Skip to main content
Top
Published in: Molecular Cancer 1/2008

Open Access 01-12-2008 | Research

Differential effects of energy stress on AMPK phosphorylation and apoptosis in experimental brain tumor and normal brain

Authors: Purna Mukherjee, Tiernan J Mulrooney, Jeremy Marsh, Derek Blair, Thomas C Chiles, Thomas N Seyfried

Published in: Molecular Cancer | Issue 1/2008

Login to get access

Abstract

Background

AMP-activated protein kinase (AMPK) is a known physiological cellular energy sensor and becomes phosphorylated at Thr-172 in response to changes in cellular ATP levels. Activated AMPK acts as either an inducer or suppressor of apoptosis depending on the severity of energy stress and the presence or absence of certain functional tumor suppressor genes.

Results

Here we show that energy stress differentially affects AMPK phosphorylation and cell-death in brain tumor tissue and in tissue from contra-lateral normal brain. We compared TSC2 deficient CT-2A mouse astrocytoma cells with syngeneic normal astrocytes that were grown under identical condition in vitro. Energy stress induced by glucose withdrawal or addition of 2-deoxyglucose caused more ATP depletion, AMPK phosphorylation and apoptosis in CT-2A cells than in the normal astrocytes. Under normal energy conditions pharmacological stimulation of AMPK caused apoptosis in CT-2A cells but not in astrocytes. TSC2 siRNA treated astrocytes are hypersensitive to apoptosis induced by energy stress compared to control cells. AMPK phosphorylation and apoptosis were also greater in the CT-2A tumor tissue than in the normal brain tissue following implementation of dietary energy restriction. Inefficient mTOR and TSC2 signaling, downstream of AMPK, is responsible for CT-2A cell-death, while functional LKB1 may protect normal brain cells under energy stress.

Conclusion

Together these data demonstrates that AMPK phosphorylation induces apoptosis in mouse astrocytoma but may protect normal brain cells from apoptosis under similar energy stress condition. Therefore, using activator of AMPK along with glycolysis inhibitor could be a potential therapeutic approach for TSC2 deficient human malignant astrocytoma.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hardie DG, Scott JW, Pan DA, Hudson ER: Management of cellular energy by the AMP-activated protein kinase system. FEBS Lett. 2003, 546: 113-20. 10.1016/S0014-5793(03)00560-XCrossRefPubMed Hardie DG, Scott JW, Pan DA, Hudson ER: Management of cellular energy by the AMP-activated protein kinase system. FEBS Lett. 2003, 546: 113-20. 10.1016/S0014-5793(03)00560-XCrossRefPubMed
2.
go back to reference Kemp BE, Stapleton D, Campbell DJ, Chen ZP, Murthy S, Walter M, Gupta A, Adams JJ, Katsis F, van Denderen B, Jennings IG, Iseli T, Michell BJ, Witters LA: AMP-activated protein kinase, super metabolic regulator. Biochem Soc Trans. 2003, 31: 162-8.CrossRefPubMed Kemp BE, Stapleton D, Campbell DJ, Chen ZP, Murthy S, Walter M, Gupta A, Adams JJ, Katsis F, van Denderen B, Jennings IG, Iseli T, Michell BJ, Witters LA: AMP-activated protein kinase, super metabolic regulator. Biochem Soc Trans. 2003, 31: 162-8.CrossRefPubMed
3.
go back to reference Hawley SA, Davison M, Woods A, Davies SP, Beri RK, Carling D, Hardie DG: Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J Biol Chem. 1996, 271: 27879-87. 10.1074/jbc.271.44.27879CrossRefPubMed Hawley SA, Davison M, Woods A, Davies SP, Beri RK, Carling D, Hardie DG: Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J Biol Chem. 1996, 271: 27879-87. 10.1074/jbc.271.44.27879CrossRefPubMed
4.
go back to reference Hamilton SR, O'Donnell JB, Hammet A, Stapleton D, Habinowski SA, Means AR, Kemp BE, Witters LA: AMP-activated protein kinase kinase: detection with recombinant AMPK alpha1 subunit. Biochem Biophys Res Commun. 2002, 293: 892-8. 10.1016/S0006-291X(02)00312-1CrossRefPubMed Hamilton SR, O'Donnell JB, Hammet A, Stapleton D, Habinowski SA, Means AR, Kemp BE, Witters LA: AMP-activated protein kinase kinase: detection with recombinant AMPK alpha1 subunit. Biochem Biophys Res Commun. 2002, 293: 892-8. 10.1016/S0006-291X(02)00312-1CrossRefPubMed
5.
go back to reference Woods A, Vertommen D, Neumann D, Turk R, Bayliss J, Schlattner U, Wallimann T, Carling D, Rider MH: Identification of phosphorylation sites in AMP-activated protein kinase (AMPK) for upstream AMPK kinases and study of their roles by site-directed mutagenesis. J Biol Chem. 2003, 278: 28434-42. 10.1074/jbc.M303946200CrossRefPubMed Woods A, Vertommen D, Neumann D, Turk R, Bayliss J, Schlattner U, Wallimann T, Carling D, Rider MH: Identification of phosphorylation sites in AMP-activated protein kinase (AMPK) for upstream AMPK kinases and study of their roles by site-directed mutagenesis. J Biol Chem. 2003, 278: 28434-42. 10.1074/jbc.M303946200CrossRefPubMed
6.
go back to reference Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA, Cantley LC: The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci USA. 2004, 101: 3329-35. 10.1073/pnas.0308061100PubMedCentralCrossRefPubMed Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA, Cantley LC: The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci USA. 2004, 101: 3329-35. 10.1073/pnas.0308061100PubMedCentralCrossRefPubMed
7.
go back to reference Saitoh M, Nagai K, Nakagawa K, Yamamura T, Yamamoto S, Nishizaki T: Adenosine induces apoptosis in the human gastric cancer cells via an intrinsic pathway relevant to activation of AMP-activated protein kinase. Biochem Pharmacol. 2004, 67: 2005-11. 10.1016/j.bcp.2004.01.020CrossRefPubMed Saitoh M, Nagai K, Nakagawa K, Yamamura T, Yamamoto S, Nishizaki T: Adenosine induces apoptosis in the human gastric cancer cells via an intrinsic pathway relevant to activation of AMP-activated protein kinase. Biochem Pharmacol. 2004, 67: 2005-11. 10.1016/j.bcp.2004.01.020CrossRefPubMed
8.
go back to reference Li J, Jiang P, Robinson M, Lawrence TS, Sun Y: AMPK-beta1 subunit is a p53-independent stress responsive protein that inhibits tumor cell growth upon forced expression. Carcinogenesis. 2003, 24: 827-34. 10.1093/carcin/bgg032CrossRefPubMed Li J, Jiang P, Robinson M, Lawrence TS, Sun Y: AMPK-beta1 subunit is a p53-independent stress responsive protein that inhibits tumor cell growth upon forced expression. Carcinogenesis. 2003, 24: 827-34. 10.1093/carcin/bgg032CrossRefPubMed
9.
go back to reference Xiang X, Saha AK, Wen R, Ruderman NB, Luo Z: AMP-activated protein kinase activators can inhibit the growth of prostate cancer cells by multiple mechanisms. Biochem Biophys Res Commun. 2004, 321: 161-7. 10.1016/j.bbrc.2004.06.133CrossRefPubMed Xiang X, Saha AK, Wen R, Ruderman NB, Luo Z: AMP-activated protein kinase activators can inhibit the growth of prostate cancer cells by multiple mechanisms. Biochem Biophys Res Commun. 2004, 321: 161-7. 10.1016/j.bbrc.2004.06.133CrossRefPubMed
10.
go back to reference Blazquez C, Geelen MJ, Velasco G, Guzman M: The AMP-activated protein kinase prevents ceramide synthesis de novo and apoptosis in astrocytes. FEBS Lett. 2001, 489: 149-53. 10.1016/S0014-5793(01)02089-0CrossRefPubMed Blazquez C, Geelen MJ, Velasco G, Guzman M: The AMP-activated protein kinase prevents ceramide synthesis de novo and apoptosis in astrocytes. FEBS Lett. 2001, 489: 149-53. 10.1016/S0014-5793(01)02089-0CrossRefPubMed
11.
go back to reference Stefanelli C, Stanic I, Bonavita F, Flamigni F, Pignatti C, Guarnieri C, Caldarera CM: Inhibition of glucocorticoid-induced apoptosis with 5-aminoimidazole-4-carboxamide ribonucleoside, a cell-permeable activator of AMP-activated protein kinase. Biochem Biophys Res Commun. 1998, 243: 821-6. 10.1006/bbrc.1998.8154CrossRefPubMed Stefanelli C, Stanic I, Bonavita F, Flamigni F, Pignatti C, Guarnieri C, Caldarera CM: Inhibition of glucocorticoid-induced apoptosis with 5-aminoimidazole-4-carboxamide ribonucleoside, a cell-permeable activator of AMP-activated protein kinase. Biochem Biophys Res Commun. 1998, 243: 821-6. 10.1006/bbrc.1998.8154CrossRefPubMed
12.
go back to reference Durante P, Gueuning MA, Darville MI, Hue L, Rousseau GG: Apoptosis induced by growth factor withdrawal in fibroblasts overproducing fructose 2, 6-bisphosphate. FEBS Lett. 1999, 448: 239-43. 10.1016/S0014-5793(99)00387-7CrossRefPubMed Durante P, Gueuning MA, Darville MI, Hue L, Rousseau GG: Apoptosis induced by growth factor withdrawal in fibroblasts overproducing fructose 2, 6-bisphosphate. FEBS Lett. 1999, 448: 239-43. 10.1016/S0014-5793(99)00387-7CrossRefPubMed
13.
go back to reference Kefas BA, Heimberg H, Vaulont S, Meisse D, Hue L, Pipeleers D, Casteele Van de M: AICA-riboside induces apoptosis of pancreatic beta cells through stimulation of AMP-activated protein kinase. Diabetologia. 2003, 46: 250-4.PubMed Kefas BA, Heimberg H, Vaulont S, Meisse D, Hue L, Pipeleers D, Casteele Van de M: AICA-riboside induces apoptosis of pancreatic beta cells through stimulation of AMP-activated protein kinase. Diabetologia. 2003, 46: 250-4.PubMed
14.
go back to reference Kefas BA, Cai Y, Ling Z, Heimberg H, Hue L, Pipeleers D, Casteele Van de M: AMP-activated protein kinase can induce apoptosis of insulin-producing MIN6 cells through stimulation of c-Jun-N-terminal kinase. J Mol Endocrinol. 2003, 30: 151-61. 10.1677/jme.0.0300151CrossRefPubMed Kefas BA, Cai Y, Ling Z, Heimberg H, Hue L, Pipeleers D, Casteele Van de M: AMP-activated protein kinase can induce apoptosis of insulin-producing MIN6 cells through stimulation of c-Jun-N-terminal kinase. J Mol Endocrinol. 2003, 30: 151-61. 10.1677/jme.0.0300151CrossRefPubMed
15.
go back to reference Dagon Y, Avraham Y, Berry EM: AMPK activation regulates apoptosis, adipogenesis, and lipolysis by eIF2alpha in adipocytes. Biochem Biophys Res Commun. 2006, 340: 43-7.CrossRefPubMed Dagon Y, Avraham Y, Berry EM: AMPK activation regulates apoptosis, adipogenesis, and lipolysis by eIF2alpha in adipocytes. Biochem Biophys Res Commun. 2006, 340: 43-7.CrossRefPubMed
16.
go back to reference Dagon Y, Avraham Y, Magen I, Gertler A, Ben-Hur T, Berry EM: Nutritional status, cognition, and survival: a new role for leptin and AMP kinase. J Biol Chem. 2005, 280: 42142-8. 10.1074/jbc.M507607200CrossRefPubMed Dagon Y, Avraham Y, Magen I, Gertler A, Ben-Hur T, Berry EM: Nutritional status, cognition, and survival: a new role for leptin and AMP kinase. J Biol Chem. 2005, 280: 42142-8. 10.1074/jbc.M507607200CrossRefPubMed
17.
go back to reference Meisse D, Casteele Van de M, Beauloye C, Hainault I, Kefas BA, Rider MH, Foufelle F, Hue L: Sustained activation of AMP-activated protein kinase induces c-Jun N-terminal kinase activation and apoptosis in liver cells. FEBS Lett. 2002, 526: 38-42. 10.1016/S0014-5793(02)03110-1CrossRefPubMed Meisse D, Casteele Van de M, Beauloye C, Hainault I, Kefas BA, Rider MH, Foufelle F, Hue L: Sustained activation of AMP-activated protein kinase induces c-Jun N-terminal kinase activation and apoptosis in liver cells. FEBS Lett. 2002, 526: 38-42. 10.1016/S0014-5793(02)03110-1CrossRefPubMed
18.
go back to reference Boudeau J, Sapkota G, Alessi DR: LKB1, a protein kinase regulating cell proliferation and polarity. FEBS Lett. 2003, 546: 159-65. 10.1016/S0014-5793(03)00642-2CrossRefPubMed Boudeau J, Sapkota G, Alessi DR: LKB1, a protein kinase regulating cell proliferation and polarity. FEBS Lett. 2003, 546: 159-65. 10.1016/S0014-5793(03)00642-2CrossRefPubMed
19.
go back to reference Bardeesy N, Sinha M, Hezel AF, Signoretti S, Hathaway NA, Sharpless NE, Loda M, Carrasco DR, DePinho RA: Loss of the Lkb1 tumour suppressor provokes intestinal polyposis but resistance to transformation. Nature. 2002, 419: 162-7. 10.1038/nature01045CrossRefPubMed Bardeesy N, Sinha M, Hezel AF, Signoretti S, Hathaway NA, Sharpless NE, Loda M, Carrasco DR, DePinho RA: Loss of the Lkb1 tumour suppressor provokes intestinal polyposis but resistance to transformation. Nature. 2002, 419: 162-7. 10.1038/nature01045CrossRefPubMed
20.
go back to reference Miyoshi H, Nakau M, Ishikawa TO, Seldin MF, Oshima M, Taketo MM: Gastrointestinal hamartomatous polyposis in Lkb1 heterozygous knockout mice. Cancer Res. 2002, 62: 2261-6.PubMed Miyoshi H, Nakau M, Ishikawa TO, Seldin MF, Oshima M, Taketo MM: Gastrointestinal hamartomatous polyposis in Lkb1 heterozygous knockout mice. Cancer Res. 2002, 62: 2261-6.PubMed
21.
go back to reference Moore P: Connecting LKB1 and AMPK links metabolism with cancer. Journal of Biology. 2003, 2: 24-10.1186/1475-4924-2-24. 10.1186/1475-4924-2-24PubMedCentralCrossRef Moore P: Connecting LKB1 and AMPK links metabolism with cancer. Journal of Biology. 2003, 2: 24-10.1186/1475-4924-2-24. 10.1186/1475-4924-2-24PubMedCentralCrossRef
22.
go back to reference Hawley SA, Boudeau J, Reid JL, Mustard KJ, Udd L, Makela TP, Alessi DR, Hardie DG: Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol. 2003, 2: 28- 10.1186/1475-4924-2-28PubMedCentralCrossRefPubMed Hawley SA, Boudeau J, Reid JL, Mustard KJ, Udd L, Makela TP, Alessi DR, Hardie DG: Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol. 2003, 2: 28- 10.1186/1475-4924-2-28PubMedCentralCrossRefPubMed
23.
go back to reference Williamson B, Coniglio JG: The effects of pyridoxine deficiency and of caloric restriction on lipids in the developing rat brain. J Neurochem. 1971, 18: 267-76. 10.1111/j.1471-4159.1971.tb00565.xCrossRefPubMed Williamson B, Coniglio JG: The effects of pyridoxine deficiency and of caloric restriction on lipids in the developing rat brain. J Neurochem. 1971, 18: 267-76. 10.1111/j.1471-4159.1971.tb00565.xCrossRefPubMed
24.
go back to reference Hurley RL, Anderson KA, Franzone JM, Kemp BE, Means AR, Witters LA: The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J Biol Chem. 2005, 280: 29060-6. 10.1074/jbc.M503824200CrossRefPubMed Hurley RL, Anderson KA, Franzone JM, Kemp BE, Means AR, Witters LA: The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J Biol Chem. 2005, 280: 29060-6. 10.1074/jbc.M503824200CrossRefPubMed
25.
go back to reference Woods A, Dickerson K, Heath R, Hong SP, Momcilovic M, Johnstone SR, Carlson M, Carling D: Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab. 2005, 2: 21-33. 10.1016/j.cmet.2005.06.005CrossRefPubMed Woods A, Dickerson K, Heath R, Hong SP, Momcilovic M, Johnstone SR, Carlson M, Carling D: Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab. 2005, 2: 21-33. 10.1016/j.cmet.2005.06.005CrossRefPubMed
26.
go back to reference Inoki K, Zhu T, Guan KL: TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003, 115: 577-90. 10.1016/S0092-8674(03)00929-2CrossRefPubMed Inoki K, Zhu T, Guan KL: TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003, 115: 577-90. 10.1016/S0092-8674(03)00929-2CrossRefPubMed
27.
go back to reference Shaw RJ, Bardeesy N, Manning BD, Lopez L, Kosmatka M, DePinho RA, Cantley LC: The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell. 2004, 6: 91-9. 10.1016/j.ccr.2004.06.007CrossRefPubMed Shaw RJ, Bardeesy N, Manning BD, Lopez L, Kosmatka M, DePinho RA, Cantley LC: The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell. 2004, 6: 91-9. 10.1016/j.ccr.2004.06.007CrossRefPubMed
28.
go back to reference Kwiatkowski DJ, Zhang H, Bandura JL, Heiberger KM, Glogauer M, el-Hashemite N, Onda H: A mouse model of TSC1 reveals sex-dependent lethality from liver hemangiomas, and up-regulation of p70S6 kinase activity in Tsc1 null cells. Hum Mol Genet. 2002, 11: 525-34. 10.1093/hmg/11.5.525CrossRefPubMed Kwiatkowski DJ, Zhang H, Bandura JL, Heiberger KM, Glogauer M, el-Hashemite N, Onda H: A mouse model of TSC1 reveals sex-dependent lethality from liver hemangiomas, and up-regulation of p70S6 kinase activity in Tsc1 null cells. Hum Mol Genet. 2002, 11: 525-34. 10.1093/hmg/11.5.525CrossRefPubMed
29.
go back to reference Ramaswamy S, Nakamura N, Vazquez F, Batt DB, Perera S, Roberts TM, Sellers WR: Regulation of G1 progression by the PTEN tumor suppressor protein is linked to inhibition of the phosphatidylinositol 3-kinase/Akt pathway. Proc Natl Acad Sci USA. 1999, 96: 2110-5. 10.1073/pnas.96.5.2110PubMedCentralCrossRefPubMed Ramaswamy S, Nakamura N, Vazquez F, Batt DB, Perera S, Roberts TM, Sellers WR: Regulation of G1 progression by the PTEN tumor suppressor protein is linked to inhibition of the phosphatidylinositol 3-kinase/Akt pathway. Proc Natl Acad Sci USA. 1999, 96: 2110-5. 10.1073/pnas.96.5.2110PubMedCentralCrossRefPubMed
30.
go back to reference Neshat MS, Mellinghoff IK, Tran C, Stiles B, Thomas G, Petersen R, Frost P, Gibbons JJ, Wu H, Sawyers CL: Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc Natl Acad Sci USA. 2001, 98: 10314-9. 10.1073/pnas.171076798PubMedCentralCrossRefPubMed Neshat MS, Mellinghoff IK, Tran C, Stiles B, Thomas G, Petersen R, Frost P, Gibbons JJ, Wu H, Sawyers CL: Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc Natl Acad Sci USA. 2001, 98: 10314-9. 10.1073/pnas.171076798PubMedCentralCrossRefPubMed
31.
go back to reference Podsypanina K, Lee RT, Politis C, Hennessy I, Crane A, Puc J, Neshat M, Wang H, Yang L, Gibbons J, Frost P, Dreisbach V, Blenis J, Gaciong Z, Fisher P, Sawyers C, Hedrick-Ellenson L, Parsons R: An inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in Pten+/- mice. Proc Natl Acad Sci USA. 2001, 98: 10320-5. 10.1073/pnas.171060098PubMedCentralCrossRefPubMed Podsypanina K, Lee RT, Politis C, Hennessy I, Crane A, Puc J, Neshat M, Wang H, Yang L, Gibbons J, Frost P, Dreisbach V, Blenis J, Gaciong Z, Fisher P, Sawyers C, Hedrick-Ellenson L, Parsons R: An inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in Pten+/- mice. Proc Natl Acad Sci USA. 2001, 98: 10320-5. 10.1073/pnas.171060098PubMedCentralCrossRefPubMed
32.
go back to reference Seyfried TN, Mukherjee P: Targeting energy metabolism in brain cancer: review and hypothesis. Nutr Metab (Lond). 2005, 2: 30- 10.1186/1743-7075-2-30CrossRef Seyfried TN, Mukherjee P: Targeting energy metabolism in brain cancer: review and hypothesis. Nutr Metab (Lond). 2005, 2: 30- 10.1186/1743-7075-2-30CrossRef
33.
go back to reference Davies SP, Carling D, Hardie DG: Tissue distribution of the AMP-activated protein kinase, and lack of activation by cyclic-AMP-dependent protein kinase, studied using a specific and sensitive peptide assay. Eur J Biochem. 1989, 186: 123-8. 10.1111/j.1432-1033.1989.tb15185.xCrossRefPubMed Davies SP, Carling D, Hardie DG: Tissue distribution of the AMP-activated protein kinase, and lack of activation by cyclic-AMP-dependent protein kinase, studied using a specific and sensitive peptide assay. Eur J Biochem. 1989, 186: 123-8. 10.1111/j.1432-1033.1989.tb15185.xCrossRefPubMed
34.
go back to reference Russell RR, Li J, Coven DL, Pypaert M, Zechner C, Palmeri M, Giordano FJ, Mu J, Birnbaum MJ, Young LH: AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury. J Clin Invest. 2004, 114: 495-503.PubMedCentralCrossRefPubMed Russell RR, Li J, Coven DL, Pypaert M, Zechner C, Palmeri M, Giordano FJ, Mu J, Birnbaum MJ, Young LH: AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury. J Clin Invest. 2004, 114: 495-503.PubMedCentralCrossRefPubMed
35.
go back to reference Nishino Y, Miura T, Miki T, Sakamoto J, Nakamura Y, Ikeda Y, Kobayashi H, Shimamoto K: Ischemic preconditioning activates AMPK in a PKC-dependent manner and induces GLUT4 up-regulation in the late phase of cardioprotection. Cardiovasc Res. 2004, 61: 610-9. 10.1016/j.cardiores.2003.10.022CrossRefPubMed Nishino Y, Miura T, Miki T, Sakamoto J, Nakamura Y, Ikeda Y, Kobayashi H, Shimamoto K: Ischemic preconditioning activates AMPK in a PKC-dependent manner and induces GLUT4 up-regulation in the late phase of cardioprotection. Cardiovasc Res. 2004, 61: 610-9. 10.1016/j.cardiores.2003.10.022CrossRefPubMed
36.
go back to reference Woods A, Johnstone SR, Dickerson K, Leiper FC, Fryer LG, Neumann D, Schlattner U, Wallimann T, Carlson M, Carling D: LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol. 2003, 13: 2004-8. 10.1016/j.cub.2003.10.031CrossRefPubMed Woods A, Johnstone SR, Dickerson K, Leiper FC, Fryer LG, Neumann D, Schlattner U, Wallimann T, Carlson M, Carling D: LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol. 2003, 13: 2004-8. 10.1016/j.cub.2003.10.031CrossRefPubMed
37.
go back to reference Rattan R, Giri S, Singh AK, Singh I: 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside inhibits cancer cell proliferation in vitro and in vivo via AMP-activated protein kinase. J Biol Chem. 2005, 280: 39582-93. 10.1074/jbc.M507443200CrossRefPubMed Rattan R, Giri S, Singh AK, Singh I: 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside inhibits cancer cell proliferation in vitro and in vivo via AMP-activated protein kinase. J Biol Chem. 2005, 280: 39582-93. 10.1074/jbc.M507443200CrossRefPubMed
38.
go back to reference Schmidt EV: The role of c-myc in cellular growth control. Oncogene. 1999, 18: 2988-96. 10.1038/sj.onc.1202751CrossRefPubMed Schmidt EV: The role of c-myc in cellular growth control. Oncogene. 1999, 18: 2988-96. 10.1038/sj.onc.1202751CrossRefPubMed
39.
go back to reference Horman S, Browne G, Krause U, Patel J, Vertommen D, Bertrand L, Lavoinne A, Hue L, Proud C, Rider M: Activation of AMP-activated protein kinase leads to the phosphorylation of elongation factor 2 and an inhibition of protein synthesis. Curr Biol. 2002, 12: 1419-23. 10.1016/S0960-9822(02)01077-1CrossRefPubMed Horman S, Browne G, Krause U, Patel J, Vertommen D, Bertrand L, Lavoinne A, Hue L, Proud C, Rider M: Activation of AMP-activated protein kinase leads to the phosphorylation of elongation factor 2 and an inhibition of protein synthesis. Curr Biol. 2002, 12: 1419-23. 10.1016/S0960-9822(02)01077-1CrossRefPubMed
40.
go back to reference Kimura N, Tokunaga C, Dalal S, Richardson C, Yoshino K, Hara K, Kemp BE, Witters LA, Mimura O, Yonezawa K: A possible linkage between AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) signalling pathway. Genes Cells. 2003, 8: 65-79. 10.1046/j.1365-2443.2003.00615.xCrossRefPubMed Kimura N, Tokunaga C, Dalal S, Richardson C, Yoshino K, Hara K, Kemp BE, Witters LA, Mimura O, Yonezawa K: A possible linkage between AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) signalling pathway. Genes Cells. 2003, 8: 65-79. 10.1046/j.1365-2443.2003.00615.xCrossRefPubMed
41.
go back to reference Krause U, Bertrand L, Hue L: Control of p70 ribosomal protein S6 kinase and acetyl-CoA carboxylase by AMP-activated protein kinase and protein phosphatases in isolated hepatocytes. Eur J Biochem. 2002, 269: 3751-9. 10.1046/j.1432-1033.2002.03074.xCrossRefPubMed Krause U, Bertrand L, Hue L: Control of p70 ribosomal protein S6 kinase and acetyl-CoA carboxylase by AMP-activated protein kinase and protein phosphatases in isolated hepatocytes. Eur J Biochem. 2002, 269: 3751-9. 10.1046/j.1432-1033.2002.03074.xCrossRefPubMed
42.
go back to reference Fingar DC, Richardson CJ, Tee AR, Cheatham L, Tsou C, Blenis J: mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E. Mol Cell Biol. 2004, 24: 200-16. 10.1128/MCB.24.1.200-216.2004PubMedCentralCrossRefPubMed Fingar DC, Richardson CJ, Tee AR, Cheatham L, Tsou C, Blenis J: mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E. Mol Cell Biol. 2004, 24: 200-16. 10.1128/MCB.24.1.200-216.2004PubMedCentralCrossRefPubMed
43.
go back to reference Cheng SW, Fryer LG, Carling D, Shepherd PR: Thr2446 is a novel mammalian target of rapamycin (mTOR) phosphorylation site regulated by nutrient status. J Biol Chem. 2004, 279: 15719-22. 10.1074/jbc.C300534200CrossRefPubMed Cheng SW, Fryer LG, Carling D, Shepherd PR: Thr2446 is a novel mammalian target of rapamycin (mTOR) phosphorylation site regulated by nutrient status. J Biol Chem. 2004, 279: 15719-22. 10.1074/jbc.C300534200CrossRefPubMed
44.
go back to reference Inoki K, Li Y, Zhu T, Wu J, Guan KL: TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol. 2002, 4: 648-57. 10.1038/ncb839CrossRefPubMed Inoki K, Li Y, Zhu T, Wu J, Guan KL: TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol. 2002, 4: 648-57. 10.1038/ncb839CrossRefPubMed
45.
go back to reference Goncharova EA, Goncharov DA, Eszterhas A, Hunter DS, Glassberg MK, Yeung RS, Walker CL, Noonan D, Kwiatkowski DJ, Chou MM, Panettieri RA, Krymskaya VP: Tuberin regulates p70 S6 kinase activation and ribosomal protein S6 phosphorylation. A role for the TSC2 tumor suppressor gene in pulmonary lymphangioleiomyomatosis (LAM). J Biol Chem. 2002, 277: 30958-67. 10.1074/jbc.M202678200CrossRefPubMed Goncharova EA, Goncharov DA, Eszterhas A, Hunter DS, Glassberg MK, Yeung RS, Walker CL, Noonan D, Kwiatkowski DJ, Chou MM, Panettieri RA, Krymskaya VP: Tuberin regulates p70 S6 kinase activation and ribosomal protein S6 phosphorylation. A role for the TSC2 tumor suppressor gene in pulmonary lymphangioleiomyomatosis (LAM). J Biol Chem. 2002, 277: 30958-67. 10.1074/jbc.M202678200CrossRefPubMed
46.
go back to reference Almeida A, Moncada S, Bolanos JP: Nitric oxide switches on glycolysis through the AMP protein kinase and 6-phosphofructo-2-kinase pathway. Nat Cell Biol. 2004, 6: 45-51. 10.1038/ncb1080CrossRefPubMed Almeida A, Moncada S, Bolanos JP: Nitric oxide switches on glycolysis through the AMP protein kinase and 6-phosphofructo-2-kinase pathway. Nat Cell Biol. 2004, 6: 45-51. 10.1038/ncb1080CrossRefPubMed
47.
go back to reference Almeida A, Almeida J, Bolanos JP, Moncada S: Different responses of astrocytes and neurons to nitric oxide: the role of glycolytically generated ATP in astrocyte protection. Proc Natl Acad Sci USA. 2001, 98: 15294-9. 10.1073/pnas.261560998PubMedCentralCrossRefPubMed Almeida A, Almeida J, Bolanos JP, Moncada S: Different responses of astrocytes and neurons to nitric oxide: the role of glycolytically generated ATP in astrocyte protection. Proc Natl Acad Sci USA. 2001, 98: 15294-9. 10.1073/pnas.261560998PubMedCentralCrossRefPubMed
48.
go back to reference Wu M, Neilson A, Swift AL, Moran R, Tamagnine J, Parslow D, Armistead S, Lemire K, Orrell J, Teich J, Chomicz S, Ferrick DA: Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am J Physiol Cell Physiol. 2007, 292: C125-36. 10.1152/ajpcell.00247.2006CrossRefPubMed Wu M, Neilson A, Swift AL, Moran R, Tamagnine J, Parslow D, Armistead S, Lemire K, Orrell J, Teich J, Chomicz S, Ferrick DA: Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am J Physiol Cell Physiol. 2007, 292: C125-36. 10.1152/ajpcell.00247.2006CrossRefPubMed
49.
go back to reference Mukherjee P, Abate LE, Seyfried TN: Antiangiogenic and proapoptotic effects of dietary restriction on experimental mouse and human brain tumors. Clin Cancer Res. 2004, 10: 5622-9. 10.1158/1078-0432.CCR-04-0308CrossRefPubMed Mukherjee P, Abate LE, Seyfried TN: Antiangiogenic and proapoptotic effects of dietary restriction on experimental mouse and human brain tumors. Clin Cancer Res. 2004, 10: 5622-9. 10.1158/1078-0432.CCR-04-0308CrossRefPubMed
50.
go back to reference Seyfried TN, El-Abbadi M, Roy ML: Ganglioside distribution in murine neural tumors. Mol Chem Neuropathol. 1992, 17: 147-167.CrossRefPubMed Seyfried TN, El-Abbadi M, Roy ML: Ganglioside distribution in murine neural tumors. Mol Chem Neuropathol. 1992, 17: 147-167.CrossRefPubMed
51.
go back to reference Flavin HJ, Wieraszko A, Seyfried TN: Enhanced aspartate release from hippocampal slices of epileptic (El) mice. J Neurochem. 1991, 56: 1007-1011. 10.1111/j.1471-4159.1991.tb02021.xCrossRefPubMed Flavin HJ, Wieraszko A, Seyfried TN: Enhanced aspartate release from hippocampal slices of epileptic (El) mice. J Neurochem. 1991, 56: 1007-1011. 10.1111/j.1471-4159.1991.tb02021.xCrossRefPubMed
52.
go back to reference Zimmerman HM, Arnold H: Experimental brain tumors: I. tumors produced with methylcholanthrene. Cancer Res. 1941, 1: 919-938. Zimmerman HM, Arnold H: Experimental brain tumors: I. tumors produced with methylcholanthrene. Cancer Res. 1941, 1: 919-938.
53.
go back to reference Ranes MK, El-Abbadi M, Manfredi MG, Mukherjee P, Platt FM, Seyfried TN: N -butyldeoxynojirimycin reduces growth and ganglioside content of experimental mouse brain tumours. Br J Cancer. 2001, 84: 1107-14. 10.1054/bjoc.2000.1713PubMedCentralCrossRefPubMed Ranes MK, El-Abbadi M, Manfredi MG, Mukherjee P, Platt FM, Seyfried TN: N -butyldeoxynojirimycin reduces growth and ganglioside content of experimental mouse brain tumours. Br J Cancer. 2001, 84: 1107-14. 10.1054/bjoc.2000.1713PubMedCentralCrossRefPubMed
54.
go back to reference Mukherjee P, Sotnikov AV, Mangian HJ, Zhou JR, Visek WJ, Clinton SK: Energy intake and prostate tumor growth, angiogenesis, and vascular endothelial growth factor expression. J Natl Cancer Inst. 1999, 91: 512-523. 10.1093/jnci/91.6.512CrossRefPubMed Mukherjee P, Sotnikov AV, Mangian HJ, Zhou JR, Visek WJ, Clinton SK: Energy intake and prostate tumor growth, angiogenesis, and vascular endothelial growth factor expression. J Natl Cancer Inst. 1999, 91: 512-523. 10.1093/jnci/91.6.512CrossRefPubMed
55.
go back to reference Mukherjee P, El-Abbadi MM, Kasperzyk JL, Ranes MK, Seyfried TN: Dietary restriction reduces angiogenesis and growth in an orthotopic mouse brain tumour model. Br J Cancer. 2002, 86: 1615-21. 10.1038/sj.bjc.6600298PubMedCentralCrossRefPubMed Mukherjee P, El-Abbadi MM, Kasperzyk JL, Ranes MK, Seyfried TN: Dietary restriction reduces angiogenesis and growth in an orthotopic mouse brain tumour model. Br J Cancer. 2002, 86: 1615-21. 10.1038/sj.bjc.6600298PubMedCentralCrossRefPubMed
Metadata
Title
Differential effects of energy stress on AMPK phosphorylation and apoptosis in experimental brain tumor and normal brain
Authors
Purna Mukherjee
Tiernan J Mulrooney
Jeremy Marsh
Derek Blair
Thomas C Chiles
Thomas N Seyfried
Publication date
01-12-2008
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2008
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-7-37

Other articles of this Issue 1/2008

Molecular Cancer 1/2008 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine