Skip to main content
Top
Published in: Molecular Cancer 1/2008

Open Access 01-12-2008 | Research

DNA-dependent protein kinase catalytic subunit modulates the stability of c-Myc oncoprotein

Authors: Jing An, Dong-Yan Yang, Qin-Zhi Xu, Shi-Meng Zhang, Yan-Ying Huo, Zeng-Fu Shang, Yu Wang, De-Chang Wu, Ping-Kun Zhou

Published in: Molecular Cancer | Issue 1/2008

Login to get access

Abstract

Background

C-Myc is a short-lived oncoprotein that is destroyed by ubiquitin-mediated proteolysis. Dysregulated accumulation of c-Myc commonly occurs in human cancers. Some of those cases with the dysregulated c-Myc protein accumulation are attributed to gene amplification or increased mRNA expression. However, the abnormal accumulation of c-Myc protein is also a common finding in human cancers with normal copy number and transcription level of c-Myc gene. It seems that the mechanistic dysregulation in the control of c-Myc protein stabilization is another important hallmark associated with c-Myc accumulation in cancer cells. Here we report a novel mechanistic pathway through which DNA-dependent protein kinase catalytic subunit (DNA-PKcs) modulates the stability of c-Myc protein.

Results

Firstly, siRNA-mediated silencing of DNA-PKcs strikingly downregulated c-Myc protein levels in HeLa and HepG2 cells, and simultaneously decreased cell proliferation. The c-Myc protein level in DNA-PKcs deficient human glioma M059J cells was also found much lower than that in DNA-PKcs efficient M059K cells. ATM deficiency does not affect c-Myc expression level. Silencing of DNA-PKcs in HeLa cells resulted in a decreased stability of c-Myc protein, which was associated the increasing of c-Myc phosphorylation on Thr58/Ser62 and ubiquitination level. Phosphorylation of Akt on Ser473, a substrate of DNA-PKcs was found decreased in DNA-PKcs deficient cells. As the consequence, the phosphorylation of GSK3 β on Ser9, a negatively regulated target of Akt, was also decreased, and which led to activation of GSK 3β and in turn phosphorylation of c-Myc on Thr58. Moreover, inhibition of GSK3 activity by LiCl or specific siRNA molecules rescued the downregulation of c-Myc mediated by silencing DNA-PKcs. Consistent with this depressed DNA-PKcs cell model, overexpressing DNA-PKcs in normal human liver L02 cells, by sub-chronically exposing to very low dose of carcinogen 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), increased c-Myc protein level, the phosphorylation of Akt and GSK3 β, as well as cell proliferation. siRNA-mediated silencing of DNA-PKcs in this cell model reversed above alterations to the original levels of L02 cells.

Conclusion

A suitable DNA-PKcs level in cells is necessary for maintaining genomic stability, while abnormal overexpression of DNA-PKcs may contribute to cell proliferation and even oncogenic transformation by stabilizing the c-Myc oncoprotein via at least the Akt/GSK3 pathway. Our results suggest DNA-PKcs a novel biological role beyond its DNA repair function.
Appendix
Available only for authorised users
Literature
1.
go back to reference Grandori C, Cowley SM, James LP, Eisenman RN: The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol. 2000, 16: 653-699.CrossRefPubMed Grandori C, Cowley SM, James LP, Eisenman RN: The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol. 2000, 16: 653-699.CrossRefPubMed
2.
go back to reference Park K, Kwak K, Kim J, Lim S, Han S: c-myc amplification is associated with HER2 amplification and closely linked with cell proliferation in tissue microarray of nonselected breast cancers. Hum Pathol. 2005, 36: 634-639.CrossRefPubMed Park K, Kwak K, Kim J, Lim S, Han S: c-myc amplification is associated with HER2 amplification and closely linked with cell proliferation in tissue microarray of nonselected breast cancers. Hum Pathol. 2005, 36: 634-639.CrossRefPubMed
3.
go back to reference Shachaf CM, Kopelman AM, Arvanitis C, Karlsson A, Beer S, Mandl S, Bachmann MH, Borowsky AD, Ruebner B, Cardiff RD, Yang Q, Bishop JM, Contag CH, Felsher DW: MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature. 2004, 431: 1112-1117.CrossRefPubMed Shachaf CM, Kopelman AM, Arvanitis C, Karlsson A, Beer S, Mandl S, Bachmann MH, Borowsky AD, Ruebner B, Cardiff RD, Yang Q, Bishop JM, Contag CH, Felsher DW: MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature. 2004, 431: 1112-1117.CrossRefPubMed
4.
go back to reference Chrzan P, Skokowski J, Karmolinski A, Pawelczyk T: Amplification of c-myc gene and overexpression of c-Myc protein in breast cancer and adjacent non-neoplastic tissue. Clinical Biochemistry. 2001, 34: 557-562.CrossRefPubMed Chrzan P, Skokowski J, Karmolinski A, Pawelczyk T: Amplification of c-myc gene and overexpression of c-Myc protein in breast cancer and adjacent non-neoplastic tissue. Clinical Biochemistry. 2001, 34: 557-562.CrossRefPubMed
5.
go back to reference Naidu R, Wahab NA, Yadav M, Kutty MK: Protein expression and molecular analysis of c-myc gene in primary breast carcinoma using immunohistochemistry and differential polymerase chain reaction. Int J Mol Med. 2002, 9: 189-196.PubMed Naidu R, Wahab NA, Yadav M, Kutty MK: Protein expression and molecular analysis of c-myc gene in primary breast carcinoma using immunohistochemistry and differential polymerase chain reaction. Int J Mol Med. 2002, 9: 189-196.PubMed
6.
go back to reference Nesbit CE, Tersak JM, Prochownik EV: MYC oncogenes and human neoplastic disease. Oncogene. 1999, 18: 3004-3016.CrossRefPubMed Nesbit CE, Tersak JM, Prochownik EV: MYC oncogenes and human neoplastic disease. Oncogene. 1999, 18: 3004-3016.CrossRefPubMed
7.
go back to reference Oster SK, Ho CS, Soucie EL, Penn LZ: The myc oncogene: Marvelously complex. Adv Cancer Res. 2002, 84: 81-154.CrossRefPubMed Oster SK, Ho CS, Soucie EL, Penn LZ: The myc oncogene: Marvelously complex. Adv Cancer Res. 2002, 84: 81-154.CrossRefPubMed
8.
go back to reference Paganano KB, Vassallo J, Lorand-Metze I, Costa FF, Saad ST: p53, Mdm2, and c-Myc overexpression is associated with a poor prognosis in aggressive non-Hodgkin's lymphomas. Am J Hematol. 2001, 67: 84-92.CrossRef Paganano KB, Vassallo J, Lorand-Metze I, Costa FF, Saad ST: p53, Mdm2, and c-Myc overexpression is associated with a poor prognosis in aggressive non-Hodgkin's lymphomas. Am J Hematol. 2001, 67: 84-92.CrossRef
9.
go back to reference Tokumoto N, Ikeda S, Ishizaki Y, Kurihara T, Ozaki S, Iseki M, Shimizu Y, Itamoto T, Arihiro K, Okajima M, Asahara T: Immunohistochemical and mutational analyses of Wnt signaling components and target genes in intrahepatic cholangiocarcinomas. Int J Oncol. 2005, 27: 973-980.PubMed Tokumoto N, Ikeda S, Ishizaki Y, Kurihara T, Ozaki S, Iseki M, Shimizu Y, Itamoto T, Arihiro K, Okajima M, Asahara T: Immunohistochemical and mutational analyses of Wnt signaling components and target genes in intrahepatic cholangiocarcinomas. Int J Oncol. 2005, 27: 973-980.PubMed
10.
go back to reference Salghetti SE, Kim SY, Tansey WP: Destruction of myc by ubiquitin-mediated proteolysis: cancer-associated and transforming mutations stabilize myc. The EMBO Journal. 1999, 18: 717-726.PubMedCentralCrossRefPubMed Salghetti SE, Kim SY, Tansey WP: Destruction of myc by ubiquitin-mediated proteolysis: cancer-associated and transforming mutations stabilize myc. The EMBO Journal. 1999, 18: 717-726.PubMedCentralCrossRefPubMed
12.
go back to reference Gregory MA, Hann SR: c-Myc proteolysis by the ubiquitin-proteasome pathway: stabilization of c-Myc in Burkitt's lymphoma cells. Mol Cell Biol. 2000, 20: 2423-2435.PubMedCentralCrossRefPubMed Gregory MA, Hann SR: c-Myc proteolysis by the ubiquitin-proteasome pathway: stabilization of c-Myc in Burkitt's lymphoma cells. Mol Cell Biol. 2000, 20: 2423-2435.PubMedCentralCrossRefPubMed
13.
go back to reference Kim SY, Herbst A, Tworkowski KA, Salghetti SE, Tansey WP: Skp2 regulates myc protein stability and activity. Molecular Cell. 2003, 11: 1177-1188.CrossRefPubMed Kim SY, Herbst A, Tworkowski KA, Salghetti SE, Tansey WP: Skp2 regulates myc protein stability and activity. Molecular Cell. 2003, 11: 1177-1188.CrossRefPubMed
14.
go back to reference Lehr von der N, Johansson S, Wu S, Bahram F, Castell A, Cetinkaya C, Hydbring P, Weidung I, Nakayama K, Nakayama KI, Soderberg O, Kerppola TK, Larsson LG: The F-box protein Skp2 participates in c-myc proteosomal degradation and acts as a cofactor for c-myc-regulated transcription. Molecular Cell. 2003, 11: 1189-1200.CrossRefPubMed Lehr von der N, Johansson S, Wu S, Bahram F, Castell A, Cetinkaya C, Hydbring P, Weidung I, Nakayama K, Nakayama KI, Soderberg O, Kerppola TK, Larsson LG: The F-box protein Skp2 participates in c-myc proteosomal degradation and acts as a cofactor for c-myc-regulated transcription. Molecular Cell. 2003, 11: 1189-1200.CrossRefPubMed
15.
go back to reference Welcker M, Orian A, Jin J, Grim JE, Harper JW, Eisenman RN, Clurman BE: The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc Natl Acad Sci USA. 2004, 101: 9085-9090.PubMedCentralCrossRefPubMed Welcker M, Orian A, Jin J, Grim JE, Harper JW, Eisenman RN, Clurman BE: The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc Natl Acad Sci USA. 2004, 101: 9085-9090.PubMedCentralCrossRefPubMed
16.
go back to reference Flinn EM, Busch CM, Wright AP: myc boxes, which are conserved in myc family proteins, are signals for protein degradation via the proteasome. Mol Cell Biol. 1998, 18: 5961-5969.PubMedCentralPubMed Flinn EM, Busch CM, Wright AP: myc boxes, which are conserved in myc family proteins, are signals for protein degradation via the proteasome. Mol Cell Biol. 1998, 18: 5961-5969.PubMedCentralPubMed
17.
go back to reference Sears R, Nuckolls F, Haura F, Taya Y, Tamai K, Nevins JR: Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Gene Dev. 2000, 14: 2501-2514.PubMedCentralCrossRefPubMed Sears R, Nuckolls F, Haura F, Taya Y, Tamai K, Nevins JR: Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Gene Dev. 2000, 14: 2501-2514.PubMedCentralCrossRefPubMed
18.
go back to reference Gregory MA, Qi Y, Hann SR: Phosphorylation by glycogen synthase kinase-3 controls c-myc proteolysis and subnuclear location. J Biol Chem. 2003, 278: 51606-51612.CrossRefPubMed Gregory MA, Qi Y, Hann SR: Phosphorylation by glycogen synthase kinase-3 controls c-myc proteolysis and subnuclear location. J Biol Chem. 2003, 278: 51606-51612.CrossRefPubMed
19.
go back to reference Bahram F, Lehr von der N, Cetinkaya C, Larsson LG: c-Myc hot spot mutations in lymphomas result in inefficient ubiquitination and decreased proteasome-mediated turnover. Blood. 2000, 95: 2104-2110.PubMed Bahram F, Lehr von der N, Cetinkaya C, Larsson LG: c-Myc hot spot mutations in lymphomas result in inefficient ubiquitination and decreased proteasome-mediated turnover. Blood. 2000, 95: 2104-2110.PubMed
20.
21.
go back to reference Park SJ, Oh EJ, Yoo MA, Lee SH: Involvement of DNA-dependent protein kinase in regulation of stress-induced JNK activation. DNA Cell Biol. 2001, 20: 637-645.CrossRefPubMed Park SJ, Oh EJ, Yoo MA, Lee SH: Involvement of DNA-dependent protein kinase in regulation of stress-induced JNK activation. DNA Cell Biol. 2001, 20: 637-645.CrossRefPubMed
22.
go back to reference Bailey SM, Brenneman MA, Halbrook J, Nickoloff JA, Ullrich RL, Goodwin EH: The kinase activity of DNA-PK is required to protect mammalian telomeres. DNA Repair (Amst). 2004, 3: 225-233.CrossRef Bailey SM, Brenneman MA, Halbrook J, Nickoloff JA, Ullrich RL, Goodwin EH: The kinase activity of DNA-PK is required to protect mammalian telomeres. DNA Repair (Amst). 2004, 3: 225-233.CrossRef
23.
go back to reference Hande MP: DNA repair factors and telomere-chromosome integrity in mammalian cells. Cytogenet Genome Res. 2004, 104: 116-122.CrossRefPubMed Hande MP: DNA repair factors and telomere-chromosome integrity in mammalian cells. Cytogenet Genome Res. 2004, 104: 116-122.CrossRefPubMed
24.
go back to reference Hosoi Y, Tatanabe W, Nakagawa K, Matsumoto Y, Enomoto A, Morita A, Nagawa H, Suzuki N: Up-regulation of DNA-dependent protein kinase activity and Sp1 in colorectal cancer. Int J Oncol. 2004, 25: 461-468.PubMed Hosoi Y, Tatanabe W, Nakagawa K, Matsumoto Y, Enomoto A, Morita A, Nagawa H, Suzuki N: Up-regulation of DNA-dependent protein kinase activity and Sp1 in colorectal cancer. Int J Oncol. 2004, 25: 461-468.PubMed
25.
go back to reference Nguyen DC, Parsa B, Close A, Magnusson B, Crowe DL, Sinha UK: Overexpression of cell cycle regulatory proteins correlates with advanced tumor stage in head and neck squamous cell carcinomas. Int J Oncol. 2003, 22: 285-1290. Nguyen DC, Parsa B, Close A, Magnusson B, Crowe DL, Sinha UK: Overexpression of cell cycle regulatory proteins correlates with advanced tumor stage in head and neck squamous cell carcinomas. Int J Oncol. 2003, 22: 285-1290.
26.
go back to reference Sakata K, Matsumoto Y, Satoh H, Oouchi A, Nagakura H, Koito K, Hosoi Y, Hareyama M, Suzuki N: Clinical studies of immunohistochemical staining of DNA-dependent protein kinase in oropharyngeal and hypopharyngeal carcinomas. Radiat Med. 2001, 19: 93-97.PubMed Sakata K, Matsumoto Y, Satoh H, Oouchi A, Nagakura H, Koito K, Hosoi Y, Hareyama M, Suzuki N: Clinical studies of immunohistochemical staining of DNA-dependent protein kinase in oropharyngeal and hypopharyngeal carcinomas. Radiat Med. 2001, 19: 93-97.PubMed
27.
go back to reference Shintani S, Mihara M, Li C, Nakahara Y, Hino S, Nakashiro K, Hamakawa H: Up-regulation of DNA-dependent protein kinase correlates with radiation resistance in oral squamous cell carcinoma. Cancer Sci. 2003, 94: 894-900.CrossRefPubMed Shintani S, Mihara M, Li C, Nakahara Y, Hino S, Nakashiro K, Hamakawa H: Up-regulation of DNA-dependent protein kinase correlates with radiation resistance in oral squamous cell carcinoma. Cancer Sci. 2003, 94: 894-900.CrossRefPubMed
28.
go back to reference Stronati L, Gensabella G, Lamberti C, Barattini P, Frasca D, Tanzarella C, Giacobini S, Toscano MG, Santacroce C, Danesi DT: Expression and DNA binding activity of the Ku heterodimer in bladder carcinoma. Cancer. 2001, 92: 2484-2492.CrossRefPubMed Stronati L, Gensabella G, Lamberti C, Barattini P, Frasca D, Tanzarella C, Giacobini S, Toscano MG, Santacroce C, Danesi DT: Expression and DNA binding activity of the Ku heterodimer in bladder carcinoma. Cancer. 2001, 92: 2484-2492.CrossRefPubMed
29.
go back to reference Yu ZJ, Sui JL, Ding YQ, Cao ZS, Zhou PK, Wu DC: Expression of DNA-PK in hepato- and cholangio-neoplasms and its significance. Zhonghua Gan Zang Bing Za Zhi. 2004, 12 (11): 652-655.PubMed Yu ZJ, Sui JL, Ding YQ, Cao ZS, Zhou PK, Wu DC: Expression of DNA-PK in hepato- and cholangio-neoplasms and its significance. Zhonghua Gan Zang Bing Za Zhi. 2004, 12 (11): 652-655.PubMed
30.
go back to reference Tonotsuka N, Hosoi Y, Miyazaki S, Miyata G, Sugawara K, Mori T, Ouchi N, Satomi S, Matsumoto Y, Nakagawa K, Miyagawa K, Ono T: Heterogeneous expression of DNA-dependent protein kinase in esophageal cancer and normal epithelium. Int J Mol Med. 2006, 18: 441-447.PubMed Tonotsuka N, Hosoi Y, Miyazaki S, Miyata G, Sugawara K, Mori T, Ouchi N, Satomi S, Matsumoto Y, Nakagawa K, Miyagawa K, Ono T: Heterogeneous expression of DNA-dependent protein kinase in esophageal cancer and normal epithelium. Int J Mol Med. 2006, 18: 441-447.PubMed
31.
go back to reference Moll U, Lau R, Sypes MA, Gupta MM, Anderson CW: DNA-PK, the DNA-activated protein kinase, is differentially expressed in normal and malignant human tissues. Oncogene. 1999, 18: 3114-3126.CrossRefPubMed Moll U, Lau R, Sypes MA, Gupta MM, Anderson CW: DNA-PK, the DNA-activated protein kinase, is differentially expressed in normal and malignant human tissues. Oncogene. 1999, 18: 3114-3126.CrossRefPubMed
32.
go back to reference Oka A, Takashima S, Abe M, Araki R, Takeshita K: Expression of DNA-dependent protein kinase catalytic subunit and Ku80 in developing human brains: implication of DNA-repair in neurogenesis. Neurosci Lett. 2000, 292: 167-170.CrossRefPubMed Oka A, Takashima S, Abe M, Araki R, Takeshita K: Expression of DNA-dependent protein kinase catalytic subunit and Ku80 in developing human brains: implication of DNA-repair in neurogenesis. Neurosci Lett. 2000, 292: 167-170.CrossRefPubMed
33.
go back to reference Sallmyr A, Miller A, Gabdoulkhakova A, Safronova V, Henriksson G, Bredberg A: Expression of DNA-dependent protein kinase in human granulocytes. Cell Res. 2004, 14: 331-340.CrossRefPubMed Sallmyr A, Miller A, Gabdoulkhakova A, Safronova V, Henriksson G, Bredberg A: Expression of DNA-dependent protein kinase in human granulocytes. Cell Res. 2004, 14: 331-340.CrossRefPubMed
34.
go back to reference Holgersson A, Erdal H, Nilsson A, Lewensohn R, Kanter L: Expression of DNA-PKcs and Ku86, but not Ku70, differs between lymphoid malignancies. Exp Mol Pathol. 2004, 77: 1-6.CrossRefPubMed Holgersson A, Erdal H, Nilsson A, Lewensohn R, Kanter L: Expression of DNA-PKcs and Ku86, but not Ku70, differs between lymphoid malignancies. Exp Mol Pathol. 2004, 77: 1-6.CrossRefPubMed
35.
go back to reference An J, Xu QZ, Sui JL, Bai B, Zhou PK: Down-regulation of c-myc protein by siRNA-mediated silencing of DNA-PKcs in HeLa cells. Int J Cancer. 2005, 117: 531-537.CrossRefPubMed An J, Xu QZ, Sui JL, Bai B, Zhou PK: Down-regulation of c-myc protein by siRNA-mediated silencing of DNA-PKcs in HeLa cells. Int J Cancer. 2005, 117: 531-537.CrossRefPubMed
36.
go back to reference An J, Xu QZ, Sui JL, Bai B, Zhou PK: Silencing of DNA-PKcs alters the transcriptional profile of certain signal transduction genes related to proliferation and differentiation in HeLa cells. Int J Mol Med. 2005, 16: 455-462.PubMed An J, Xu QZ, Sui JL, Bai B, Zhou PK: Silencing of DNA-PKcs alters the transcriptional profile of certain signal transduction genes related to proliferation and differentiation in HeLa cells. Int J Mol Med. 2005, 16: 455-462.PubMed
37.
go back to reference Peng Y, Woods RG, Beamish H, Ye R, Lees-Miller SP, Lavin MF, Bedford JS: Deficiency in the catalytic subunit of DNA-dependent protein kinase causes down-regulation of ATM. Cancer Res. 2005, 65: 1670-1677.CrossRefPubMed Peng Y, Woods RG, Beamish H, Ye R, Lees-Miller SP, Lavin MF, Bedford JS: Deficiency in the catalytic subunit of DNA-dependent protein kinase causes down-regulation of ATM. Cancer Res. 2005, 65: 1670-1677.CrossRefPubMed
38.
go back to reference Fukushima S, Kinoshita A, Puatanachokchai R, Kushida M, Wanibuchi H, Morimura K: Hormesis and dose-response-mediated mechanisms in carcinogenesis: evidence for a threshold in carcinogenicity of non-genotoxic carcinogens. Carcinogenesis. 2005, 26: 1835-1845.CrossRefPubMed Fukushima S, Kinoshita A, Puatanachokchai R, Kushida M, Wanibuchi H, Morimura K: Hormesis and dose-response-mediated mechanisms in carcinogenesis: evidence for a threshold in carcinogenicity of non-genotoxic carcinogens. Carcinogenesis. 2005, 26: 1835-1845.CrossRefPubMed
39.
go back to reference Calabrese EJ: Cancer biology and hormesis: human tumor cell lines commonly display hormetic (biphasic) dose responses. Crit Rev Toxicol. 2005, 35: 463-582.CrossRefPubMed Calabrese EJ: Cancer biology and hormesis: human tumor cell lines commonly display hormetic (biphasic) dose responses. Crit Rev Toxicol. 2005, 35: 463-582.CrossRefPubMed
40.
go back to reference Corzo C, Corominas JM, Tusquets I, Salido M, Bellet M, Fabregat X, Serrano S, Sole F: The MYC oncogene in breast cancer progression: from benign epithelium to invasive carcinoma. Cancer Genet Cytogenet. 2006, 165: 151-156.CrossRefPubMed Corzo C, Corominas JM, Tusquets I, Salido M, Bellet M, Fabregat X, Serrano S, Sole F: The MYC oncogene in breast cancer progression: from benign epithelium to invasive carcinoma. Cancer Genet Cytogenet. 2006, 165: 151-156.CrossRefPubMed
41.
go back to reference Dimova I, Raitcheva S, Dimitrov R, Doganov N, Toncheva D: Correlations between c-myc gene copy-number and clinicopathological parameters of ovarian tumours. Eur J Cancer. 2006, 42: 674-679.CrossRefPubMed Dimova I, Raitcheva S, Dimitrov R, Doganov N, Toncheva D: Correlations between c-myc gene copy-number and clinicopathological parameters of ovarian tumours. Eur J Cancer. 2006, 42: 674-679.CrossRefPubMed
42.
go back to reference Dews M, Homayouni A, Yu D, Murphy D, Sevignani C, Wentzel E, Furth EE, Lee WM, Enders GH, Mendell JT, Thomas-Tikhonenko A: Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nature Genet. 2006, 38: 1060-1065.PubMedCentralCrossRefPubMed Dews M, Homayouni A, Yu D, Murphy D, Sevignani C, Wentzel E, Furth EE, Lee WM, Enders GH, Mendell JT, Thomas-Tikhonenko A: Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nature Genet. 2006, 38: 1060-1065.PubMedCentralCrossRefPubMed
43.
go back to reference Burbano RR, Assumpcao PP, Leal MF, Calcagno DQ, Guimaraes AC, Khayat AS, Takeno SS, Chen ES, De Arruda Cardoso Smith M: C-MYC locus amplification as metastasis predictor in intestinal-type gastric adenocarcinomas: CGH study in Brazil. Anticancer Res. 2006, 26: 2909-2914.PubMed Burbano RR, Assumpcao PP, Leal MF, Calcagno DQ, Guimaraes AC, Khayat AS, Takeno SS, Chen ES, De Arruda Cardoso Smith M: C-MYC locus amplification as metastasis predictor in intestinal-type gastric adenocarcinomas: CGH study in Brazil. Anticancer Res. 2006, 26: 2909-2914.PubMed
44.
go back to reference Chan KL, Guan XY, Ng IO: High-throughput tissue microarray analysis of c-myc activation in chronic liver diseases and hepatocellular carcinoma. Hum Pathol. 2004, 35: 1324-1331.CrossRefPubMed Chan KL, Guan XY, Ng IO: High-throughput tissue microarray analysis of c-myc activation in chronic liver diseases and hepatocellular carcinoma. Hum Pathol. 2004, 35: 1324-1331.CrossRefPubMed
45.
go back to reference Um JH, Kwon JK, Kang CD, Kim MJ, Ju DS, Bae JH, Kim DW, Chung BS, Kim SH: Relationship between antiapoptotic molecules and metastatic potency and the involvement of DNA-dependent protein kinase in the chemosensitization of metastatic human cancer cells by epidermal growth factor receptor blockade. J Pharmacol Exp Ther. 2004, 311: 1062-1070.CrossRefPubMed Um JH, Kwon JK, Kang CD, Kim MJ, Ju DS, Bae JH, Kim DW, Chung BS, Kim SH: Relationship between antiapoptotic molecules and metastatic potency and the involvement of DNA-dependent protein kinase in the chemosensitization of metastatic human cancer cells by epidermal growth factor receptor blockade. J Pharmacol Exp Ther. 2004, 311: 1062-1070.CrossRefPubMed
46.
go back to reference Feng J, Park J, Cron P, Hess D, Hemmings BA: Identification of a PKB/Akt hydrophobic motif Ser-473 kinase as DNA-dependent protein kinase. J Biol Chem. 2004, 279: 41189-41196.CrossRefPubMed Feng J, Park J, Cron P, Hess D, Hemmings BA: Identification of a PKB/Akt hydrophobic motif Ser-473 kinase as DNA-dependent protein kinase. J Biol Chem. 2004, 279: 41189-41196.CrossRefPubMed
47.
go back to reference Yamaguchi K, Lee SH, Eling TE, Baek SJ: Identification of nonsteroidal anti-inflammatory drug-activated gene (NAG-1) as a novel downstream target of phosphatidylinositol 3-kinase/AKT/GSK-3β pathway. J Biol Chem. 2004, 279: 49617-49623.CrossRefPubMed Yamaguchi K, Lee SH, Eling TE, Baek SJ: Identification of nonsteroidal anti-inflammatory drug-activated gene (NAG-1) as a novel downstream target of phosphatidylinositol 3-kinase/AKT/GSK-3β pathway. J Biol Chem. 2004, 279: 49617-49623.CrossRefPubMed
48.
go back to reference Slezak BP, Hatch GE, DeVito MJ, Diliberto JJ, Slade R, Crissman K, Hassoun E, Birnbaum LS: Oxidative stress in female B6C3F1 mice following acute and subchronic exposure to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD). Toxicol Sci. 2000, 54: 390-398.CrossRefPubMed Slezak BP, Hatch GE, DeVito MJ, Diliberto JJ, Slade R, Crissman K, Hassoun E, Birnbaum LS: Oxidative stress in female B6C3F1 mice following acute and subchronic exposure to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD). Toxicol Sci. 2000, 54: 390-398.CrossRefPubMed
Metadata
Title
DNA-dependent protein kinase catalytic subunit modulates the stability of c-Myc oncoprotein
Authors
Jing An
Dong-Yan Yang
Qin-Zhi Xu
Shi-Meng Zhang
Yan-Ying Huo
Zeng-Fu Shang
Yu Wang
De-Chang Wu
Ping-Kun Zhou
Publication date
01-12-2008
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2008
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-7-32

Other articles of this Issue 1/2008

Molecular Cancer 1/2008 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine