Skip to main content
Top
Published in: Reproductive Biology and Endocrinology 1/2005

Open Access 01-12-2005 | Research

Potential targets of transforming growth factor-beta1 during inhibition of oocyte maturation in zebrafish

Authors: Gurneet Kohli, Eric Clelland, Chun Peng

Published in: Reproductive Biology and Endocrinology | Issue 1/2005

Login to get access

Abstract

Background

TGF-beta is a multifunctional growth factor involved in regulating a variety of cellular activities. Unlike mammals, the function of TGF-beta in the reproduction of lower vertebrates, such as fish, is not clear. Recently, we showed that TGF-beta1 inhibits gonadotropin- and 17alpha, 20beta-dihydroxyprogesterone (DHP)-induced maturation in zebrafish. The aim of the present study was to investigate the mechanisms underlying this action.

Method

To determine if the effect of TGF-beta1 on oocyte maturation involves transcription and/or translation, ovarian follicles were pre-treated with actinomycin D, a blocker of transcription, and cyclohexamide, an inhibitor of translation, and incubated with hCG or DHP, either alone or in combination with TGF-beta1 and oocyte maturation scored. To determine the effect of TGF-beta1 on mRNA levels of several key effectors of oocyte maturation, three sets of experiments were performed. First, follicles were treated with control medium or TGF-beta1 for 2, 6, 12, and 24 h. Second, follicles were treated with different concentrations of TGF-beta1 (0 to 10 ng/ml) for 18 h. Third, follicles were incubated with hCG in the absence or presence of TGF-beta1 for 18 h. At the end of each experiment, total RNA was extracted and reverse transcribed. PCR using primers specific for 20beta-hydroxysteroid dehydrogenase (20beta-HSD) which is involved in DHP production, follicle stimulating hormone receptor (FSHR), luteinizing hormone receptor (LHR), the two forms of membrane progestin receptor: mPR-alpha and mPR-beta, as well as GAPDH (control), were performed.

Results

Treatment with actinomycin D, a blocker of transcription, reduced the inhibitory effect of TGF-beta1 on DHP-induced oocyte maturation, indicating that the inhibitory action of TGF-beta1 is in part due to regulation of gene transcription. Treatment with TGF-beta1 caused a dose and time-dependent decrease in mRNA levels of 20beta-HSD, LHR and mPR-beta in follicles. On the other hand, TGF-beta1 had no effect on mPR-alpha mRNA expression and increased FSHR mRNA levels. Furthermore, hCG upregulated 20beta-HSD, LHR and mPR-beta mRNA levels, but this stimulatory effect was blocked by TGF-beta1.

Conclusion

These findings suggest that TGF-beta1 acts at multiple sites, including LHR, 20beta-HSD and mPR-beta, to inhibit zebrafish oocyte maturation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Massague J: TGF-beta signal transduction. Annu Rev Biochem. 1998, 67: 753-791. 10.1146/annurev.biochem.67.1.753.CrossRefPubMed Massague J: TGF-beta signal transduction. Annu Rev Biochem. 1998, 67: 753-791. 10.1146/annurev.biochem.67.1.753.CrossRefPubMed
2.
go back to reference Peng C: The TGF-beta superfamily and its roles in the human ovary and placenta. J Obstet Gynaecol Can. 2003, 25: 834-844.PubMed Peng C: The TGF-beta superfamily and its roles in the human ovary and placenta. J Obstet Gynaecol Can. 2003, 25: 834-844.PubMed
3.
go back to reference Knight PG, Glister C: Local roles of TGF-beta superfamily members in the control of ovarian follicle development. Anim Reprod Sci. 2003, 78: 165-183. 10.1016/S0378-4320(03)00089-7.CrossRefPubMed Knight PG, Glister C: Local roles of TGF-beta superfamily members in the control of ovarian follicle development. Anim Reprod Sci. 2003, 78: 165-183. 10.1016/S0378-4320(03)00089-7.CrossRefPubMed
4.
go back to reference Ingman WV, Robertson SA: Defining the actions of transforming growth factor beta in reproduction. Bioessays. 2002, 24: 904-914. 10.1002/bies.10155.CrossRefPubMed Ingman WV, Robertson SA: Defining the actions of transforming growth factor beta in reproduction. Bioessays. 2002, 24: 904-914. 10.1002/bies.10155.CrossRefPubMed
5.
go back to reference Hardie LJ, Laing KJ, Daniels GD, Grabowski PS, Cunningham C, Secombes CJ: Isolation of the first piscine transforming growth factor beta gene: analysis reveals tissue specific expression and a potential regulatory sequence in rainbow trout (Oncorhynchus mykiss). Cytokine. 1998, 10: 555-563. 10.1006/cyto.1997.0334.CrossRefPubMed Hardie LJ, Laing KJ, Daniels GD, Grabowski PS, Cunningham C, Secombes CJ: Isolation of the first piscine transforming growth factor beta gene: analysis reveals tissue specific expression and a potential regulatory sequence in rainbow trout (Oncorhynchus mykiss). Cytokine. 1998, 10: 555-563. 10.1006/cyto.1997.0334.CrossRefPubMed
6.
go back to reference Yin Z, Kwang J: Molecular isolation and characterization of carp transforming growth factor ß1 from activated leucocytes. Fish Shellfish Immunol. 2000, 10: 309-318. 10.1006/fsim.1999.0241.CrossRef Yin Z, Kwang J: Molecular isolation and characterization of carp transforming growth factor ß1 from activated leucocytes. Fish Shellfish Immunol. 2000, 10: 309-318. 10.1006/fsim.1999.0241.CrossRef
7.
go back to reference Harms CA, Kennedy-Stoskopf S, Horne WA, Fuller FJ, Tompkins WA: Cloning and sequencing hybrid striped bass (Morone saxatilis x M. chrysops) transforming growth factor-beta (TGF-beta), and development of a reverse transcription quantitative competitive polymerase chain reaction (RT-qcPCR) assay to measure TGF-beta mRNA of teleost fish. Fish Shellfish Immunol. 2000, 10: 61-85. 10.1006/fsim.1999.0230.CrossRefPubMed Harms CA, Kennedy-Stoskopf S, Horne WA, Fuller FJ, Tompkins WA: Cloning and sequencing hybrid striped bass (Morone saxatilis x M. chrysops) transforming growth factor-beta (TGF-beta), and development of a reverse transcription quantitative competitive polymerase chain reaction (RT-qcPCR) assay to measure TGF-beta mRNA of teleost fish. Fish Shellfish Immunol. 2000, 10: 61-85. 10.1006/fsim.1999.0230.CrossRefPubMed
8.
go back to reference Kohli G, Hu S, Clelland E, Di Muccio T, Rothenstein J, Peng C: Cloning of Transforming Growth Factor-ß1 (TGF-ß1) and Its Type II receptor from Zebrafish Ovary and Role of TGF-ß1 in Oocyte Maturation. Endocrinology. 2003, 144: Kohli G, Hu S, Clelland E, Di Muccio T, Rothenstein J, Peng C: Cloning of Transforming Growth Factor-ß1 (TGF-ß1) and Its Type II receptor from Zebrafish Ovary and Role of TGF-ß1 in Oocyte Maturation. Endocrinology. 2003, 144:
9.
go back to reference Calp MK, Matsumoto JA, Van Der Kraak G: Activin and transforming growth factor-beta as local regulators of ovarian steroidogenesis in the goldfish. Gen Comp Endocrinol. 2003, 132: 142-150. 10.1016/S0016-6480(03)00060-1.CrossRefPubMed Calp MK, Matsumoto JA, Van Der Kraak G: Activin and transforming growth factor-beta as local regulators of ovarian steroidogenesis in the goldfish. Gen Comp Endocrinol. 2003, 132: 142-150. 10.1016/S0016-6480(03)00060-1.CrossRefPubMed
10.
go back to reference Nagahama Y, Yoshikuni M, Yamashita M, Tokumoto T, Katsu Y: Regulation of oocyte growth and maturation in fish. Curr Top Dev Biol. 1995, 30: 103-145.CrossRefPubMed Nagahama Y, Yoshikuni M, Yamashita M, Tokumoto T, Katsu Y: Regulation of oocyte growth and maturation in fish. Curr Top Dev Biol. 1995, 30: 103-145.CrossRefPubMed
11.
go back to reference Nagahama Y: 17 alpha,20 beta-dihydroxy-4-pregnen-3-one, a maturation-inducing hormone in fish oocytes: mechanisms of synthesis and action. Steroids. 1997, 62: 190-196. 10.1016/S0039-128X(96)00180-8.CrossRefPubMed Nagahama Y: 17 alpha,20 beta-dihydroxy-4-pregnen-3-one, a maturation-inducing hormone in fish oocytes: mechanisms of synthesis and action. Steroids. 1997, 62: 190-196. 10.1016/S0039-128X(96)00180-8.CrossRefPubMed
12.
go back to reference Kajiura-Kobayashi H, Yoshida N, Sagata N, Yamashita M, Nagahama Y: The Mos/MAPK pathway is involved in metaphase II arrest as a cytostatic factor but is neither necessary nor sufficient for initiating oocyte maturation in goldfish. Dev Genes Evol. 2000, 210: 416-425. 10.1007/s004270000083.CrossRefPubMed Kajiura-Kobayashi H, Yoshida N, Sagata N, Yamashita M, Nagahama Y: The Mos/MAPK pathway is involved in metaphase II arrest as a cytostatic factor but is neither necessary nor sufficient for initiating oocyte maturation in goldfish. Dev Genes Evol. 2000, 210: 416-425. 10.1007/s004270000083.CrossRefPubMed
13.
go back to reference Katsu Y, Yamashita M, Nagahama Y: Translational regulation of cyclin B mRNA by 17alpha,20beta-dihydroxy-4-pregnen-3-one (maturation-inducing hormone) during oocyte maturation in a teleost fish, the goldfish (Carassius auratus). Mol Cell Endocrinol. 1999, 158: 79-85. 10.1016/S0303-7207(99)00177-X.CrossRefPubMed Katsu Y, Yamashita M, Nagahama Y: Translational regulation of cyclin B mRNA by 17alpha,20beta-dihydroxy-4-pregnen-3-one (maturation-inducing hormone) during oocyte maturation in a teleost fish, the goldfish (Carassius auratus). Mol Cell Endocrinol. 1999, 158: 79-85. 10.1016/S0303-7207(99)00177-X.CrossRefPubMed
14.
go back to reference Kondo T, Yanagawa T, Yoshida N, Yamashita M: Introduction of cyclin B induces activation of the maturation-promoting factor and breakdown of germinal vesicle in growing zebrafish oocytes unresponsive to the maturation-inducing hormone. Dev Biol. 1997, 190: 142-152. 10.1006/dbio.1997.8673.CrossRefPubMed Kondo T, Yanagawa T, Yoshida N, Yamashita M: Introduction of cyclin B induces activation of the maturation-promoting factor and breakdown of germinal vesicle in growing zebrafish oocytes unresponsive to the maturation-inducing hormone. Dev Biol. 1997, 190: 142-152. 10.1006/dbio.1997.8673.CrossRefPubMed
15.
go back to reference Kondo T, Kotani T, Yamashita M: Dispersion of cyclin B mRNA aggregation is coupled with translational activation of the mRNA during zebrafish oocyte maturation. Dev Biol. 2001, 229: 421-431. 10.1006/dbio.2000.9990.CrossRefPubMed Kondo T, Kotani T, Yamashita M: Dispersion of cyclin B mRNA aggregation is coupled with translational activation of the mRNA during zebrafish oocyte maturation. Dev Biol. 2001, 229: 421-431. 10.1006/dbio.2000.9990.CrossRefPubMed
16.
go back to reference Zhu Y, Bond J, Thomas P: Identification, classification, and partial characterization of genes in humans and other vertebrates homologous to a fish membrane progestin receptor. Proc Natl Acad Sci U S A. 2003, 100: 2237-2242. 10.1073/pnas.0436133100.PubMedCentralCrossRefPubMed Zhu Y, Bond J, Thomas P: Identification, classification, and partial characterization of genes in humans and other vertebrates homologous to a fish membrane progestin receptor. Proc Natl Acad Sci U S A. 2003, 100: 2237-2242. 10.1073/pnas.0436133100.PubMedCentralCrossRefPubMed
17.
go back to reference Thomas P, Pang Y, Zhu Y, Detweiler C, Doughty K: Multiple rapid progestin actions and progestin membrane receptor subtypes in fish. Steroids. 2004, 69: 567-573. 10.1016/j.steroids.2004.05.004.CrossRefPubMed Thomas P, Pang Y, Zhu Y, Detweiler C, Doughty K: Multiple rapid progestin actions and progestin membrane receptor subtypes in fish. Steroids. 2004, 69: 567-573. 10.1016/j.steroids.2004.05.004.CrossRefPubMed
18.
go back to reference Zhu Y, Rice CD, Pang Y, Pace M, Thomas P: Cloning, expression, and characterization of a membrane progestin receptor and evidence it is an intermediary in meiotic maturation of fish oocytes. Proc Natl Acad Sci U S A. 2003, 100: 2231-2236. 10.1073/pnas.0336132100.PubMedCentralCrossRefPubMed Zhu Y, Rice CD, Pang Y, Pace M, Thomas P: Cloning, expression, and characterization of a membrane progestin receptor and evidence it is an intermediary in meiotic maturation of fish oocytes. Proc Natl Acad Sci U S A. 2003, 100: 2231-2236. 10.1073/pnas.0336132100.PubMedCentralCrossRefPubMed
19.
go back to reference Hammes SR, Niimura S, Kawakami SY, Senthilkumaran B, Sudhakumari CC, Chang XT, Kobayashi T, Oba Y, Guan G, Yoshiura Y, Yoshikuni M, Nagahama Y, Kazeto Y, Adachi S, Yamauchi K: Steroids and oocyte maturation--a new look at an old story. Mol Endocrinol. 2004, 18: 769-775. 10.1210/me.2003-0317.CrossRefPubMed Hammes SR, Niimura S, Kawakami SY, Senthilkumaran B, Sudhakumari CC, Chang XT, Kobayashi T, Oba Y, Guan G, Yoshiura Y, Yoshikuni M, Nagahama Y, Kazeto Y, Adachi S, Yamauchi K: Steroids and oocyte maturation--a new look at an old story. Mol Endocrinol. 2004, 18: 769-775. 10.1210/me.2003-0317.CrossRefPubMed
20.
go back to reference Kazeto Y, Goto-Kazeto R, Thomas P, Trant JM: Molecular characterization of three forms of putative membrane-bound progestin receptors and their tissue-distribution in channel catfish, Ictalurus punctatus. J Mol Endocrinol. 2005, 34: 781-791. 10.1677/jme.1.01721.CrossRefPubMed Kazeto Y, Goto-Kazeto R, Thomas P, Trant JM: Molecular characterization of three forms of putative membrane-bound progestin receptors and their tissue-distribution in channel catfish, Ictalurus punctatus. J Mol Endocrinol. 2005, 34: 781-791. 10.1677/jme.1.01721.CrossRefPubMed
21.
go back to reference Wu T, Patel H, Mukai S, Melino C, Garg R, Ni X, Chang J, Peng C: Activin, inhibin, and follistatin in zebrafish ovary: expression and role in oocyte maturation. Biol Reprod. 2000, 62: 1585-1592.CrossRefPubMed Wu T, Patel H, Mukai S, Melino C, Garg R, Ni X, Chang J, Peng C: Activin, inhibin, and follistatin in zebrafish ovary: expression and role in oocyte maturation. Biol Reprod. 2000, 62: 1585-1592.CrossRefPubMed
22.
go back to reference Pang Y, Ge W: Gonadotropin and activin enhance maturational competence of oocytes in the zebrafish (Danio rerio). Biol Reprod. 2002, 66: 259-265.CrossRefPubMed Pang Y, Ge W: Gonadotropin and activin enhance maturational competence of oocytes in the zebrafish (Danio rerio). Biol Reprod. 2002, 66: 259-265.CrossRefPubMed
23.
go back to reference Pang Y, Ge W: Epidermal Growth factor and TGF-a promote zebrafish oocyte maturation in vitro: potential role of the ovarian activin regulatory system. Endocrinology. 2002, 143: 47-54. 10.1210/en.143.1.47.PubMed Pang Y, Ge W: Epidermal Growth factor and TGF-a promote zebrafish oocyte maturation in vitro: potential role of the ovarian activin regulatory system. Endocrinology. 2002, 143: 47-54. 10.1210/en.143.1.47.PubMed
24.
go back to reference Niimura S, Kawakami SY: Changes in the activities of hydroxysteroid dehydrogenases in mouse oocytes during meiotic maturation. J Reprod Dev. 2003, 49: 451-456. 10.1262/jrd.49.451.CrossRefPubMed Niimura S, Kawakami SY: Changes in the activities of hydroxysteroid dehydrogenases in mouse oocytes during meiotic maturation. J Reprod Dev. 2003, 49: 451-456. 10.1262/jrd.49.451.CrossRefPubMed
25.
go back to reference Kazeto Y, Adachi S, Yamauchi K: 20beta-Hydroxysteroid dehydrogenase of the Japanese eel ovary: its cellular localization and changes in the enzymatic activity during sexual maturation. Gen Comp Endocrinol. 2001, 122: 109-115. 10.1006/gcen.2001.7624.CrossRefPubMed Kazeto Y, Adachi S, Yamauchi K: 20beta-Hydroxysteroid dehydrogenase of the Japanese eel ovary: its cellular localization and changes in the enzymatic activity during sexual maturation. Gen Comp Endocrinol. 2001, 122: 109-115. 10.1006/gcen.2001.7624.CrossRefPubMed
26.
go back to reference Senthilkumaran B, Sudhakumari CC, Chang XT, Kobayashi T, Oba Y, Guan G, Yoshiura Y, Yoshikuni M, Nagahama Y, Kazeto Y, Adachi S, Yamauchi K: Ovarian carbonyl reductase-like 20beta-hydroxysteroid dehydrogenase shows distinct surge in messenger RNA expression during natural and gonadotropin-induced meiotic maturation in nile tilapia. Biol Reprod. 2002, 67: 1080-1086.CrossRefPubMed Senthilkumaran B, Sudhakumari CC, Chang XT, Kobayashi T, Oba Y, Guan G, Yoshiura Y, Yoshikuni M, Nagahama Y, Kazeto Y, Adachi S, Yamauchi K: Ovarian carbonyl reductase-like 20beta-hydroxysteroid dehydrogenase shows distinct surge in messenger RNA expression during natural and gonadotropin-induced meiotic maturation in nile tilapia. Biol Reprod. 2002, 67: 1080-1086.CrossRefPubMed
27.
go back to reference Nagahama Y KHYG: Stimulation of 17 ,20ß-dihydroxy-4-pregnen-3-one production in the granulosa cells of amago salmon, Oncorhynchus rhodurus, by cyclic nucleotides. J Exp Zool. 1985, 236: 371-375. 10.1002/jez.1402360316.CrossRef Nagahama Y KHYG: Stimulation of 17 ,20ß-dihydroxy-4-pregnen-3-one production in the granulosa cells of amago salmon, Oncorhynchus rhodurus, by cyclic nucleotides. J Exp Zool. 1985, 236: 371-375. 10.1002/jez.1402360316.CrossRef
28.
go back to reference Stocco CO, Chedrese J, Deis RP: Luteal expression of cytochrome P450 side-chain cleavage, steroidogenic acute regulatory protein, 3beta-hydroxysteroid dehydrogenase, and 20alpha-hydroxysteroid dehydrogenase genes in late pregnant rats: effect of luteinizing hormone and RU486. Biol Reprod. 2001, 65: 1114-1119.CrossRefPubMed Stocco CO, Chedrese J, Deis RP: Luteal expression of cytochrome P450 side-chain cleavage, steroidogenic acute regulatory protein, 3beta-hydroxysteroid dehydrogenase, and 20alpha-hydroxysteroid dehydrogenase genes in late pregnant rats: effect of luteinizing hormone and RU486. Biol Reprod. 2001, 65: 1114-1119.CrossRefPubMed
29.
go back to reference Vischer HF, Bogerd J: Cloning and functional characterization of a gonadal luteinizing hormone receptor complementary DNA from the African catfish (Clarias gariepinus). Biol Reprod. 2003, 68: 262-271. 10.1095/biolreprod.102.004515.CrossRefPubMed Vischer HF, Bogerd J: Cloning and functional characterization of a gonadal luteinizing hormone receptor complementary DNA from the African catfish (Clarias gariepinus). Biol Reprod. 2003, 68: 262-271. 10.1095/biolreprod.102.004515.CrossRefPubMed
30.
go back to reference Kumar RS, Ijiri S, Trant JM: Molecular biology of the channel catfish gonadotropin receptors: 2. Complementary DNA cloning, functional expression, and seasonal gene expression of the follicle-stimulating hormone receptor. Biol Reprod. 2001, 65: 710-717.CrossRefPubMed Kumar RS, Ijiri S, Trant JM: Molecular biology of the channel catfish gonadotropin receptors: 2. Complementary DNA cloning, functional expression, and seasonal gene expression of the follicle-stimulating hormone receptor. Biol Reprod. 2001, 65: 710-717.CrossRefPubMed
31.
go back to reference Kumar RS, Ijiri S, Trant JM: Molecular biology of channel catfish gonadotropin receptors: 1. Cloning of a functional luteinizing hormone receptor and preovulatory induction of gene expression. Biol Reprod. 2001, 64: 1010-1018.CrossRefPubMed Kumar RS, Ijiri S, Trant JM: Molecular biology of channel catfish gonadotropin receptors: 1. Cloning of a functional luteinizing hormone receptor and preovulatory induction of gene expression. Biol Reprod. 2001, 64: 1010-1018.CrossRefPubMed
32.
go back to reference Bobe J, Maugars G, Nguyen T, Rime H, Jalabert B: Rainbow trout follicular maturational competence acquisition is associated with an increased expression of follicle stimulating hormone receptor and insulin-like growth factor 2 messenger RNAs. Mol Reprod Dev. 2003, 66: 46-53. 10.1002/mrd.10334.CrossRefPubMed Bobe J, Maugars G, Nguyen T, Rime H, Jalabert B: Rainbow trout follicular maturational competence acquisition is associated with an increased expression of follicle stimulating hormone receptor and insulin-like growth factor 2 messenger RNAs. Mol Reprod Dev. 2003, 66: 46-53. 10.1002/mrd.10334.CrossRefPubMed
33.
go back to reference Gitay-Goren H, Kim IC, Miggans ST, Schomberg DW: Transforming growth factor beta modulates gonadotropin receptor expression in porcine and rat granulosa cells differently. Biol Reprod. 1993, 48: 1284-1289.CrossRefPubMed Gitay-Goren H, Kim IC, Miggans ST, Schomberg DW: Transforming growth factor beta modulates gonadotropin receptor expression in porcine and rat granulosa cells differently. Biol Reprod. 1993, 48: 1284-1289.CrossRefPubMed
34.
go back to reference Dunkel L, Tilly JL, Shikone T, Nishimori K, Hsueh AT: Follicle-stimulating hormone receptor expression in the rat ovary: increases during prepubertal development and the regulation by the opposing actions of transforming growth factors and alpha. Biol Reprod. 1994, 50: 940-948.CrossRefPubMed Dunkel L, Tilly JL, Shikone T, Nishimori K, Hsueh AT: Follicle-stimulating hormone receptor expression in the rat ovary: increases during prepubertal development and the regulation by the opposing actions of transforming growth factors and alpha. Biol Reprod. 1994, 50: 940-948.CrossRefPubMed
35.
go back to reference Inoue K, Nakamura K, Abe K, Hirakawa T, Tsuchiya M, Oomori Y, Matsuda H, Miyamoto K, Minegishi T: Mechanisms of action of transforming growth factor beta on the expression of follicle-stimulating hormone receptor messenger ribonucleic acid levels in rat granulosa cells. Biol Reprod. 2003, 69: 1238-1244. 10.1095/biolreprod.102.014753.CrossRefPubMed Inoue K, Nakamura K, Abe K, Hirakawa T, Tsuchiya M, Oomori Y, Matsuda H, Miyamoto K, Minegishi T: Mechanisms of action of transforming growth factor beta on the expression of follicle-stimulating hormone receptor messenger ribonucleic acid levels in rat granulosa cells. Biol Reprod. 2003, 69: 1238-1244. 10.1095/biolreprod.102.014753.CrossRefPubMed
36.
go back to reference Inoue K, Nakamura K, Abe K, Hirakawa T, Tsuchiya M, Matsuda H, Miyamoto K, Minegishi T: Effect of transforming growth factor beta on the expression of luteinizing hormone receptor in cultured rat granulosa cells. Biol Reprod. 2002, 67: 610-615.CrossRefPubMed Inoue K, Nakamura K, Abe K, Hirakawa T, Tsuchiya M, Matsuda H, Miyamoto K, Minegishi T: Effect of transforming growth factor beta on the expression of luteinizing hormone receptor in cultured rat granulosa cells. Biol Reprod. 2002, 67: 610-615.CrossRefPubMed
37.
go back to reference Johnson AL, Bridgham JT, Woods DC: Cellular mechanisms and modulation of activin A- and transforming growth factor beta-mediated differentiation in cultured hen granulosa cells. Biol Reprod. 2004, 71: 1844-1851. 10.1095/biolreprod.104.032573.CrossRefPubMed Johnson AL, Bridgham JT, Woods DC: Cellular mechanisms and modulation of activin A- and transforming growth factor beta-mediated differentiation in cultured hen granulosa cells. Biol Reprod. 2004, 71: 1844-1851. 10.1095/biolreprod.104.032573.CrossRefPubMed
38.
go back to reference Kazeto Y, Goto-Kazeto R, Trant JM: Membrane-bound progestin receptors in channel catfish and zebrafish ovary: changes in gene expression associated with the reproductive cycles and hormonal reagents. Gen Comp Endocrinol. 2005, 142: 204-211. 10.1016/j.ygcen.2005.01.017.CrossRefPubMed Kazeto Y, Goto-Kazeto R, Trant JM: Membrane-bound progestin receptors in channel catfish and zebrafish ovary: changes in gene expression associated with the reproductive cycles and hormonal reagents. Gen Comp Endocrinol. 2005, 142: 204-211. 10.1016/j.ygcen.2005.01.017.CrossRefPubMed
Metadata
Title
Potential targets of transforming growth factor-beta1 during inhibition of oocyte maturation in zebrafish
Authors
Gurneet Kohli
Eric Clelland
Chun Peng
Publication date
01-12-2005
Publisher
BioMed Central
Published in
Reproductive Biology and Endocrinology / Issue 1/2005
Electronic ISSN: 1477-7827
DOI
https://doi.org/10.1186/1477-7827-3-53

Other articles of this Issue 1/2005

Reproductive Biology and Endocrinology 1/2005 Go to the issue