Skip to main content
Top
Published in: Reproductive Biology and Endocrinology 1/2005

Open Access 01-12-2005 | Research

Calcium alginate microencapsulation of ovarian follicles impacts FSH delivery and follicle morphology

Authors: Matthew Heise, Richard Koepsel, Alan J Russell, Elizabeth A McGee

Published in: Reproductive Biology and Endocrinology | Issue 1/2005

Login to get access

Abstract

Background

We have previously shown that suspension culture prevents follicle flattening and maintains three-dimensional follicle architecture better than culture on flat plates. However, many of the follicles cultured in suspension do eventually rupture, as basement membrane integrity is lost and the three-dimensional structure of the follicle is altered. Therefore, the objective of this study is to support three-dimensional follicle architecture during in vitro growth of ovarian follicles through encapsulation in calcium alginate, while maintaining responsiveness to FSH stimulation.

Methods

Preantral follicles (150 – 160 micrometers in diameter) were isolated from the ovaries of juvenile rats and grown in culture tubes or encapsulated in calcium alginate and grown in culture tubes. Previous studies revealed that follicles maintained structural integrity but did not grow as well when encapsulated in calcium alginate. In these studies, we evaluated the effect of calcium alginate on FSH-stimulated follicle growth, survival, and morphology in suspension culture. Follicles were grown under 5 culture conditions: 1) not encapsulated; with FSH in the medium, 2) encapsulated in the absence of FSH, grown in medium without FSH, 3) encapsulated with calcium alginate containing FSH but grown in medium without FSH, 4) encapsulated without FSH but grown in medium containing FSH and 5) encapsulated with calcium alginate containing FSH and in medium containing FSH. To assess growth rates, follicles were cultured for 72 hours and analyzed for follicle size increase and DNA content. Survival analysis for encapsulated and unencapsulated follicles was performed by constructing a Kaplan Meier survival curve of daily observations of intact follicle survival. Three-dimensional architecture was assessed histologically and by analysis of the pattern of connexin 43 expression in the cultured follicles.

Results

In the absence of FSH, follicle diameter increased by only 6.4%. When FSH was included in the alginate bead alone or the media alone, the follicle diameter increased by 13.5% and 19.9% respectively. This was greater than follicles cultured in the absence of FSH (p < 0.05), but less than that of the FSH-treated unencapsulated follicles (p < 0.05). However, when follicles were cultured with FSH included in both the media and the bead, a 32.6% increase in follicle diameter was observed, statistically no different than the growth rate of the unencapsulated follicles grown with FSH.

Conclusion

Microencapsulation supports three-dimensional follicle growth, but may limit access to hormones in the medium resulting in altered development compared to unencapsulated follicles. Inclusion of FSH in the alginate bead restores the follicle growth response to FSH, while also providing a scaffold of support for three-dimensional growth. The application of tissue engineering principles to the problems of follicle culture in vitro may provide advances applicable to fertility preservation in women and endangered species.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hovatta O: Cryopreservation and culture of human ovarian cortical tissue containing early follicles. Eur J Obstet Gynecol Reprod Biol. 2004, S50-54. 10.1016/j.ejogrb.2003.11.012. Suppl 1 Hovatta O: Cryopreservation and culture of human ovarian cortical tissue containing early follicles. Eur J Obstet Gynecol Reprod Biol. 2004, S50-54. 10.1016/j.ejogrb.2003.11.012. Suppl 1
2.
go back to reference Spears N, Boland NI, Murray AA, Gosden RG: Mouse Oocytes Derived From In Vitro Grown Primary Ovarian Follicles are Fertile. Hum Reprod. 1994, 9: 527-532.PubMed Spears N, Boland NI, Murray AA, Gosden RG: Mouse Oocytes Derived From In Vitro Grown Primary Ovarian Follicles are Fertile. Hum Reprod. 1994, 9: 527-532.PubMed
3.
go back to reference Murray AA, Molinek MD, Baker SJ, Kojima FN, Smith MF, Hillier SG, Spears N: Role of Ascorbic Acid in Promoting Follicle Integrity and Survival in Intact Mouse Ovarian Follicles In Vitro. Reproduction. 2001, 121: 89-96. 10.1530/rep.0.1210089.CrossRefPubMed Murray AA, Molinek MD, Baker SJ, Kojima FN, Smith MF, Hillier SG, Spears N: Role of Ascorbic Acid in Promoting Follicle Integrity and Survival in Intact Mouse Ovarian Follicles In Vitro. Reproduction. 2001, 121: 89-96. 10.1530/rep.0.1210089.CrossRefPubMed
4.
go back to reference Rose UM, Hanssen RG, Kloosterboer HJ: Development and characterization of an in vitro ovulation model using mouse ovarian follicles. Biol Reprod. 1999, 61 (2): 503-511.CrossRefPubMed Rose UM, Hanssen RG, Kloosterboer HJ: Development and characterization of an in vitro ovulation model using mouse ovarian follicles. Biol Reprod. 1999, 61 (2): 503-511.CrossRefPubMed
5.
go back to reference Eisenhauer KM, Chun SY, Billig H, Hsueh AJ: Growth hormone suppression of apoptosis in preovulatory rat follicles and partial neutralization by insulin-like growth factor binding protein. Biol Reprod. 1995, 53 (1): 13-20.CrossRefPubMed Eisenhauer KM, Chun SY, Billig H, Hsueh AJ: Growth hormone suppression of apoptosis in preovulatory rat follicles and partial neutralization by insulin-like growth factor binding protein. Biol Reprod. 1995, 53 (1): 13-20.CrossRefPubMed
6.
go back to reference Wycherley G, Downey D, Kane MT, Hynes AC: A novel follicle culture system markedly increases follicle volume, cell number and oestradiol secretion. Reproduction. 2004, 127 (6): 669-677. 10.1530/rep.1.00040.CrossRefPubMed Wycherley G, Downey D, Kane MT, Hynes AC: A novel follicle culture system markedly increases follicle volume, cell number and oestradiol secretion. Reproduction. 2004, 127 (6): 669-677. 10.1530/rep.1.00040.CrossRefPubMed
7.
go back to reference Rowghani NM, Heise MK, McKeel D, McGee EA, Koepsel RR, Russell AJ: Maintenance of morphology and growth of ovarian follicles in suspension culture. Tissue Eng. 2004, 10: 545-552. 10.1089/107632704323061906.CrossRefPubMed Rowghani NM, Heise MK, McKeel D, McGee EA, Koepsel RR, Russell AJ: Maintenance of morphology and growth of ovarian follicles in suspension culture. Tissue Eng. 2004, 10: 545-552. 10.1089/107632704323061906.CrossRefPubMed
8.
go back to reference de Groot M, Schuurs TA, van Schilfgaarde R: Causes of limited survival of microencapsulated pancreatic islet grafts. J Surg Res. 2004, 121: 141-150. 10.1016/j.jss.2004.02.018.CrossRefPubMed de Groot M, Schuurs TA, van Schilfgaarde R: Causes of limited survival of microencapsulated pancreatic islet grafts. J Surg Res. 2004, 121: 141-150. 10.1016/j.jss.2004.02.018.CrossRefPubMed
9.
go back to reference Glaser C, Marti U, Burgi-Saville ME, Ruchti C, Gebauer M, Buchler MW, Gerber H, Burgi U, Peter HJ: Inhibition of iodine organification and regulation of follicular size in rat thyroid tissue in vitro. Endocrine. 1999, 11: 165-170. 10.1385/ENDO:11:2:165.CrossRefPubMed Glaser C, Marti U, Burgi-Saville ME, Ruchti C, Gebauer M, Buchler MW, Gerber H, Burgi U, Peter HJ: Inhibition of iodine organification and regulation of follicular size in rat thyroid tissue in vitro. Endocrine. 1999, 11: 165-170. 10.1385/ENDO:11:2:165.CrossRefPubMed
10.
go back to reference Dulieu C, Poncelet D, Neufeld R: Encapsulation and Immobilization Techniques. Cell Encapsulation Technology and Therapeutics. 1999, 3-17.CrossRef Dulieu C, Poncelet D, Neufeld R: Encapsulation and Immobilization Techniques. Cell Encapsulation Technology and Therapeutics. 1999, 3-17.CrossRef
11.
go back to reference Smidsrod O, Skjak-Braek G: Alginate as Immobilization Matrix for Cells. Trends Biotechnol. 1990, 8 (3): 71-78. 10.1016/0167-7799(90)90139-O.CrossRefPubMed Smidsrod O, Skjak-Braek G: Alginate as Immobilization Matrix for Cells. Trends Biotechnol. 1990, 8 (3): 71-78. 10.1016/0167-7799(90)90139-O.CrossRefPubMed
12.
go back to reference Amsden B, Turner N: Diffusion Characteristics of Calcium Alginate Gels. Biotechnol Bioeng. 1999, 65: 605-610. 10.1002/(SICI)1097-0290(19991205)65:5<605::AID-BIT14>3.0.CO;2-C.CrossRefPubMed Amsden B, Turner N: Diffusion Characteristics of Calcium Alginate Gels. Biotechnol Bioeng. 1999, 65: 605-610. 10.1002/(SICI)1097-0290(19991205)65:5<605::AID-BIT14>3.0.CO;2-C.CrossRefPubMed
13.
go back to reference Martinsen A, Skjak-Braek G, Smidsrod O: Alginate as Immobilization Material: I. Correlation Between Chemical and Physical Properties of Alginate Gel Beads. Biotechnol Bioeng. 1989, 33: 79-83. 10.1002/bit.260330111.CrossRefPubMed Martinsen A, Skjak-Braek G, Smidsrod O: Alginate as Immobilization Material: I. Correlation Between Chemical and Physical Properties of Alginate Gel Beads. Biotechnol Bioeng. 1989, 33: 79-83. 10.1002/bit.260330111.CrossRefPubMed
14.
go back to reference Martinsen A: Alginate as Immobilization Material: III. Diffusional Properties. Biotechnol Bioeng. 1992, 39: 186-195. 10.1002/bit.260390210.CrossRefPubMed Martinsen A: Alginate as Immobilization Material: III. Diffusional Properties. Biotechnol Bioeng. 1992, 39: 186-195. 10.1002/bit.260390210.CrossRefPubMed
15.
go back to reference Zimmermann U: Biocompatible Encapsulation Materials: Fundamentals and Application. 1999, Birkhäuser, Boston, Basel, Berli: Cell Encapsulation Technology and Therapeutics, 40-52. Zimmermann U: Biocompatible Encapsulation Materials: Fundamentals and Application. 1999, Birkhäuser, Boston, Basel, Berli: Cell Encapsulation Technology and Therapeutics, 40-52.
16.
go back to reference Yang H, Wright JR: Calcium Alginate. 1999, Birkhäuser, Boston, Basel, Berli: Cell Encapsulation Technology and Therapeutics, 79-89. Yang H, Wright JR: Calcium Alginate. 1999, Birkhäuser, Boston, Basel, Berli: Cell Encapsulation Technology and Therapeutics, 79-89.
17.
go back to reference Tanaka H, Matsumura M, Veliky IA: Diffusion Characteristics of Substrates in Ca-Alginate Gel Beads. Biotechnol Bioeng. 1984, 26: 53-58. 10.1002/bit.260260111.CrossRefPubMed Tanaka H, Matsumura M, Veliky IA: Diffusion Characteristics of Substrates in Ca-Alginate Gel Beads. Biotechnol Bioeng. 1984, 26: 53-58. 10.1002/bit.260260111.CrossRefPubMed
18.
go back to reference Palagiano A, Nesti E, Pace L: FSH: urinary and recombinant. Eur J Obstet Gynecol Reprod Biol. 2004, S30-33. 10.1016/j.ejogrb.2004.01.023. Suppl 1 Palagiano A, Nesti E, Pace L: FSH: urinary and recombinant. Eur J Obstet Gynecol Reprod Biol. 2004, S30-33. 10.1016/j.ejogrb.2004.01.023. Suppl 1
19.
go back to reference McGee EA, Spears N, Minami S, Hsu S, Chun S, Billig H, Hsueh AJW: Preantral Ovarian Follicles in Serum-Free Culture: Suppression of Apoptosis after Activation of the Cyclic Guanosine 3',5'-Monophosphate Pathway and Stimulation of Growth and Differentiation by Follicle Stimulating Hormone. Endocrinology. 1997, 138: 2417-2424. 10.1210/en.138.6.2417.PubMed McGee EA, Spears N, Minami S, Hsu S, Chun S, Billig H, Hsueh AJW: Preantral Ovarian Follicles in Serum-Free Culture: Suppression of Apoptosis after Activation of the Cyclic Guanosine 3',5'-Monophosphate Pathway and Stimulation of Growth and Differentiation by Follicle Stimulating Hormone. Endocrinology. 1997, 138: 2417-2424. 10.1210/en.138.6.2417.PubMed
20.
go back to reference Spears N, Murray AA, Allison V, Boland NI, Gosden RG: Role of Gonadotrophins and Ovarian Steroids in the Development of Mouse Follicles In Vitro. J Reprod Fert. 1998, 113: 19-26.CrossRef Spears N, Murray AA, Allison V, Boland NI, Gosden RG: Role of Gonadotrophins and Ovarian Steroids in the Development of Mouse Follicles In Vitro. J Reprod Fert. 1998, 113: 19-26.CrossRef
21.
go back to reference Cortvrindt R, Smitz J, Van Steirteghem AC: In Vitro Maturation, Fertilization and Embryo Development of Immature Oocytes From Early Preantral Follicles From Prepubertal Mice in a Simplified Culture System. Hum Reprod. 1996, 11: 2656-2666.CrossRefPubMed Cortvrindt R, Smitz J, Van Steirteghem AC: In Vitro Maturation, Fertilization and Embryo Development of Immature Oocytes From Early Preantral Follicles From Prepubertal Mice in a Simplified Culture System. Hum Reprod. 1996, 11: 2656-2666.CrossRefPubMed
22.
go back to reference Johnson ML, Redmer DA, Reynolds LP, Bilski JJ, Grazul-Bilska AT: Gap junctional intercellular communication of bovine granulosa and thecal cells from antral follicles: effects of luteinizing hormone and follicle-stimulating hormone. Endocrine. 2002, 18: 261-270. 10.1385/ENDO:18:3:261.CrossRefPubMed Johnson ML, Redmer DA, Reynolds LP, Bilski JJ, Grazul-Bilska AT: Gap junctional intercellular communication of bovine granulosa and thecal cells from antral follicles: effects of luteinizing hormone and follicle-stimulating hormone. Endocrine. 2002, 18: 261-270. 10.1385/ENDO:18:3:261.CrossRefPubMed
23.
go back to reference Sommersberg B, Bulling A, Salzer U, Frohlich U, Garfield RE, Amsterdam A, Mayerhofer A: Gap junction communication and connexin 43 gene expression in a rat granulosa cell line: regulation by follicle-stimulating hormone. Biol Reprod. 2000, 63: 1661-1668.CrossRefPubMed Sommersberg B, Bulling A, Salzer U, Frohlich U, Garfield RE, Amsterdam A, Mayerhofer A: Gap junction communication and connexin 43 gene expression in a rat granulosa cell line: regulation by follicle-stimulating hormone. Biol Reprod. 2000, 63: 1661-1668.CrossRefPubMed
24.
go back to reference Juneja SC, Barr KJ, Enders GC, Kidder GM: Defects in the germ line and gonads of mice lacking connexin 43. Biol Reprod. 1999, 60: 1263-1270.CrossRefPubMed Juneja SC, Barr KJ, Enders GC, Kidder GM: Defects in the germ line and gonads of mice lacking connexin 43. Biol Reprod. 1999, 60: 1263-1270.CrossRefPubMed
25.
go back to reference DePaola N, Davies PF, Pritchard WF, Florez L, Harbeck N, Polacek DC: Spatial and temporal regulation of gap junction connexin 43 in vascular endothelial cells exposed to controlled disturbed flows in vitro. Proc Natl Acad Sci U S A. 1999, 16: 3154-159. 10.1073/pnas.96.6.3154.CrossRef DePaola N, Davies PF, Pritchard WF, Florez L, Harbeck N, Polacek DC: Spatial and temporal regulation of gap junction connexin 43 in vascular endothelial cells exposed to controlled disturbed flows in vitro. Proc Natl Acad Sci U S A. 1999, 16: 3154-159. 10.1073/pnas.96.6.3154.CrossRef
26.
go back to reference Torrance C, Telfer E, Gosden RG: Quantitative study of the development of isolated mouse pre-antral follicles in collagen gel culture. J Reprod Fertil. 1989, 87 (1): 367-374.CrossRefPubMed Torrance C, Telfer E, Gosden RG: Quantitative study of the development of isolated mouse pre-antral follicles in collagen gel culture. J Reprod Fertil. 1989, 87 (1): 367-374.CrossRefPubMed
27.
go back to reference Loret de Mola JR, Barnhart K, Kopf GS, Heyner S, Garside W, Coutifaris CB: Comparison of two culture systems for the in-vitro growth and maturation of mouse preantral follicles. Clin Exp Obstet Gynecol. 2004, 31 (1): 15-19.PubMed Loret de Mola JR, Barnhart K, Kopf GS, Heyner S, Garside W, Coutifaris CB: Comparison of two culture systems for the in-vitro growth and maturation of mouse preantral follicles. Clin Exp Obstet Gynecol. 2004, 31 (1): 15-19.PubMed
28.
go back to reference Kreeger PK, Woodruff TK, Shea LD: Murine granulosa cell morphology and function are regulated by a synthetic Arg-Gly-Asp matrix. Mol Cell Endocrinol. 205 (1–2): 1-10. 2003 Jul 31 Kreeger PK, Woodruff TK, Shea LD: Murine granulosa cell morphology and function are regulated by a synthetic Arg-Gly-Asp matrix. Mol Cell Endocrinol. 205 (1–2): 1-10. 2003 Jul 31
Metadata
Title
Calcium alginate microencapsulation of ovarian follicles impacts FSH delivery and follicle morphology
Authors
Matthew Heise
Richard Koepsel
Alan J Russell
Elizabeth A McGee
Publication date
01-12-2005
Publisher
BioMed Central
Published in
Reproductive Biology and Endocrinology / Issue 1/2005
Electronic ISSN: 1477-7827
DOI
https://doi.org/10.1186/1477-7827-3-47

Other articles of this Issue 1/2005

Reproductive Biology and Endocrinology 1/2005 Go to the issue