Skip to main content
Top
Published in: Comparative Hepatology 1/2007

Open Access 01-12-2007 | Research

Glucocorticoids activate TGF-β induced PAI-1 and CTGF expression in rat hepatocytes

Authors: Lucia Wickert, Nicolas Chatain, Karin Kruschinsky, Axel M Gressner

Published in: Comparative Hepatology | Issue 1/2007

Login to get access

Abstract

Background

In addition to the activation of hepatic stellate cells TGF-β govern apoptosis and growth control of hepatocytes in liver injury. In non-parenchymal cells, TGF-β induces plasminogen activator inhibitor 1 (PAI-1) and connective tissue growth factor (CTGF) expression, which are involved in extra cellular matrix formation. Both genes were also regulated by glucocorticoids, which in certain cases showed antagonistic effects to the TGF-β-Smad 3 pathway. The purpose of our work was to investigate the influence of TGF-β and dexamethasone on PAI-1 and CTGF expression and secretion in primary hepatocytes.

Results

By examining PAI-1 and CTGF mRNA and protein expression in cell lysates and cell-conditioned media under the influence of TGF-β and dexamethasone, we analysed signalling pathways controlling their expression. TGF-β and dexamethasone significantly co-induce PAI-1 and CTGF protein expression. On the other hand, we showed that TGF-β diminished a glucocorticoid receptor dependent luciferase reporter signal in Hep-G2. Inhibition of Erk downstream activation decreased TGF-β induced CTGF and PAI-1 expression to a basal level. PAI-1 was directly secreted by hepatocytes, whereas secretion of CTGF was retarded.

Conclusion

The data provide evidence that beside the TGF-β-Smad 3 pathway CTGF and PAI-1 expression is additionally dependent on Erk activity in hepatocytes giving new insights into regulation of the profibrogenic proteins.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hollenberg SM, Weinberger C, Ong ES, Cerelli G, Oro A, Lebo R, Thompson EB, Rosenfeld MG, Evans RM: Primary structure and expression of a functional human glucocorticoid receptor cDNA. Nature. 1985, 318: 635-641. 10.1038/318635a0.CrossRefPubMed Hollenberg SM, Weinberger C, Ong ES, Cerelli G, Oro A, Lebo R, Thompson EB, Rosenfeld MG, Evans RM: Primary structure and expression of a functional human glucocorticoid receptor cDNA. Nature. 1985, 318: 635-641. 10.1038/318635a0.CrossRefPubMed
2.
go back to reference Berger SA, Cole TJ, Schmid W, Schütz G: Molecular genetic analysis of glucocorticoid and mineralocorticoid signalling in development and physiological processes. Steroids. 1996, 61: 236-239. 10.1016/0039-128X(96)00029-3.CrossRefPubMed Berger SA, Cole TJ, Schmid W, Schütz G: Molecular genetic analysis of glucocorticoid and mineralocorticoid signalling in development and physiological processes. Steroids. 1996, 61: 236-239. 10.1016/0039-128X(96)00029-3.CrossRefPubMed
3.
go back to reference McKay LI, Cidlowski JA: Molecular control of immune/inflammatory responses: interactions between nuclear factor-kappa B and steroid receptor-signaling pathways. Endocr Rev. 1999, 20: 435-459. 10.1210/er.20.4.435.PubMed McKay LI, Cidlowski JA: Molecular control of immune/inflammatory responses: interactions between nuclear factor-kappa B and steroid receptor-signaling pathways. Endocr Rev. 1999, 20: 435-459. 10.1210/er.20.4.435.PubMed
4.
go back to reference Czaja AJ, Carpenter HA: Decreased fibrosis during corticosteroid therapy of autoimmune hepatitis. J Hepatol. 2004, 40: 646-652. 10.1016/j.jhep.2004.01.009.CrossRefPubMed Czaja AJ, Carpenter HA: Decreased fibrosis during corticosteroid therapy of autoimmune hepatitis. J Hepatol. 2004, 40: 646-652. 10.1016/j.jhep.2004.01.009.CrossRefPubMed
5.
go back to reference Gressner AM, Lahme B, Mannherz H-G, Polzar B: TGF-β-mediated hepatocellular apoptosis by rat and human hepatoma cells and primary rat hepatocytes. J Hepatol. 1997, 26: 1079-1092. 10.1016/S0168-8278(97)80117-1.CrossRefPubMed Gressner AM, Lahme B, Mannherz H-G, Polzar B: TGF-β-mediated hepatocellular apoptosis by rat and human hepatoma cells and primary rat hepatocytes. J Hepatol. 1997, 26: 1079-1092. 10.1016/S0168-8278(97)80117-1.CrossRefPubMed
6.
go back to reference Friedman SL: Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem. 2000, 275: 2247-2250. 10.1074/jbc.275.4.2247.CrossRefPubMed Friedman SL: Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem. 2000, 275: 2247-2250. 10.1074/jbc.275.4.2247.CrossRefPubMed
7.
go back to reference Gressner AM, Weiskirchen R, Breitkopf K, Dooley S: Roles of TGF-beta in hepatic fibrosis. Front Biosci. 2002, 7: d793-d807.CrossRefPubMed Gressner AM, Weiskirchen R, Breitkopf K, Dooley S: Roles of TGF-beta in hepatic fibrosis. Front Biosci. 2002, 7: d793-d807.CrossRefPubMed
8.
go back to reference Piek E, Heldin CH, ten Dijke P: Specificity, diversity, and regulation in TGF-beta superfamily signaling. FASEB J. 1999, 13: 2105-2124.PubMed Piek E, Heldin CH, ten Dijke P: Specificity, diversity, and regulation in TGF-beta superfamily signaling. FASEB J. 1999, 13: 2105-2124.PubMed
9.
go back to reference Irigoyen JP, Munoz-Canoves P, Montero L, Koziczak M, Nagamine Y: The plasminogen activator system: biology and regulation. Cell Mol Life Sci. 1999, 56: 104-132. 10.1007/PL00000615.CrossRefPubMed Irigoyen JP, Munoz-Canoves P, Montero L, Koziczak M, Nagamine Y: The plasminogen activator system: biology and regulation. Cell Mol Life Sci. 1999, 56: 104-132. 10.1007/PL00000615.CrossRefPubMed
10.
go back to reference Bruzdzinski CJ, Riordan-Johnson M, Nordby EC, Suter SM, Gelehrter TD: Isolation and characterization of the rat plasminogen activator inhibitor-1 gene. J Biol Chem. 1990, 265: 2078-2085.PubMed Bruzdzinski CJ, Riordan-Johnson M, Nordby EC, Suter SM, Gelehrter TD: Isolation and characterization of the rat plasminogen activator inhibitor-1 gene. J Biol Chem. 1990, 265: 2078-2085.PubMed
11.
go back to reference Leyland H, Gentry J, Arthur MJ, Benyon RC: The plasminogen-activating system in hepatic stellate cells. Hepatology. 1996, 24: 1172-1178. 10.1002/hep.510240532.CrossRefPubMed Leyland H, Gentry J, Arthur MJ, Benyon RC: The plasminogen-activating system in hepatic stellate cells. Hepatology. 1996, 24: 1172-1178. 10.1002/hep.510240532.CrossRefPubMed
12.
go back to reference Paradis V, Dargere D, Bonvoust F, Vidaud M, Segarini P, Bedossa P: Effects and regulation of connective tissue growth factor on hepatic stellate cells. Lab Invest. 2002, 82: 767-774.CrossRefPubMed Paradis V, Dargere D, Bonvoust F, Vidaud M, Segarini P, Bedossa P: Effects and regulation of connective tissue growth factor on hepatic stellate cells. Lab Invest. 2002, 82: 767-774.CrossRefPubMed
13.
go back to reference Williams EJ, Gaca MD, Brigstock DR, Arthur MJ, Benyon RC: Increased expression of connective tissue growth factor in fibrotic human liver and in activated hepatic stellate cells. J Hepatol. 2000, 32: 754-761. 10.1016/S0168-8278(00)80244-5.CrossRefPubMed Williams EJ, Gaca MD, Brigstock DR, Arthur MJ, Benyon RC: Increased expression of connective tissue growth factor in fibrotic human liver and in activated hepatic stellate cells. J Hepatol. 2000, 32: 754-761. 10.1016/S0168-8278(00)80244-5.CrossRefPubMed
14.
go back to reference Grotendorst GR, Okochi H, Hayashi N: A novel transforming growth factor beta response element controls the expression of the connective tissue growth factor gene. Cell Growth Differ. 1996, 7: 469-480.PubMed Grotendorst GR, Okochi H, Hayashi N: A novel transforming growth factor beta response element controls the expression of the connective tissue growth factor gene. Cell Growth Differ. 1996, 7: 469-480.PubMed
15.
go back to reference Leask A, Holmes A, Black CM, Abraham DJ: Connective tissue growth factor gene regulation. Requirements for its induction by transforming growth factor-beta 2 in fibroblasts. J Biol Chem. 2003, 278: 13008-13015. 10.1074/jbc.M210366200.CrossRefPubMed Leask A, Holmes A, Black CM, Abraham DJ: Connective tissue growth factor gene regulation. Requirements for its induction by transforming growth factor-beta 2 in fibroblasts. J Biol Chem. 2003, 278: 13008-13015. 10.1074/jbc.M210366200.CrossRefPubMed
16.
go back to reference Chen Y, Blom IE, Sa S, Goldschmeding R, Abraham DJ, Leask A: CTGF expression in mesangial cells: involvement of SMADs, MAP kinase, and PKC. Kidney Int. 2002, 62: 1149-1159. 10.1111/j.1523-1755.2002.kid567.x.CrossRefPubMed Chen Y, Blom IE, Sa S, Goldschmeding R, Abraham DJ, Leask A: CTGF expression in mesangial cells: involvement of SMADs, MAP kinase, and PKC. Kidney Int. 2002, 62: 1149-1159. 10.1111/j.1523-1755.2002.kid567.x.CrossRefPubMed
17.
go back to reference Li G, Xie Q, Shi Y, Li D, Zhang M, Jiang S, Zhou H, Lu H, Jin Y: Inhibition of connective tissue growth factor by siRNA prevents liver fibrosis in rats. J Gene Med. 2006, 8: 889-900. 10.1002/jgm.894.CrossRefPubMed Li G, Xie Q, Shi Y, Li D, Zhang M, Jiang S, Zhou H, Lu H, Jin Y: Inhibition of connective tissue growth factor by siRNA prevents liver fibrosis in rats. J Gene Med. 2006, 8: 889-900. 10.1002/jgm.894.CrossRefPubMed
18.
go back to reference Van Zonneveld AJ, Curriden SA, Loskutoff DJ: Type 1 plasminogen activator inhibitor gene: functional analysis and glucocorticoid regulation of its promoter. Proc Natl Acad Sci USA. 1988, 85: 5525-5529. 10.1073/pnas.85.15.5525.PubMedCentralCrossRefPubMed Van Zonneveld AJ, Curriden SA, Loskutoff DJ: Type 1 plasminogen activator inhibitor gene: functional analysis and glucocorticoid regulation of its promoter. Proc Natl Acad Sci USA. 1988, 85: 5525-5529. 10.1073/pnas.85.15.5525.PubMedCentralCrossRefPubMed
19.
go back to reference Dammeier J, Beer HD, Brauchle M, Werner S: Dexamethasone is a novel potent inducer of connective tissue growth factor expression. Implications for glucocorticoid therapy. J Biol Chem. 1998, 273: 18185-18190. 10.1074/jbc.273.29.18185.CrossRefPubMed Dammeier J, Beer HD, Brauchle M, Werner S: Dexamethasone is a novel potent inducer of connective tissue growth factor expression. Implications for glucocorticoid therapy. J Biol Chem. 1998, 273: 18185-18190. 10.1074/jbc.273.29.18185.CrossRefPubMed
20.
go back to reference Okada H, Kikuta T, Inoue T, Kanno Y, Ban S, Sugaya T, Takigawa M, Suzuki H: Dexamethasone induces connective tissue growth factor expression in renal tubular epithelial cells in a mouse strain-specific manner. Am J Pathol. 2006, 168: 737-747. 10.2353/ajpath.2006.050656.PubMedCentralCrossRefPubMed Okada H, Kikuta T, Inoue T, Kanno Y, Ban S, Sugaya T, Takigawa M, Suzuki H: Dexamethasone induces connective tissue growth factor expression in renal tubular epithelial cells in a mouse strain-specific manner. Am J Pathol. 2006, 168: 737-747. 10.2353/ajpath.2006.050656.PubMedCentralCrossRefPubMed
21.
go back to reference Bolkenius U, Hahn D, Gressner AM, Breitkopf K, Dooley S, Wickert L: Glucocorticoids decrease the bioavailability of TGF-β which leads to a reduced TGF-β Signaling in Hepatic Stellate Cells. Biochem Biophys Res Commun. 2004, 325: 1264-1270. 10.1016/j.bbrc.2004.10.164.CrossRefPubMed Bolkenius U, Hahn D, Gressner AM, Breitkopf K, Dooley S, Wickert L: Glucocorticoids decrease the bioavailability of TGF-β which leads to a reduced TGF-β Signaling in Hepatic Stellate Cells. Biochem Biophys Res Commun. 2004, 325: 1264-1270. 10.1016/j.bbrc.2004.10.164.CrossRefPubMed
22.
go back to reference Lindert S, Wickert L, Sawitza I, Wiercinska E, Gressner AM, Dooley S, Breitkopf K: Transdifferentiation-dependent expression of alpha SMA in hepatic stellate cells does not involve TGF-β pathways leading to coinduction of collagen type I and thrombospondin -2. Matrix Biology. 2005, 24: 198-207. 10.1016/j.matbio.2005.03.003.CrossRefPubMed Lindert S, Wickert L, Sawitza I, Wiercinska E, Gressner AM, Dooley S, Breitkopf K: Transdifferentiation-dependent expression of alpha SMA in hepatic stellate cells does not involve TGF-β pathways leading to coinduction of collagen type I and thrombospondin -2. Matrix Biology. 2005, 24: 198-207. 10.1016/j.matbio.2005.03.003.CrossRefPubMed
23.
go back to reference Kutz SM, Higgins CE, Samarakoon R, Higgins SP, Allen RR, Qi L, Higgins PJ: TGF-beta 1-induced PAI-1 expression is E box/USF-dependent and requires EGFR signaling. Exp Cell Res. 2006, 312: 1093-10105. 10.1016/j.yexcr.2005.12.027.CrossRefPubMed Kutz SM, Higgins CE, Samarakoon R, Higgins SP, Allen RR, Qi L, Higgins PJ: TGF-beta 1-induced PAI-1 expression is E box/USF-dependent and requires EGFR signaling. Exp Cell Res. 2006, 312: 1093-10105. 10.1016/j.yexcr.2005.12.027.CrossRefPubMed
24.
go back to reference Engel ME, McDonnell MA, Law BK, Moses HL: Interdependent SMAD and JNK signaling in transforming growth factor-beta-mediated transcription. J Biol Chem. 1999, 274: 37413-3720. 10.1074/jbc.274.52.37413.CrossRefPubMed Engel ME, McDonnell MA, Law BK, Moses HL: Interdependent SMAD and JNK signaling in transforming growth factor-beta-mediated transcription. J Biol Chem. 1999, 274: 37413-3720. 10.1074/jbc.274.52.37413.CrossRefPubMed
25.
go back to reference Kubota S, Moritani NH, Kawaki H, Mimura H, Minato M, Takigawa M: Transcriptional induction of connective tissue growth factor/hypertrophic chondrocyte-specific 24 gene by dexamethasone in human chondrocytic cells. Bone. 2003, 33: 694-702. 10.1016/S8756-3282(03)00227-8.CrossRefPubMed Kubota S, Moritani NH, Kawaki H, Mimura H, Minato M, Takigawa M: Transcriptional induction of connective tissue growth factor/hypertrophic chondrocyte-specific 24 gene by dexamethasone in human chondrocytic cells. Bone. 2003, 33: 694-702. 10.1016/S8756-3282(03)00227-8.CrossRefPubMed
26.
go back to reference Dennler S, Itoh S, Vivien D, ten Dijke P, Huet S, Gauthier JM: Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J. 1998, 17: 3091-3100. 10.1093/emboj/17.11.3091.PubMedCentralCrossRefPubMed Dennler S, Itoh S, Vivien D, ten Dijke P, Huet S, Gauthier JM: Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J. 1998, 17: 3091-3100. 10.1093/emboj/17.11.3091.PubMedCentralCrossRefPubMed
27.
go back to reference Song CZ, Siok TE, Gelehrter TD: Smad4/DPC4 and Smad3 mediate transforming growth factor-beta (TGF-beta) signaling through direct binding to a novel TGF-beta-responsive element in the human plasminogen activator inhibitor-1 promotor. J Biol Chem. 1998, 273: 29287-29290. 10.1074/jbc.273.45.29287.CrossRefPubMed Song CZ, Siok TE, Gelehrter TD: Smad4/DPC4 and Smad3 mediate transforming growth factor-beta (TGF-beta) signaling through direct binding to a novel TGF-beta-responsive element in the human plasminogen activator inhibitor-1 promotor. J Biol Chem. 1998, 273: 29287-29290. 10.1074/jbc.273.45.29287.CrossRefPubMed
28.
go back to reference Abe M, Harpel JG, Metz CN, Nunes I, Loskutoff DJ, Rifkin DB: An assay for transforming growth factor-beta using cells transfected with a plasminogen activator inhibitor-1 promoter-luciferase construct. Anal Biochem. 1994, 216: 276-284. 10.1006/abio.1994.1042.CrossRefPubMed Abe M, Harpel JG, Metz CN, Nunes I, Loskutoff DJ, Rifkin DB: An assay for transforming growth factor-beta using cells transfected with a plasminogen activator inhibitor-1 promoter-luciferase construct. Anal Biochem. 1994, 216: 276-284. 10.1006/abio.1994.1042.CrossRefPubMed
29.
go back to reference Bruzdzinski CJ, Johnson MR, Goble CA, Winograd SS, Gelehrter TD: Mechanism of glucocorticoid induction of the rat plasminogen activator inhibitor-1 gene in HTC rat hepatoma cells: identification of cis-acting regulatory elements. Mol Endocrinol. 1993, 7: 1169-1177. 10.1210/me.7.9.1169.PubMed Bruzdzinski CJ, Johnson MR, Goble CA, Winograd SS, Gelehrter TD: Mechanism of glucocorticoid induction of the rat plasminogen activator inhibitor-1 gene in HTC rat hepatoma cells: identification of cis-acting regulatory elements. Mol Endocrinol. 1993, 7: 1169-1177. 10.1210/me.7.9.1169.PubMed
30.
go back to reference Guo B, Inoki K, Isono M, Mori H, Kanasaki K, Sugimoto T, Akiba S, Sato T, Yang B, Kikkawa R, Kashiwagi A, Haneda M, Koya D: MAPK/AP-1-dependent regulation of PAI-1 gene expression by TGF-beta in rat mesangial cells. Kidney Int. 2005, 68: 972-984. 10.1111/j.1523-1755.2005.00491.x.CrossRefPubMed Guo B, Inoki K, Isono M, Mori H, Kanasaki K, Sugimoto T, Akiba S, Sato T, Yang B, Kikkawa R, Kashiwagi A, Haneda M, Koya D: MAPK/AP-1-dependent regulation of PAI-1 gene expression by TGF-beta in rat mesangial cells. Kidney Int. 2005, 68: 972-984. 10.1111/j.1523-1755.2005.00491.x.CrossRefPubMed
31.
go back to reference Knittel T, Fellmer P, Ramadori G: Gene expression and regulation of plasminogen activator inhibitor type I in hepatic stellate cells of rat liver. Gastroenterology. 1996, 111: 745-754. 10.1053/gast.1996.v111.pm8780581.CrossRefPubMed Knittel T, Fellmer P, Ramadori G: Gene expression and regulation of plasminogen activator inhibitor type I in hepatic stellate cells of rat liver. Gastroenterology. 1996, 111: 745-754. 10.1053/gast.1996.v111.pm8780581.CrossRefPubMed
32.
go back to reference Mars WM, Kim TH, Stolz DB, Liu ML, Michalopoulos GK: Presence of urokinase in serum-free primary rat hepatocyte cultures and its role in activating hepatocyte growth factor. Cancer Res. 1996, 56: 2837-2843.PubMed Mars WM, Kim TH, Stolz DB, Liu ML, Michalopoulos GK: Presence of urokinase in serum-free primary rat hepatocyte cultures and its role in activating hepatocyte growth factor. Cancer Res. 1996, 56: 2837-2843.PubMed
33.
go back to reference Ma Y, Ryu JS, Dulay A, Segal M, Guller S: Regulation of plasminogen activator inhibitor (PAI)-1 expression in a human trophoblast cell line by glucocorticoid (GC) and transforming growth factor (TGF)-beta. Placenta. 2002, 23: 727-734.CrossRefPubMed Ma Y, Ryu JS, Dulay A, Segal M, Guller S: Regulation of plasminogen activator inhibitor (PAI)-1 expression in a human trophoblast cell line by glucocorticoid (GC) and transforming growth factor (TGF)-beta. Placenta. 2002, 23: 727-734.CrossRefPubMed
34.
go back to reference Herrlich P: Cross-talk between glucocorticoid receptor and AP-1. Oncogene. 2001, 20: 2465-2475. 10.1038/sj.onc.1204388.CrossRefPubMed Herrlich P: Cross-talk between glucocorticoid receptor and AP-1. Oncogene. 2001, 20: 2465-2475. 10.1038/sj.onc.1204388.CrossRefPubMed
35.
go back to reference Periyasamy S, Sanchez ER: Antagonism of glucocorticoid receptor transactivity and cell growth inhibition by transforming growth factor-beta through AP-1-mediated transcriptional repression. Int J Biochem Cell Biol. 2002, 34: 1571-1585. 10.1016/S1357-2725(02)00057-2.CrossRefPubMed Periyasamy S, Sanchez ER: Antagonism of glucocorticoid receptor transactivity and cell growth inhibition by transforming growth factor-beta through AP-1-mediated transcriptional repression. Int J Biochem Cell Biol. 2002, 34: 1571-1585. 10.1016/S1357-2725(02)00057-2.CrossRefPubMed
36.
go back to reference Zhang LP, Takahara T, Yata Y, Furui K, Jin B, Kawada N, Watanabe A: Increased expression of plasminogen activator and plasminogen activator inhibitor during liver fibrogenesis of rats: role of stellate cells. J Hepatol. 1999, 31: 703-711. 10.1016/S0168-8278(99)80351-1.CrossRefPubMed Zhang LP, Takahara T, Yata Y, Furui K, Jin B, Kawada N, Watanabe A: Increased expression of plasminogen activator and plasminogen activator inhibitor during liver fibrogenesis of rats: role of stellate cells. J Hepatol. 1999, 31: 703-711. 10.1016/S0168-8278(99)80351-1.CrossRefPubMed
37.
go back to reference Song CZ, Tian X, Gelehrter TD: Glucocorticoid receptor inhibits transforming growth factor-β signaling by directly targeting the transcriptional activation function of Smad3. Proc Nat Acad Sci USA. 1999, 96: 11776-11781. 10.1073/pnas.96.21.11776.PubMedCentralCrossRefPubMed Song CZ, Tian X, Gelehrter TD: Glucocorticoid receptor inhibits transforming growth factor-β signaling by directly targeting the transcriptional activation function of Smad3. Proc Nat Acad Sci USA. 1999, 96: 11776-11781. 10.1073/pnas.96.21.11776.PubMedCentralCrossRefPubMed
38.
go back to reference Li G, Wang S, Gelehrter TD: Identification of glucocorticoid receptor domains involved in transrepression of transforming growth factor-beta action. J Biol Chem. 2003, 278: 41779-41788. 10.1074/jbc.M305350200.CrossRefPubMed Li G, Wang S, Gelehrter TD: Identification of glucocorticoid receptor domains involved in transrepression of transforming growth factor-beta action. J Biol Chem. 2003, 278: 41779-41788. 10.1074/jbc.M305350200.CrossRefPubMed
39.
go back to reference Seglen PO: Isolation of hepatozytes by collagenase perfusion. Methods in Toxicology. Edited by: Tyson CA. 1993, New York:Academic Press, 231-243. Seglen PO: Isolation of hepatozytes by collagenase perfusion. Methods in Toxicology. Edited by: Tyson CA. 1993, New York:Academic Press, 231-243.
40.
go back to reference Knowles BB, Howe CC, Aden DP: Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science. 1980, 209: 497-499. 10.1126/science.6248960.CrossRefPubMed Knowles BB, Howe CC, Aden DP: Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science. 1980, 209: 497-499. 10.1126/science.6248960.CrossRefPubMed
Metadata
Title
Glucocorticoids activate TGF-β induced PAI-1 and CTGF expression in rat hepatocytes
Authors
Lucia Wickert
Nicolas Chatain
Karin Kruschinsky
Axel M Gressner
Publication date
01-12-2007
Publisher
BioMed Central
Published in
Comparative Hepatology / Issue 1/2007
Electronic ISSN: 1476-5926
DOI
https://doi.org/10.1186/1476-5926-6-5

Other articles of this Issue 1/2007

Comparative Hepatology 1/2007 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine