Skip to main content
Top
Published in: Reproductive Biology and Endocrinology 1/2009

Open Access 01-12-2009 | Research

Disruption of the maxi-K-caveolin-1 interaction alters current expression in human myometrial cells

Authors: Adam M Brainard, Victoria P Korovkina, Sarah K England

Published in: Reproductive Biology and Endocrinology | Issue 1/2009

Login to get access

Abstract

Background

One determinant of the total K+ myometrial smooth muscle cell (MSMC) current is the large conductance, calcium- and voltage-activated potassium channel (maxi-K channel). This channel provides a repolarizing current in response to excitatory stimuli, most notably in response to increases in the levels of intracellular Ca2+, and blocking the channel by pharmacological means induces the depolarization of MSMCs and also enhances contraction strength. In MSMCs, maxi-K channels can reside in the caveolae, where they associate with the scaffolding protein caveolin-1 (cav-1). The aim of this study was to investigate the consequences of this interaction - more specifically, how disruption of the association between the maxi-K channel and cav-1 may influence the current expression and excitability of myometrial cells - with the aim of better understanding the mechanisms that underlie the regulation of normal and aberrant uterine function.

Methods

Myometrial biopsies were collected from women undergoing elective C-sections. From these samples, myometrial cells were isolated, cultured, infected with a virus containing either caveolin-1 (cav-1) siRNA or scrambled cav-1 siRNA, and finally subjected to patch-clamp analysis. Mutant caveolin-binding site maxi-K channel constructs were generated and transfected into mouse Ltk- fibroblasts. Channel activity, expression, association, and localization were examined by patch-clamping, Western blot, immunoprecipitation, and immunofluorescence, respectively.

Results

The caveolin-1 siRNA suppressed the total K+ current in human myometrial smooth muscle cells (hMSMC), as evident from comparison to the currents generated by both non-infected cells and cells infected with scrambled siRNA controls. The interaction between the maxi-K channel and caveolin depends on a region in the channel's C-terminal caveolin-binding site. Mutations of aromatic residues in this site (mutant F1012A, mutant Y1007A, F1012A and mutant Y1007A, F1012A, Y1015A) resulted in a decrease in K+ current compared to that produced by wild-type channels transfected into mouse Ltk- fibroblasts. However, mutation of all three aromatic amino acids (mutant Y1007A, F1012A, Y1015A) was necessary to disrupt the association between caveolin and the maxi-K channel, as visualized by immunofluorescence and immunoprecipitation.

Conclusion

Our results suggest that disruption of the caveolin-binding site interferes with the cav-1/maxi-K channel interaction, and that lack of the cav-1/maxi-K channel interaction in MSMCs attenuates the total K+ channel current of the cell.
Appendix
Available only for authorised users
Literature
2.
go back to reference Anwer K, Oberti C, Perez GJ, Perez-Reyes N, McDougall JK, Monga M, Sanborn BM, Stefani E, Toro L: Calcium-activated K+ channels as modulators of human myometrial contractile activity. Am J Physiol. 1993, 265 (4 Pt 1): C976-985.PubMed Anwer K, Oberti C, Perez GJ, Perez-Reyes N, McDougall JK, Monga M, Sanborn BM, Stefani E, Toro L: Calcium-activated K+ channels as modulators of human myometrial contractile activity. Am J Physiol. 1993, 265 (4 Pt 1): C976-985.PubMed
3.
go back to reference Matharoo-Ball B, Ashford ML, Arulkumaran S, Khan RN: Down-regulation of the alpha- and beta-subunits of the calcium-activated potassium channel in human myometrium with parturition. Biol Reprod. 2003, 68 (6): 2135-2141. 10.1095/biolreprod.102.010454.CrossRefPubMed Matharoo-Ball B, Ashford ML, Arulkumaran S, Khan RN: Down-regulation of the alpha- and beta-subunits of the calcium-activated potassium channel in human myometrium with parturition. Biol Reprod. 2003, 68 (6): 2135-2141. 10.1095/biolreprod.102.010454.CrossRefPubMed
4.
go back to reference Benkusky NA, Fergus DJ, Zucchero TM, England SK: Regulation of the Ca2+-sensitive domains of the maxi-K channel in the mouse myometrium during gestation. J Biol Chem. 2000, 275 (36): 27712-27719.PubMed Benkusky NA, Fergus DJ, Zucchero TM, England SK: Regulation of the Ca2+-sensitive domains of the maxi-K channel in the mouse myometrium during gestation. J Biol Chem. 2000, 275 (36): 27712-27719.PubMed
5.
go back to reference Zhou XB, Wang GX, Ruth P, Huneke B, Korth M: BK(Ca) channel activation by membrane-associated cGMP kinase may contribute to uterine quiescence in pregnancy. Am J Physiol Cell Physiol. 2000, 279 (6): C1751-1759.PubMed Zhou XB, Wang GX, Ruth P, Huneke B, Korth M: BK(Ca) channel activation by membrane-associated cGMP kinase may contribute to uterine quiescence in pregnancy. Am J Physiol Cell Physiol. 2000, 279 (6): C1751-1759.PubMed
6.
go back to reference Babiychuk EB, Smith RD, Burdyga T, Babiychuk VS, Wray S, Draeger A: Membrane cholesterol regulates smooth muscle phasic contraction. J Membr Biol. 2004, 198 (2): 95-101. 10.1007/s00232-004-0663-1.CrossRefPubMed Babiychuk EB, Smith RD, Burdyga T, Babiychuk VS, Wray S, Draeger A: Membrane cholesterol regulates smooth muscle phasic contraction. J Membr Biol. 2004, 198 (2): 95-101. 10.1007/s00232-004-0663-1.CrossRefPubMed
7.
go back to reference Brainard AM, Miller AJ, Martens JR, England SK: Maxi-K channels localize to caveolae in human myometrium: a role for an actin-channel-caveolin complex in the regulation of myometrial smooth muscle K+ current. Am J Physiol Cell Physiol. 2005, 289 (1): C49-57. 10.1152/ajpcell.00399.2004.CrossRefPubMed Brainard AM, Miller AJ, Martens JR, England SK: Maxi-K channels localize to caveolae in human myometrium: a role for an actin-channel-caveolin complex in the regulation of myometrial smooth muscle K+ current. Am J Physiol Cell Physiol. 2005, 289 (1): C49-57. 10.1152/ajpcell.00399.2004.CrossRefPubMed
8.
go back to reference Alioua A, Lu R, Kumar Y, Eghbali M, Kundu P, Toro L, Stefani E: Slo1 Caveolin-binding Motif, a Mechanism of Caveolin-1-Slo1 Interaction Regulating Slo1 Surface Expression. J Biol Chem. 2008, 283 (8): 4808-4817. 10.1074/jbc.M709802200.CrossRefPubMed Alioua A, Lu R, Kumar Y, Eghbali M, Kundu P, Toro L, Stefani E: Slo1 Caveolin-binding Motif, a Mechanism of Caveolin-1-Slo1 Interaction Regulating Slo1 Surface Expression. J Biol Chem. 2008, 283 (8): 4808-4817. 10.1074/jbc.M709802200.CrossRefPubMed
9.
go back to reference Barbuti A, Gravante B, Riolfo M, Milanesi R, Terragni B, DiFrancesco D: Localization of pacemaker channels in lipid rafts regulates channel kinetics. Circ Res. 2004, 94 (10): 1325-1331. 10.1161/01.RES.0000127621.54132.AE.CrossRefPubMed Barbuti A, Gravante B, Riolfo M, Milanesi R, Terragni B, DiFrancesco D: Localization of pacemaker channels in lipid rafts regulates channel kinetics. Circ Res. 2004, 94 (10): 1325-1331. 10.1161/01.RES.0000127621.54132.AE.CrossRefPubMed
10.
go back to reference Martens JR, Navarro-Polanco R, Coppock EA, Nishiyama A, Parshley L, Grobaski TD, Tamkun MM: Differential targeting of Shaker-like potassium channels to lipid rafts. J Biol Chem. 2000, 275 (11): 7443-7446. 10.1074/jbc.275.11.7443.CrossRefPubMed Martens JR, Navarro-Polanco R, Coppock EA, Nishiyama A, Parshley L, Grobaski TD, Tamkun MM: Differential targeting of Shaker-like potassium channels to lipid rafts. J Biol Chem. 2000, 275 (11): 7443-7446. 10.1074/jbc.275.11.7443.CrossRefPubMed
11.
go back to reference Martens JR, Sakamoto N, Sullivan SA, Grobaski TD, Tamkun MM: Isoform-specific localization of voltage-gated K+ channels to distinct lipid raft populations. Targeting of Kv1.5 to caveolae. J Biol Chem. 2001, 276 (11): 8409-8414. 10.1074/jbc.M009948200.CrossRefPubMed Martens JR, Sakamoto N, Sullivan SA, Grobaski TD, Tamkun MM: Isoform-specific localization of voltage-gated K+ channels to distinct lipid raft populations. Targeting of Kv1.5 to caveolae. J Biol Chem. 2001, 276 (11): 8409-8414. 10.1074/jbc.M009948200.CrossRefPubMed
12.
go back to reference McEwen DP, Li Q, Jackson S, Jenkins PM, Martens JR: Caveolin regulates kv1.5 trafficking to cholesterol-rich membrane microdomains. Mol Pharmacol. 2008, 73 (3): 678-685. 10.1124/mol.107.042093.CrossRefPubMed McEwen DP, Li Q, Jackson S, Jenkins PM, Martens JR: Caveolin regulates kv1.5 trafficking to cholesterol-rich membrane microdomains. Mol Pharmacol. 2008, 73 (3): 678-685. 10.1124/mol.107.042093.CrossRefPubMed
13.
go back to reference Gabella G: Structure of smooth muscles. Smooth Muscle: An assessment of current knowlege. Edited by: Bulbring E, Brading AF, Jones AW, Tomita T. 1981, London: Arnold, 1-46. Gabella G: Structure of smooth muscles. Smooth Muscle: An assessment of current knowlege. Edited by: Bulbring E, Brading AF, Jones AW, Tomita T. 1981, London: Arnold, 1-46.
14.
go back to reference Kurzchalia TV, Parton RG: Membrane microdomains and caveolae. Curr Opin Cell Biol. 1999, 11 (4): 424-431. 10.1016/S0955-0674(99)80061-1.CrossRefPubMed Kurzchalia TV, Parton RG: Membrane microdomains and caveolae. Curr Opin Cell Biol. 1999, 11 (4): 424-431. 10.1016/S0955-0674(99)80061-1.CrossRefPubMed
15.
go back to reference Li S, Couet J, Lisanti MP: Src tyrosine kinases, Galpha subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. J Biol Chem. 1996, 271 (46): 29182-29190. 10.1074/jbc.271.46.28995.CrossRefPubMed Li S, Couet J, Lisanti MP: Src tyrosine kinases, Galpha subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. J Biol Chem. 1996, 271 (46): 29182-29190. 10.1074/jbc.271.46.28995.CrossRefPubMed
16.
go back to reference Nevins AK, Thurmond DC: Caveolin-1 functions as a novel Cdc42 guanine nucleotide dissociation inhibitor in pancreatic beta-cells. J Biol Chem. 2006, 281 (28): 18961-18972. 10.1074/jbc.M603604200.CrossRefPubMed Nevins AK, Thurmond DC: Caveolin-1 functions as a novel Cdc42 guanine nucleotide dissociation inhibitor in pancreatic beta-cells. J Biol Chem. 2006, 281 (28): 18961-18972. 10.1074/jbc.M603604200.CrossRefPubMed
17.
go back to reference Kit S, Dubbs DR, Piekarski LJ, Hsu TC: Deletion of Thymidine Kinase Activity from L Cells Resistant to Bromodeoxyuridine. Exp Cell Res. 1963, 31: 297-312. 10.1016/0014-4827(63)90007-7.CrossRefPubMed Kit S, Dubbs DR, Piekarski LJ, Hsu TC: Deletion of Thymidine Kinase Activity from L Cells Resistant to Bromodeoxyuridine. Exp Cell Res. 1963, 31: 297-312. 10.1016/0014-4827(63)90007-7.CrossRefPubMed
18.
go back to reference Khan RN, Smith SK, Morrison JJ, Ashford ML: Ca2+ dependence and pharmacology of large-conductance K+ channels in nonlabor and labor human uterine myocytes. Am J Physiol. 1997, 273 (5 Pt 1): C1721-1731.PubMed Khan RN, Smith SK, Morrison JJ, Ashford ML: Ca2+ dependence and pharmacology of large-conductance K+ channels in nonlabor and labor human uterine myocytes. Am J Physiol. 1997, 273 (5 Pt 1): C1721-1731.PubMed
19.
go back to reference Khan RN, Smith SK, Morrison JJ, Ashford ML: Properties of large-conductance K+ channels in human myometrium during pregnancy and labour. Proceedings of the Royal Society of London - Series B: Biological Sciences. 1993, 251 (1330): 9-15. 10.1098/rspb.1993.0002.CrossRefPubMed Khan RN, Smith SK, Morrison JJ, Ashford ML: Properties of large-conductance K+ channels in human myometrium during pregnancy and labour. Proceedings of the Royal Society of London - Series B: Biological Sciences. 1993, 251 (1330): 9-15. 10.1098/rspb.1993.0002.CrossRefPubMed
20.
go back to reference Wallner M, Meera P, Ottolia M, Kaczorowski G, Latorre R, Garcia M, Stefani E, Toro L: Characterization and modulation by a β-subunit of a human maxi-KCa channel cloned from myometrium. Receptors and Channels. 1995, 3 (3): 185-199.PubMed Wallner M, Meera P, Ottolia M, Kaczorowski G, Latorre R, Garcia M, Stefani E, Toro L: Characterization and modulation by a β-subunit of a human maxi-KCa channel cloned from myometrium. Receptors and Channels. 1995, 3 (3): 185-199.PubMed
21.
go back to reference Darby PJ, Kwan CY, Daniel EE: Caveolae from canine airway smooth muscle contain the necessary components for a role in Ca(2+) handling. Am J Physiol Lung Cell Mol Physiol. 2000, 279 (6): L1226-1235.PubMed Darby PJ, Kwan CY, Daniel EE: Caveolae from canine airway smooth muscle contain the necessary components for a role in Ca(2+) handling. Am J Physiol Lung Cell Mol Physiol. 2000, 279 (6): L1226-1235.PubMed
22.
go back to reference Lohn M, Furstenau M, Sagach V, Elger M, Schulze W, Luft FC, Haller H, Gollasch M: Ignition of calcium sparks in arterial and cardiac muscle through caveolae. Circ Res. 2000, 87 (11): 1034-1039.CrossRefPubMed Lohn M, Furstenau M, Sagach V, Elger M, Schulze W, Luft FC, Haller H, Gollasch M: Ignition of calcium sparks in arterial and cardiac muscle through caveolae. Circ Res. 2000, 87 (11): 1034-1039.CrossRefPubMed
23.
go back to reference Oh P, McIntosh DP, Schnitzer JE: Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium. J Cell Biol. 1998, 141 (1): 101-114. 10.1083/jcb.141.1.101.PubMedCentralCrossRefPubMed Oh P, McIntosh DP, Schnitzer JE: Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium. J Cell Biol. 1998, 141 (1): 101-114. 10.1083/jcb.141.1.101.PubMedCentralCrossRefPubMed
24.
go back to reference Taggart MJ, Leavis P, Feron O, Morgan KG: Inhibition of PKCalpha and rhoA translocation in differentiated smooth muscle by a caveolin scaffolding domain peptide. Exp Cell Res. 2000, 258 (1): 72-81. 10.1006/excr.2000.4891.CrossRefPubMed Taggart MJ, Leavis P, Feron O, Morgan KG: Inhibition of PKCalpha and rhoA translocation in differentiated smooth muscle by a caveolin scaffolding domain peptide. Exp Cell Res. 2000, 258 (1): 72-81. 10.1006/excr.2000.4891.CrossRefPubMed
25.
go back to reference Turi A, Kiss AL, Mullner N: Estrogen downregulates the number of caveolae and the level of caveolin in uterine smooth muscle. Cell Biol Int. 2001, 25 (8): 785-794. 10.1006/cbir.2001.0769.CrossRefPubMed Turi A, Kiss AL, Mullner N: Estrogen downregulates the number of caveolae and the level of caveolin in uterine smooth muscle. Cell Biol Int. 2001, 25 (8): 785-794. 10.1006/cbir.2001.0769.CrossRefPubMed
26.
go back to reference Couet J, Li S, Okamoto T, Ikezu T, Lisanti MP: Identification of peptide and protein ligands for the caveolin-scaffolding domain. Implications for the interaction of caveolin with caveolae-associated proteins. J Biol Chem. 1997, 272 (10): 6525-6533. 10.1074/jbc.272.10.6525.CrossRefPubMed Couet J, Li S, Okamoto T, Ikezu T, Lisanti MP: Identification of peptide and protein ligands for the caveolin-scaffolding domain. Implications for the interaction of caveolin with caveolae-associated proteins. J Biol Chem. 1997, 272 (10): 6525-6533. 10.1074/jbc.272.10.6525.CrossRefPubMed
27.
go back to reference Wang Y, Yamaguchi K, Wada T, Hata K, Zhao X, Fujimoto T, Miyagi T: A close association of the ganglioside-specific sialidase Neu3 with caveolin in membrane microdomains. J Biol Chem. 2002, 277 (29): 26252-26259. 10.1074/jbc.M110515200.CrossRefPubMed Wang Y, Yamaguchi K, Wada T, Hata K, Zhao X, Fujimoto T, Miyagi T: A close association of the ganglioside-specific sialidase Neu3 with caveolin in membrane microdomains. J Biol Chem. 2002, 277 (29): 26252-26259. 10.1074/jbc.M110515200.CrossRefPubMed
28.
go back to reference Shmygol A, Noble K, Wray S: Depletion of membrane cholesterol eliminates the Ca2+-activated component of outward potassium current and decreases membrane capacitance in rat uterine myocytes. J Physiol. 2007, 581 (Pt 2): 445-456. 10.1113/jphysiol.2007.129452.PubMedCentralCrossRefPubMed Shmygol A, Noble K, Wray S: Depletion of membrane cholesterol eliminates the Ca2+-activated component of outward potassium current and decreases membrane capacitance in rat uterine myocytes. J Physiol. 2007, 581 (Pt 2): 445-456. 10.1113/jphysiol.2007.129452.PubMedCentralCrossRefPubMed
29.
go back to reference Zou S, Jha S, Kim EY, Dryer SE: A novel actin-binding domain on Slo1 calcium-activated potassium channels is necessary for their expression in the plasma membrane. Mol Pharmacol. 2008, 73 (2): 359-368. 10.1124/mol.107.039743.CrossRefPubMed Zou S, Jha S, Kim EY, Dryer SE: A novel actin-binding domain on Slo1 calcium-activated potassium channels is necessary for their expression in the plasma membrane. Mol Pharmacol. 2008, 73 (2): 359-368. 10.1124/mol.107.039743.CrossRefPubMed
30.
go back to reference Kim EY, Ridgway LD, Dryer SE: Interactions with filamin A stimulate surface expression of large-conductance Ca2+-activated K+ channels in the absence of direct actin binding. Mol Pharmacol. 2007, 72 (3): 622-630. 10.1124/mol.107.038026.CrossRefPubMed Kim EY, Ridgway LD, Dryer SE: Interactions with filamin A stimulate surface expression of large-conductance Ca2+-activated K+ channels in the absence of direct actin binding. Mol Pharmacol. 2007, 72 (3): 622-630. 10.1124/mol.107.038026.CrossRefPubMed
Metadata
Title
Disruption of the maxi-K-caveolin-1 interaction alters current expression in human myometrial cells
Authors
Adam M Brainard
Victoria P Korovkina
Sarah K England
Publication date
01-12-2009
Publisher
BioMed Central
Published in
Reproductive Biology and Endocrinology / Issue 1/2009
Electronic ISSN: 1477-7827
DOI
https://doi.org/10.1186/1477-7827-7-131

Other articles of this Issue 1/2009

Reproductive Biology and Endocrinology 1/2009 Go to the issue