Science. 1996, 274: 536-539. 10.1126/science.274.5287.536.CrossRefPubMed Lander ES: The new genomics: global view of biology. Science. 1996, 274: 536-539. 10.1126/science.274.5287.536.CrossRefPubMed
2.
go back to reference Brown PO, Botstein D: Exploring the new world of the genome with DNA microarrays. Nat Genet. 1999, 21: 33-37. 10.1038/4462.CrossRefPubMed Brown PO, Botstein D: Exploring the new world of the genome with DNA microarrays. Nat Genet. 1999, 21: 33-37. 10.1038/4462.CrossRefPubMed
3.
go back to reference Wang E, Panelli MC, Marincola FM: Genomic analysis of cancer. Princ Pract Oncol. 2003, 17: 1-16. 10.1080/0269920031000080064. Wang E, Panelli MC, Marincola FM: Genomic analysis of cancer. Princ Pract Oncol. 2003, 17: 1-16. 10.1080/0269920031000080064.
4.
go back to reference Granucci F, Vizzardelli C, Pavelka N, Feau S, Persico M, Virzi E: Inducible IL-2 production by dendritic cells revealed by global gene expression analysis. Nature Immunol. 2001, 2: 882-888. 10.1038/ni0901-882.CrossRef Granucci F, Vizzardelli C, Pavelka N, Feau S, Persico M, Virzi E: Inducible IL-2 production by dendritic cells revealed by global gene expression analysis. Nature Immunol. 2001, 2: 882-888. 10.1038/ni0901-882.CrossRef
5.
go back to reference Locati M, Deuschle U, Massardi ML, Martinez FO, Sironi M, Sozzani S: Analysis of the gene expression profile activated by the CC chemokine ligand 5/Rantes and by lipopolysaccharide in human monocytes. J Immunol. 2002, 168: 3557-3562.CrossRefPubMed Locati M, Deuschle U, Massardi ML, Martinez FO, Sironi M, Sozzani S: Analysis of the gene expression profile activated by the CC chemokine ligand 5/Rantes and by lipopolysaccharide in human monocytes. J Immunol. 2002, 168: 3557-3562.CrossRefPubMed
6.
go back to reference Wang E, Miller LD, Ohnmacht GA, Mocellin S, Petersen D, Zhao Y: Prospective molecular profiling of subcutaneous melanoma metastases suggests classifiers of immune responsiveness. Cancer Res. 2002, 62: 3581-3586.PubMedCentralPubMed Wang E, Miller LD, Ohnmacht GA, Mocellin S, Petersen D, Zhao Y: Prospective molecular profiling of subcutaneous melanoma metastases suggests classifiers of immune responsiveness. Cancer Res. 2002, 62: 3581-3586.PubMedCentralPubMed
7.
go back to reference Panelli MC, Wang E, Phan G, Puhlman M, Miller L, Ohnmacht GA: Genetic profiling of peripharal mononuclear cells and melanoma metastases in response to systemic interleukin-2 administration. Genome Biol. 2002, 3: RESEARCH0035-10.1186/gb-2002-3-7-research0035.PubMedCentralCrossRefPubMed Panelli MC, Wang E, Phan G, Puhlman M, Miller L, Ohnmacht GA: Genetic profiling of peripharal mononuclear cells and melanoma metastases in response to systemic interleukin-2 administration. Genome Biol. 2002, 3: RESEARCH0035-10.1186/gb-2002-3-7-research0035.PubMedCentralCrossRefPubMed
8.
go back to reference Monsurro' V, Wang E, Panelli MC, Nagorsen D, Jin P, Smith K: Active-specific immunization against cancer: is the problem at the receiving end?. Sem Cancer Biol. 2003, 13: 473-480. 10.1016/j.semcancer.2003.09.011.CrossRef Monsurro' V, Wang E, Panelli MC, Nagorsen D, Jin P, Smith K: Active-specific immunization against cancer: is the problem at the receiving end?. Sem Cancer Biol. 2003, 13: 473-480. 10.1016/j.semcancer.2003.09.011.CrossRef
9.
go back to reference Soen Y, Chen DS, Kraft DL, Davis MM, Brown PO: Detection and characterization of cellular immune responses using peptide-MHC microarrays. PLoS Biology. 2003, 1: 429-438. 10.1371/journal.pbio.0000065.CrossRef Soen Y, Chen DS, Kraft DL, Davis MM, Brown PO: Detection and characterization of cellular immune responses using peptide-MHC microarrays. PLoS Biology. 2003, 1: 429-438. 10.1371/journal.pbio.0000065.CrossRef
10.
go back to reference Lengauer C, Kinzler KW, Vogelstein B: Genetic instabilities in human cancers. Nature. 1998, 396: 643-649. 10.1038/25292.CrossRefPubMed Lengauer C, Kinzler KW, Vogelstein B: Genetic instabilities in human cancers. Nature. 1998, 396: 643-649. 10.1038/25292.CrossRefPubMed
11.
12.
go back to reference Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A: Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000, 403: 467-578. 10.1038/35000703.CrossRef Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A: Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000, 403: 467-578. 10.1038/35000703.CrossRef
13.
go back to reference Wang E, Adams S: Discrimination of genetic polymorphism using DNA chips. ASHI Quarterly. 2001, 24: 45-48. Wang E, Adams S: Discrimination of genetic polymorphism using DNA chips. ASHI Quarterly. 2001, 24: 45-48.
14.
go back to reference Wang E, Adams S, Zhao Y, Panelli MC, Simon R, Klein H: A strategy for detection of known and unknown SNP using a minimum number of oligonucleotides. J Transl Med. 2003, 1: 4-10.1186/1479-5876-1-4.PubMedCentralCrossRefPubMed Wang E, Adams S, Zhao Y, Panelli MC, Simon R, Klein H: A strategy for detection of known and unknown SNP using a minimum number of oligonucleotides. J Transl Med. 2003, 1: 4-10.1186/1479-5876-1-4.PubMedCentralCrossRefPubMed
16.
go back to reference Poon TC, Johnson PJ: Proteome analysis and its impact on the discovery of serological tumor markers. Clin Chim Acta. 2001, 313: 231-239. 10.1016/S0009-8981(01)00677-5.CrossRefPubMed Poon TC, Johnson PJ: Proteome analysis and its impact on the discovery of serological tumor markers. Clin Chim Acta. 2001, 313: 231-239. 10.1016/S0009-8981(01)00677-5.CrossRefPubMed
17.
go back to reference Zeeberg BR, Feng W, Wang G, Wang MD, Fojo AT, Sunshine M: GoMiner: a resource for biological interpretation of genomic and proteomic data. Genome Biol. 2003, 4: R28-10.1186/gb-2003-4-4-r28.PubMedCentralCrossRefPubMed Zeeberg BR, Feng W, Wang G, Wang MD, Fojo AT, Sunshine M: GoMiner: a resource for biological interpretation of genomic and proteomic data. Genome Biol. 2003, 4: R28-10.1186/gb-2003-4-4-r28.PubMedCentralCrossRefPubMed
18.
go back to reference Weinstein JN, Scherf U, Lee JK, Nishizuka S, Gwadry F, Bussey AK: The bioinformatics of microarray gene expression profiling. Cytometry. 2002, 47: 46-49. 10.1002/cyto.10041.CrossRefPubMed Weinstein JN, Scherf U, Lee JK, Nishizuka S, Gwadry F, Bussey AK: The bioinformatics of microarray gene expression profiling. Cytometry. 2002, 47: 46-49. 10.1002/cyto.10041.CrossRefPubMed
19.
go back to reference Marincola FM, Wang E, Atkins MB: 18th Annual Scientific Meeting of the International Society for the Biological Therapy of Cancer. Exp Opin Biol Ther. 2004, 4: 1-7.CrossRef Marincola FM, Wang E, Atkins MB: 18th Annual Scientific Meeting of the International Society for the Biological Therapy of Cancer. Exp Opin Biol Ther. 2004, 4: 1-7.CrossRef
Metadata
Title
Changing paradigm through a genome-based approach to clinical and basic immunology
Authors
Ena Wang
András Falus
Publication date
01-12-2004
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2004
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/1479-5876-2-2

Other articles of this Issue 1/2004

Journal of Translational Medicine 1/2004 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine