Skip to main content
Top
Published in: Journal of Translational Medicine 1/2013

Open Access 01-12-2013 | Research

The association among leukocyte apoptosis, autoantibodies and disease severity in systemic lupus erythematosus

Authors: Yu-Jih Su, Tien-Tsai Cheng, Chung-Jen Chen, Wen-Chan Chiu, Chung-Yuan Hsu, Wen-Neng Chang, Nai-Wen Tsai, Chia-Te Kung, Hung-Chen Wang, Wei-Che Lin, Chih-Cheng Huang, Ya-Ting Chang, Chih-Min Su, Yi-Fang Chiang, Ben-Chung Cheng, Yu-Jun Lin, Cheng-Hsien Lu

Published in: Journal of Translational Medicine | Issue 1/2013

Login to get access

Abstract

Background

Both apoptosis and autoantibodies are important factors associated with disease activity in the pathogenesis of systemic lupus erythematosus (SLE). This study tested the hypothesis that increased leukocyte apoptosis is associated with elevated levels of autoantibodies and the disease activity of SLE.

Methods

Leukocyte apoptosis was determined by flow cytometry, including annexin V, APO2.7, and 7-amino-actinomycin D (7-AAD) on each subtype of leukocyte in 23 patients with SLE. Leukocyte apoptosis was also evaluated in nine patients with Sjogren’s syndrome (SJS) and in 20 volunteer subjects. Titers of common autoantibodies and the disease activity index (SLEDAI-2 k) of the SLE patients were also determined.

Results

Except for annexin V and APO 2.7 of monocytes and late apoptosis (annexin V + 7-ADD) of lymphocytes, apoptosis in the total and in subsets of leukocytes were significantly higher in SLE patients than in controls (all p < 0.05, post hoc analysis). The mean percentage of late apoptosis of leukocytes (annexin V + 7-AAD) positively correlated with levels of anti-Ro52/60 (r = 0.513, p < 0.01), anti-La (r = 0.439, p = 0.04), and anti-Mi-2 (r = 0.492, p = 0.02), and inversely correlated with both C3 and C4 levels, although not statistically significant. The percentage of APO2.7 of CD19+ cells positively correlated with SLEDAI-2 K score (p = 0.01).

Conclusions

Leukocyte apoptosis is significantly higher in patients with SLE and correlates well with the levels of several autoantibodies. The APO2.7 of B-lymphocyte (CD19+) cells positively correlates with the disease activity of SLE.
Literature
1.
go back to reference Hanly JG: Comparison between multiplex assays for autoantibody detection in systemic lupus erythematosus. J Immunol Meth. 2010, 358 (1–2): 75-80.CrossRef Hanly JG: Comparison between multiplex assays for autoantibody detection in systemic lupus erythematosus. J Immunol Meth. 2010, 358 (1–2): 75-80.CrossRef
2.
go back to reference Hassan AB: Serial analysis of Ro/SSA and La/SSB antibody levels and correlation with clinical disease activity in patients with systemic lupus erythematosus. Scand J Rheumatol. 2002, 31 (3): 133-139.CrossRefPubMed Hassan AB: Serial analysis of Ro/SSA and La/SSB antibody levels and correlation with clinical disease activity in patients with systemic lupus erythematosus. Scand J Rheumatol. 2002, 31 (3): 133-139.CrossRefPubMed
3.
go back to reference Smith EL, Shmerling RH: The American college of rheumatology criteria for the classification of systemic lupus erythematosus: strengths, weaknesses, and opportunities for improvement. Lupus. 1999, 8 (8): 586-595. 10.1191/096120399680411317.CrossRefPubMed Smith EL, Shmerling RH: The American college of rheumatology criteria for the classification of systemic lupus erythematosus: strengths, weaknesses, and opportunities for improvement. Lupus. 1999, 8 (8): 586-595. 10.1191/096120399680411317.CrossRefPubMed
4.
go back to reference Jin O: Lymphocyte apoptosis and macrophage function: correlation with disease activity in systemic lupus erythematosus. Clin Rheumatol. 2005, 24 (2): 107-110. 10.1007/s10067-004-0972-x.CrossRefPubMed Jin O: Lymphocyte apoptosis and macrophage function: correlation with disease activity in systemic lupus erythematosus. Clin Rheumatol. 2005, 24 (2): 107-110. 10.1007/s10067-004-0972-x.CrossRefPubMed
5.
go back to reference van Bavel CC: Apoptosis-induced histone H3 methylation is targeted by autoantibodies in systemic lupus erythematosus. Ann Rheum Dis. 2011, 70 (1): 201-207. 10.1136/ard.2010.129320.CrossRefPubMed van Bavel CC: Apoptosis-induced histone H3 methylation is targeted by autoantibodies in systemic lupus erythematosus. Ann Rheum Dis. 2011, 70 (1): 201-207. 10.1136/ard.2010.129320.CrossRefPubMed
6.
go back to reference Cohen PL: Delayed apoptotic cell clearance and lupus-like autoimmunity in mice lacking the c-mer membrane tyrosine kinase. J Exp Med. 2002, 196 (1): 135-140. 10.1084/jem.20012094.PubMedCentralCrossRefPubMed Cohen PL: Delayed apoptotic cell clearance and lupus-like autoimmunity in mice lacking the c-mer membrane tyrosine kinase. J Exp Med. 2002, 196 (1): 135-140. 10.1084/jem.20012094.PubMedCentralCrossRefPubMed
7.
go back to reference Navratil JS, Ahearn JM: Apoptosis, clearance mechanisms, and the development of systemic lupus erythematosus. Curr Rheumatol Rep. 2001, 3 (3): 191-198. 10.1007/s11926-001-0018-1.CrossRefPubMed Navratil JS, Ahearn JM: Apoptosis, clearance mechanisms, and the development of systemic lupus erythematosus. Curr Rheumatol Rep. 2001, 3 (3): 191-198. 10.1007/s11926-001-0018-1.CrossRefPubMed
8.
go back to reference Huggins ML: Antibodies from systemic lupus erythematosus (SLE) sera define differential release of autoantigens from cell lines undergoing apoptosis. Clin Exp Immunol. 1999, 118 (2): 322-328. 10.1046/j.1365-2249.1999.01063.x.PubMedCentralCrossRefPubMed Huggins ML: Antibodies from systemic lupus erythematosus (SLE) sera define differential release of autoantigens from cell lines undergoing apoptosis. Clin Exp Immunol. 1999, 118 (2): 322-328. 10.1046/j.1365-2249.1999.01063.x.PubMedCentralCrossRefPubMed
9.
go back to reference Robak E: Peripheral blood lymphocyte apoptosis and circulating dendritic cells in patients with systemic lupus erythematosus: correlation with immunological status and disease-related symptoms. Clin Rheumatol. 2006, 25 (2): 225-233. 10.1007/s10067-005-1163-0.CrossRefPubMed Robak E: Peripheral blood lymphocyte apoptosis and circulating dendritic cells in patients with systemic lupus erythematosus: correlation with immunological status and disease-related symptoms. Clin Rheumatol. 2006, 25 (2): 225-233. 10.1007/s10067-005-1163-0.CrossRefPubMed
10.
go back to reference Xie M: [Preliminary study on apoptosis and expression of apoptosis-related genes in peripheral blood lymphocytes of patients with systemic lupus erythematosus]. Hua Xi Yi Ke Da Xue Xue Bao. 1999, 30 (2): 192-195.PubMed Xie M: [Preliminary study on apoptosis and expression of apoptosis-related genes in peripheral blood lymphocytes of patients with systemic lupus erythematosus]. Hua Xi Yi Ke Da Xue Xue Bao. 1999, 30 (2): 192-195.PubMed
11.
go back to reference Bombardier C: Derivation of the SLEDAI. A disease activity index for lupus patients. The Committee on Prognosis Studies in SLE. Arthritis Rheum. 1992, 35 (6): 630-640. 10.1002/art.1780350606.CrossRefPubMed Bombardier C: Derivation of the SLEDAI. A disease activity index for lupus patients. The Committee on Prognosis Studies in SLE. Arthritis Rheum. 1992, 35 (6): 630-640. 10.1002/art.1780350606.CrossRefPubMed
12.
go back to reference Fox RI: Sjogren's syndrome. Proposed criteria for classification. Arthritis Rheum. 1986, 29 (5): 577-585. 10.1002/art.1780290501.CrossRefPubMed Fox RI: Sjogren's syndrome. Proposed criteria for classification. Arthritis Rheum. 1986, 29 (5): 577-585. 10.1002/art.1780290501.CrossRefPubMed
13.
go back to reference Wallace DJ: A phase II, randomized, double-blind, placebo-controlled, dose-ranging study of belimumab in patients with active systemic lupus erythematosus. Arthritis Rheum. 2009, 61 (9): 1168-1178. 10.1002/art.24699.PubMedCentralCrossRefPubMed Wallace DJ: A phase II, randomized, double-blind, placebo-controlled, dose-ranging study of belimumab in patients with active systemic lupus erythematosus. Arthritis Rheum. 2009, 61 (9): 1168-1178. 10.1002/art.24699.PubMedCentralCrossRefPubMed
14.
go back to reference Koester SK: Monitoring early cellular responses in apoptosis is aided by the mitochondrial membrane protein-specific monoclonal antibody APO2.7. Cytometry. 1997, 29 (4): 306-312. 10.1002/(SICI)1097-0320(19971201)29:4<306::AID-CYTO7>3.0.CO;2-7.CrossRefPubMed Koester SK: Monitoring early cellular responses in apoptosis is aided by the mitochondrial membrane protein-specific monoclonal antibody APO2.7. Cytometry. 1997, 29 (4): 306-312. 10.1002/(SICI)1097-0320(19971201)29:4<306::AID-CYTO7>3.0.CO;2-7.CrossRefPubMed
15.
go back to reference Carthy CM: Early release of mitochondrial cytochrome c and expression of mitochondrial epitope 7A6 with a porphyrin-derived photosensitizer: Bcl-2 and Bcl-xL overexpression do not prevent early mitochondrial events but still depress caspase activity. Lab Invest. 1999, 79 (8): 953-965.PubMed Carthy CM: Early release of mitochondrial cytochrome c and expression of mitochondrial epitope 7A6 with a porphyrin-derived photosensitizer: Bcl-2 and Bcl-xL overexpression do not prevent early mitochondrial events but still depress caspase activity. Lab Invest. 1999, 79 (8): 953-965.PubMed
16.
go back to reference Soruri A: Mycobacterial antigens induce apoptosis in human purified protein derivative-specific alphabeta T lymphocytes in a concentration-dependent manner. Immunology. 2002, 105 (2): 222-230. 10.1046/j.0019-2805.2001.01355.x.PubMedCentralCrossRefPubMed Soruri A: Mycobacterial antigens induce apoptosis in human purified protein derivative-specific alphabeta T lymphocytes in a concentration-dependent manner. Immunology. 2002, 105 (2): 222-230. 10.1046/j.0019-2805.2001.01355.x.PubMedCentralCrossRefPubMed
17.
go back to reference Belot A: Protein kinase C delta deficiency causes mendelian systemic lupus erythematosus with B-cell defective apoptosis and hyperproliferation. Arthritis Rheum. 2013, 65: 2161-2171. 10.1002/art.38008.PubMedCentralCrossRefPubMed Belot A: Protein kinase C delta deficiency causes mendelian systemic lupus erythematosus with B-cell defective apoptosis and hyperproliferation. Arthritis Rheum. 2013, 65: 2161-2171. 10.1002/art.38008.PubMedCentralCrossRefPubMed
18.
go back to reference Dhir V: Increased T-lymphocyte apoptosis in lupus correlates with disease activity and may be responsible for reduced T-cell frequency: a cross-sectional and longitudinal study. Lupus. 2009, 18 (9): 785-791. 10.1177/0961203309103152.CrossRefPubMed Dhir V: Increased T-lymphocyte apoptosis in lupus correlates with disease activity and may be responsible for reduced T-cell frequency: a cross-sectional and longitudinal study. Lupus. 2009, 18 (9): 785-791. 10.1177/0961203309103152.CrossRefPubMed
19.
go back to reference Caricchio R, Cohen PL: Spontaneous and induced apoptosis in systemic lupus erythematosus: multiple assays fail to reveal consistent abnormalities. Cell Immunol. 1999, 198 (1): 54-60. 10.1006/cimm.1999.1576.CrossRefPubMed Caricchio R, Cohen PL: Spontaneous and induced apoptosis in systemic lupus erythematosus: multiple assays fail to reveal consistent abnormalities. Cell Immunol. 1999, 198 (1): 54-60. 10.1006/cimm.1999.1576.CrossRefPubMed
20.
go back to reference Liu C: Effects of sex hormones on apoptosis in peripheral blood mononuclear cells from patients with systemic lupus erythematosus. Chin Med J (Engl). 2001, 114 (3): 291-293. Liu C: Effects of sex hormones on apoptosis in peripheral blood mononuclear cells from patients with systemic lupus erythematosus. Chin Med J (Engl). 2001, 114 (3): 291-293.
21.
go back to reference Bengtsson AA: Induction of apoptosis in monocytes and lymphocytes by serum from patients with systemic lupus erythematosus - an additional mechanism to increased autoantigen load?. Clin Exp Immunol. 2004, 135 (3): 535-543. 10.1111/j.1365-2249.2003.02386.x.PubMedCentralCrossRefPubMed Bengtsson AA: Induction of apoptosis in monocytes and lymphocytes by serum from patients with systemic lupus erythematosus - an additional mechanism to increased autoantigen load?. Clin Exp Immunol. 2004, 135 (3): 535-543. 10.1111/j.1365-2249.2003.02386.x.PubMedCentralCrossRefPubMed
22.
go back to reference Armstrong DJ: Distinctive effects of G-CSF, GM-CSF and TNFalpha on neutrophil apoptosis in systemic lupus erythematosus. Clin Exp Rheumatol. 2005, 23 (2): 152-158.PubMed Armstrong DJ: Distinctive effects of G-CSF, GM-CSF and TNFalpha on neutrophil apoptosis in systemic lupus erythematosus. Clin Exp Rheumatol. 2005, 23 (2): 152-158.PubMed
23.
go back to reference Chen W, Lin J: Lymphopenia relating to T-lymphocyte apoptosis in systemic lupus erythematosus. Clin Rheumatol. 2011, 30 (11): 1515-1516. 10.1007/s10067-011-1852-9.CrossRefPubMed Chen W, Lin J: Lymphopenia relating to T-lymphocyte apoptosis in systemic lupus erythematosus. Clin Rheumatol. 2011, 30 (11): 1515-1516. 10.1007/s10067-011-1852-9.CrossRefPubMed
24.
go back to reference Munoz LE: Apoptosis in the pathogenesis of systemic lupus erythematosus. Lupus. 2008, 17 (5): 371-375. 10.1177/0961203308089990.CrossRefPubMed Munoz LE: Apoptosis in the pathogenesis of systemic lupus erythematosus. Lupus. 2008, 17 (5): 371-375. 10.1177/0961203308089990.CrossRefPubMed
25.
go back to reference Manson JJ, Isenberg DA: The origin and pathogenic consequences of anti-dsDNA antibodies in systemic lupus erythematosus. Expert Rev Clin Immunol. 2006, 2 (3): 377-385. 10.1586/1744666X.2.3.377.CrossRefPubMed Manson JJ, Isenberg DA: The origin and pathogenic consequences of anti-dsDNA antibodies in systemic lupus erythematosus. Expert Rev Clin Immunol. 2006, 2 (3): 377-385. 10.1586/1744666X.2.3.377.CrossRefPubMed
26.
go back to reference Dillon CF, Jones JV, Reichlin M: Antibody to Ro in a population of patients with systemic lupus erythematosus: distribution, clinical and serological associations. J Rheumatol. 1983, 10 (3): 380-386.PubMed Dillon CF, Jones JV, Reichlin M: Antibody to Ro in a population of patients with systemic lupus erythematosus: distribution, clinical and serological associations. J Rheumatol. 1983, 10 (3): 380-386.PubMed
27.
go back to reference Villarreal GM: Prevalence of 13 autoantibodies and of the 16/6 and related pathogenic idiotypes in 465 patients with systemic lupus erythematosus and their relationship with disease activity. Lupus. 1997, 6 (5): 425-435. 10.1177/096120339700600503.CrossRefPubMed Villarreal GM: Prevalence of 13 autoantibodies and of the 16/6 and related pathogenic idiotypes in 465 patients with systemic lupus erythematosus and their relationship with disease activity. Lupus. 1997, 6 (5): 425-435. 10.1177/096120339700600503.CrossRefPubMed
28.
go back to reference Carthy CM: Bcl-2 and Bcl-xL overexpression inhibits cytochrome c release, activation of multiple caspases, and virus release following coxsackievirus B3 infection. Virology. 2003, 313 (1): 147-157. 10.1016/S0042-6822(03)00242-3.CrossRefPubMed Carthy CM: Bcl-2 and Bcl-xL overexpression inhibits cytochrome c release, activation of multiple caspases, and virus release following coxsackievirus B3 infection. Virology. 2003, 313 (1): 147-157. 10.1016/S0042-6822(03)00242-3.CrossRefPubMed
29.
go back to reference Pan Y: [Effects of glucocorticoids on the expression of GTIR and apoptosis of the CD4(+)CD25(+)CD127(dim/-) T cells in patients with systemic lupus erythematosus]. Beijing Da Xue Xue Bao. 2012, 44 (2): 215-220.PubMed Pan Y: [Effects of glucocorticoids on the expression of GTIR and apoptosis of the CD4(+)CD25(+)CD127(dim/-) T cells in patients with systemic lupus erythematosus]. Beijing Da Xue Xue Bao. 2012, 44 (2): 215-220.PubMed
30.
go back to reference Bohm I: Apoptosis: the link between autoantibodies and leuko-/lymphocytopenia in patients with lupus erythematosus. Scand J Rheumatol. 2004, 33 (6): 409-416. 10.1080/03009740410006907.CrossRefPubMed Bohm I: Apoptosis: the link between autoantibodies and leuko-/lymphocytopenia in patients with lupus erythematosus. Scand J Rheumatol. 2004, 33 (6): 409-416. 10.1080/03009740410006907.CrossRefPubMed
31.
go back to reference Linker-Israeli M, Quismorio FP, Horwitz DA: CD8+ lymphocytes from patients with systemic lupus erythematosus sustain, rather than suppress, spontaneous polyclonal IgG production and synergize with CD4+ cells to support autoantibody synthesis. Arthritis Rheum. 1990, 33 (8): 1216-1225.CrossRefPubMed Linker-Israeli M, Quismorio FP, Horwitz DA: CD8+ lymphocytes from patients with systemic lupus erythematosus sustain, rather than suppress, spontaneous polyclonal IgG production and synergize with CD4+ cells to support autoantibody synthesis. Arthritis Rheum. 1990, 33 (8): 1216-1225.CrossRefPubMed
32.
go back to reference Midgley A: The role of neutrophil apoptosis in juvenile-onset systemic lupus erythematosus. Arthritis Rheum. 2009, 60 (8): 2390-2401. 10.1002/art.24634.CrossRefPubMed Midgley A: The role of neutrophil apoptosis in juvenile-onset systemic lupus erythematosus. Arthritis Rheum. 2009, 60 (8): 2390-2401. 10.1002/art.24634.CrossRefPubMed
33.
go back to reference Habib HM: Enhanced propensity of T lymphocytes in patients with systemic lupus erythematosus to apoptosis in the presence of tumour necrosis factor alpha. Scand J Rheumatol. 2009, 38 (2): 112-120. 10.1080/03009740802409496.CrossRefPubMed Habib HM: Enhanced propensity of T lymphocytes in patients with systemic lupus erythematosus to apoptosis in the presence of tumour necrosis factor alpha. Scand J Rheumatol. 2009, 38 (2): 112-120. 10.1080/03009740802409496.CrossRefPubMed
34.
go back to reference Balanescu E: Immunohistochemical aspects of apoptosis in subcutaneous lupus erythematosus. Rom J Intern Med. 2010, 48 (3): 261-265.PubMed Balanescu E: Immunohistochemical aspects of apoptosis in subcutaneous lupus erythematosus. Rom J Intern Med. 2010, 48 (3): 261-265.PubMed
35.
go back to reference Makino H: Glomerular cell apoptosis in human lupus nephritis. Virchows Arch. 2003, 443 (1): 67-77. 10.1007/s00428-003-0827-x.CrossRefPubMed Makino H: Glomerular cell apoptosis in human lupus nephritis. Virchows Arch. 2003, 443 (1): 67-77. 10.1007/s00428-003-0827-x.CrossRefPubMed
Metadata
Title
The association among leukocyte apoptosis, autoantibodies and disease severity in systemic lupus erythematosus
Authors
Yu-Jih Su
Tien-Tsai Cheng
Chung-Jen Chen
Wen-Chan Chiu
Chung-Yuan Hsu
Wen-Neng Chang
Nai-Wen Tsai
Chia-Te Kung
Hung-Chen Wang
Wei-Che Lin
Chih-Cheng Huang
Ya-Ting Chang
Chih-Min Su
Yi-Fang Chiang
Ben-Chung Cheng
Yu-Jun Lin
Cheng-Hsien Lu
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2013
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/1479-5876-11-261

Other articles of this Issue 1/2013

Journal of Translational Medicine 1/2013 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine