Skip to main content
Top
Published in: Molecular Cancer 1/2006

Open Access 01-12-2006 | Review

The clinical relevance of the metabolism of prostate cancer; zinc and tumor suppression: connecting the dots

Authors: Leslie C Costello, Renty B Franklin

Published in: Molecular Cancer | Issue 1/2006

Login to get access

Abstract

Background

The genetic and molecular mechanisms responsible for and associated specifically with the development and progression of malignant prostate cells are largely unidentified. In addition, despite its implication in virtually all malignant cells, the role of altered cellular metabolism as an essential factor in prostate malignancy has been largely ignored. Moreover, the intermediary metabolism of normal prostate as well as malignant prostate cells is among the least studied and most poorly understood of all mammalian cells. Some important factors, especially the role of zinc, have been identified and implicated in the development and progression of prostrate malignancy. In this review, we provide a current and updated integrated assessment of the relationships of intermediary metabolism in normal prostate and in prostate cancer. The experimental and clinical evidence that leads to the formulation of concepts of normal and malignant prostate metabolism is presented. The evidence for a concept of zinc as a tumor suppressor agent and Zip1 zinc transporter as a tumor-suppressor gene is described.

Results

The specialized function of the normal prostate glandular epithelium to produce and secrete enormously high levels of citrate involves and requires unique intermediary metabolism activities that are not generally associated with other normal mammalian cells. The accumulation of zinc by these cells is an essential factor in this unique metabolic relationship. In malignancy, the normal zinc-accumulating citrate-producing epithelial cells are metabolically transformed to citrate-oxidizing cells that lose the ability to accumulate zinc. A genetic alteration in the expression of ZIP1 zinc transporter is associated with this metabolic transformation. These genetic/metabolic relationships have important consequences on citrate-related metabolism, bioenergetics, cell proliferation and invasive capabilities of the malignant cells, which result in tumor-suppression characteristics.

Conclusion

The genetic/metabolic relationships in normal prostate glandular epithelium are driven by the unique function to accumulate and secrete citrate. The genetic/metabolic transformation of the prostate malignant cells is driven by the metabolic/bioenergetic, growth/proliferative, and invasive/migration requirements of the malignant process. Zinc is critical to these relationships. An understanding of these genetic/metabolic relationships provides new directions and opportunities for development of regimens for the prevention and treatment of prostate cancer. Important insight into the genetic/metabolic requirements of the prostate malignant process is now evolving. Most importantly at this time, an appreciation and recognition of the genetic/metabolic significance and implications in the development of prostate malignancy is imperative; and much needed research in this area is essential. Hopefully, this review will help to achieve these goals.
Appendix
Available only for authorised users
Literature
2.
go back to reference Porkka KP, Visakorpi T: Molecular mechanisms of prostate cancer. European Urol. 2004, 45: 683-691. 10.1016/j.eururo.2004.01.012.CrossRef Porkka KP, Visakorpi T: Molecular mechanisms of prostate cancer. European Urol. 2004, 45: 683-691. 10.1016/j.eururo.2004.01.012.CrossRef
3.
go back to reference Warburg O, Wind F, Negelein E: Uber den Stoffwechsel von Tumoren im Korper. Klin Woch. 1926, 5: 829-832. 10.1007/BF01726240.CrossRef Warburg O, Wind F, Negelein E: Uber den Stoffwechsel von Tumoren im Korper. Klin Woch. 1926, 5: 829-832. 10.1007/BF01726240.CrossRef
4.
go back to reference Pedersen PL: Tumor mitochondria and the bioenergetics of cancer cells. Prog Exp Tumor Res. 1978, 22: 190-274.CrossRefPubMed Pedersen PL: Tumor mitochondria and the bioenergetics of cancer cells. Prog Exp Tumor Res. 1978, 22: 190-274.CrossRefPubMed
5.
go back to reference Modica-Napolitano JS, Singh KK: Mitochondrial dysfunction in cancer. Mitochondrion. 2004, 4: 755-762. 10.1016/j.mito.2004.07.027CrossRefPubMed Modica-Napolitano JS, Singh KK: Mitochondrial dysfunction in cancer. Mitochondrion. 2004, 4: 755-762. 10.1016/j.mito.2004.07.027CrossRefPubMed
6.
go back to reference Dang CV, Samenza GL: Oncogenic alterations of metabolism. Trends BioSci. 1999, 24: 68-72. 10.1016/S0968-0004(98)01344-9.CrossRef Dang CV, Samenza GL: Oncogenic alterations of metabolism. Trends BioSci. 1999, 24: 68-72. 10.1016/S0968-0004(98)01344-9.CrossRef
7.
go back to reference Baggetto LG: Deviant energetic metabolism of glycolytic cancer cells. Biochimie. 1992, 74: 959-974. 10.1016/0300-9084(92)90016-8CrossRefPubMed Baggetto LG: Deviant energetic metabolism of glycolytic cancer cells. Biochimie. 1992, 74: 959-974. 10.1016/0300-9084(92)90016-8CrossRefPubMed
8.
go back to reference Costello LC, Franklin RB: "Why Do Tumor Cells Glycolyze?": From Glycolysis Through Citrate To Lipogenesis. Mol Cell Biochem. 2005, 280: 1-8. 10.1007/s11010-005-8841-8PubMedCentralCrossRefPubMed Costello LC, Franklin RB: "Why Do Tumor Cells Glycolyze?": From Glycolysis Through Citrate To Lipogenesis. Mol Cell Biochem. 2005, 280: 1-8. 10.1007/s11010-005-8841-8PubMedCentralCrossRefPubMed
9.
go back to reference Franklin RB, Milon B, Feng P, Costello LC: Zinc and zinc transporter in normal prostate function and the pathogenesis of prostate cancer. Frontiers in Bioscience. 2005, 10: 2230-2239.PubMedCentralCrossRefPubMed Franklin RB, Milon B, Feng P, Costello LC: Zinc and zinc transporter in normal prostate function and the pathogenesis of prostate cancer. Frontiers in Bioscience. 2005, 10: 2230-2239.PubMedCentralCrossRefPubMed
10.
go back to reference Costello LC, Feng P, Franklin RB: Mitochondrial Function, Zinc, and Intermediary Metabolism. Relationships in Normal Prostate and Prostate Cancer. Mitochondrion. 2005, 5: 143-153. 10.1016/j.mito.2005.02.001PubMedCentralCrossRefPubMed Costello LC, Feng P, Franklin RB: Mitochondrial Function, Zinc, and Intermediary Metabolism. Relationships in Normal Prostate and Prostate Cancer. Mitochondrion. 2005, 5: 143-153. 10.1016/j.mito.2005.02.001PubMedCentralCrossRefPubMed
11.
go back to reference Costello LC, Franklin RB, Feng P, Tan M, Bagasra O: Zinc and Prostate Cancer: A critical scientific, medical and public interest issue. Cancer Causes Control. 2005, 16: 901-915. 10.1007/s10552-005-2367-yCrossRefPubMed Costello LC, Franklin RB, Feng P, Tan M, Bagasra O: Zinc and Prostate Cancer: A critical scientific, medical and public interest issue. Cancer Causes Control. 2005, 16: 901-915. 10.1007/s10552-005-2367-yCrossRefPubMed
12.
go back to reference Costello LC, Franklin RB: The intermediary metabolism of the prostate: A key to understanding the pathogenesis and progression of prostate malignancy. Oncology. 2001, 59: 269-282. 10.1159/000012183.CrossRef Costello LC, Franklin RB: The intermediary metabolism of the prostate: A key to understanding the pathogenesis and progression of prostate malignancy. Oncology. 2001, 59: 269-282. 10.1159/000012183.CrossRef
13.
go back to reference Huggins C: The prostatic secretion. Harvey Lect. 1947, 42: 148-193. Huggins C: The prostatic secretion. Harvey Lect. 1947, 42: 148-193.
14.
go back to reference Harkonen PL, Isoltalo A, Santti R: Studies on the mechanism of testosterone action on glucose metabolism in the rat ventral prostate. J Steroid Biochem Mol Bioi. 1975, 6: 1405-1413. 10.1016/0022-4731(75)90077-1.CrossRef Harkonen PL, Isoltalo A, Santti R: Studies on the mechanism of testosterone action on glucose metabolism in the rat ventral prostate. J Steroid Biochem Mol Bioi. 1975, 6: 1405-1413. 10.1016/0022-4731(75)90077-1.CrossRef
15.
go back to reference Harkonen PL: Androgenic control of glycolysis, the pentose cycle and pyruvate dehydrogenase in the rat ventral prostate. J Steroid Biochem Mol Bio. 1981, 14: 1075-1084. 10.1016/0022-4731(81)90219-3.CrossRef Harkonen PL: Androgenic control of glycolysis, the pentose cycle and pyruvate dehydrogenase in the rat ventral prostate. J Steroid Biochem Mol Bio. 1981, 14: 1075-1084. 10.1016/0022-4731(81)90219-3.CrossRef
16.
go back to reference Harkonen PL, Kostian ML, Santti RS: Indirect androgenic control of citrate accumulation in rat ventral prostate. Arch Androl. 1982, 8: 107-116.CrossRefPubMed Harkonen PL, Kostian ML, Santti RS: Indirect androgenic control of citrate accumulation in rat ventral prostate. Arch Androl. 1982, 8: 107-116.CrossRefPubMed
17.
go back to reference Costello LC, Franklin RB: Prostate epithelial cells utilize glucose and aspartate as the carbon sources for net citrate production. Prostate. 1989, 15: 335-342.CrossRefPubMed Costello LC, Franklin RB: Prostate epithelial cells utilize glucose and aspartate as the carbon sources for net citrate production. Prostate. 1989, 15: 335-342.CrossRefPubMed
18.
go back to reference Franklin RB, Lao L, Costello LC: Evidence for two aspartate transport systems in prostate epithelial cells. Prostate. 1990, 16: 137-146.CrossRefPubMed Franklin RB, Lao L, Costello LC: Evidence for two aspartate transport systems in prostate epithelial cells. Prostate. 1990, 16: 137-146.CrossRefPubMed
19.
go back to reference Lao L, Franklin RB, Costello LC: A high affinity L-aspartate transporter in prostate epithelial cells which is regulated by testosterone. Prostate. 1993, 22: 53-63.CrossRefPubMed Lao L, Franklin RB, Costello LC: A high affinity L-aspartate transporter in prostate epithelial cells which is regulated by testosterone. Prostate. 1993, 22: 53-63.CrossRefPubMed
20.
go back to reference Costello LC, Lao L, Franklin RB: Citrate modulation of high affinity aspartate transport in prostate epithelial cells. Cell Mol Biol. 1993, 39: 515-524.PubMed Costello LC, Lao L, Franklin RB: Citrate modulation of high affinity aspartate transport in prostate epithelial cells. Cell Mol Biol. 1993, 39: 515-524.PubMed
21.
go back to reference Franklin RB, Zou J, Yu Z, Costello LC: EAAC1 is expressed in rat and human prostate epithelial cells; functions as a high-affinity L-aspartate transporter; and is regulated by prolactin and testosterone. BMC Biochemistry. 2006, 7: 10- 10.1186/1471-2091-7-10PubMedCentralCrossRefPubMed Franklin RB, Zou J, Yu Z, Costello LC: EAAC1 is expressed in rat and human prostate epithelial cells; functions as a high-affinity L-aspartate transporter; and is regulated by prolactin and testosterone. BMC Biochemistry. 2006, 7: 10- 10.1186/1471-2091-7-10PubMedCentralCrossRefPubMed
22.
go back to reference Costello LC, Liu Y, Franklin RB, Kennedy MC: Zinc inhibition of mitochondrial aconitase and its importance in citrate metabolism of prostate epithelial cells. J Biol Chem. 1997, 272: 28875-28881. 10.1074/jbc.272.46.28875CrossRefPubMed Costello LC, Liu Y, Franklin RB, Kennedy MC: Zinc inhibition of mitochondrial aconitase and its importance in citrate metabolism of prostate epithelial cells. J Biol Chem. 1997, 272: 28875-28881. 10.1074/jbc.272.46.28875CrossRefPubMed
23.
go back to reference Singh KK, Desouki MM, Franklin RB, Costello LC: Mitochondrial Aconitase and Citrate Metabolism in Malignant and Nonmalignant Human Prostate Tissues. Mol Cancer. 2006, 5: 14-4, 10.1186/1476-4598-5-14PubMedCentralCrossRefPubMed Singh KK, Desouki MM, Franklin RB, Costello LC: Mitochondrial Aconitase and Citrate Metabolism in Malignant and Nonmalignant Human Prostate Tissues. Mol Cancer. 2006, 5: 14-4, 10.1186/1476-4598-5-14PubMedCentralCrossRefPubMed
24.
go back to reference Halliday KR, Fenoglio-Preiser C, Sillerud LO: Differentiation of human tumors from nonmalignant tissue by natural-abundance 13C NMR spectroscopy. Magn Reson Med. 1988, 7: 384-411.CrossRefPubMed Halliday KR, Fenoglio-Preiser C, Sillerud LO: Differentiation of human tumors from nonmalignant tissue by natural-abundance 13C NMR spectroscopy. Magn Reson Med. 1988, 7: 384-411.CrossRefPubMed
25.
go back to reference Swinnen JV, Heemers H, Heyns W, Verhoeven G: Androgen regulation of lipogenesis. Adv Exp Med Biol. 2002, 506 (Pt A): 379-387.PubMed Swinnen JV, Heemers H, Heyns W, Verhoeven G: Androgen regulation of lipogenesis. Adv Exp Med Biol. 2002, 506 (Pt A): 379-387.PubMed
26.
go back to reference Parlo RA, Coleman PS: Enhanced rate of citrate export from cholesterol-rich hepatoma mitochondria. J Biol Chem. 1984, 259: 997-10003. Parlo RA, Coleman PS: Enhanced rate of citrate export from cholesterol-rich hepatoma mitochondria. J Biol Chem. 1984, 259: 997-10003.
27.
go back to reference Parlo RA, Coleman PS: Continuous pyruvate carbon flux to newly synthesized cholesterol and the suppressed evolution of pyruvate-generated CO2 in tumors: further evidence for a persistent truncated Krebs cycle in hepatomas. Biochim Biophys Acta. 1986, 886: 169-176. 10.1016/0167-4889(86)90134-5CrossRefPubMed Parlo RA, Coleman PS: Continuous pyruvate carbon flux to newly synthesized cholesterol and the suppressed evolution of pyruvate-generated CO2 in tumors: further evidence for a persistent truncated Krebs cycle in hepatomas. Biochim Biophys Acta. 1986, 886: 169-176. 10.1016/0167-4889(86)90134-5CrossRefPubMed
28.
go back to reference Baggetto LG: Deviant energetic metabolism of glycolytic cancer cells. Biochimie. 1992, 74: 959-974. 10.1016/0300-9084(92)90016-8CrossRefPubMed Baggetto LG: Deviant energetic metabolism of glycolytic cancer cells. Biochimie. 1992, 74: 959-974. 10.1016/0300-9084(92)90016-8CrossRefPubMed
29.
go back to reference Board M, Humm S, Newsholme EA: Maximum activities of key enzymes of glycolysis, glutaminolysis, pentose phosphate pathway and tricarboxylic acid cycle in normal, neoplastic and suppressed cells. Biochem J. 1990, 265: 503-509.PubMedCentralCrossRefPubMed Board M, Humm S, Newsholme EA: Maximum activities of key enzymes of glycolysis, glutaminolysis, pentose phosphate pathway and tricarboxylic acid cycle in normal, neoplastic and suppressed cells. Biochem J. 1990, 265: 503-509.PubMedCentralCrossRefPubMed
30.
go back to reference Kelleher JK, Bryan BM, Mallet RT, Holleran AL, Murphy AN, Fiskum G: Analysis of tricarboxylic acid-cycle metabolism of hepatoma cells by comparison of 14CO2 ratios. Biochem J. 1987, 246: 633-639.PubMedCentralCrossRefPubMed Kelleher JK, Bryan BM, Mallet RT, Holleran AL, Murphy AN, Fiskum G: Analysis of tricarboxylic acid-cycle metabolism of hepatoma cells by comparison of 14CO2 ratios. Biochem J. 1987, 246: 633-639.PubMedCentralCrossRefPubMed
31.
go back to reference Dietzen DJ, Davis EJ: Oxidation of pyruvate, malate, citrate, and cytosolic reducing equivalents by AS-30D hepatoma mitochondria. Arch Biochem Biophys. 1993, 305: 91-102. 10.1006/abbi.1993.1397CrossRefPubMed Dietzen DJ, Davis EJ: Oxidation of pyruvate, malate, citrate, and cytosolic reducing equivalents by AS-30D hepatoma mitochondria. Arch Biochem Biophys. 1993, 305: 91-102. 10.1006/abbi.1993.1397CrossRefPubMed
32.
go back to reference Hernanz A, de la Fuente M: Characterization of aconitate hydratase from mitochondria and cytoplasm of ascites tumor cells. Biochem Cell Biol. 1988, 66: 792-795.CrossRefPubMed Hernanz A, de la Fuente M: Characterization of aconitate hydratase from mitochondria and cytoplasm of ascites tumor cells. Biochem Cell Biol. 1988, 66: 792-795.CrossRefPubMed
33.
go back to reference Oikawa E, Iijima H, Suzuki T, Sasano H, Sato H, Kamataki A, Nagura H, Kang MJ, Fujino T, Suzuki H, Yamamoto TT: A novel acyl-CoA synthetase, ACS5, expressed in intestinal epithelial cells and proliferating preadipocytes. J Biochem (Tokyo). 1998, 124: 679-685. 10.1007/s005950050208CrossRef Oikawa E, Iijima H, Suzuki T, Sasano H, Sato H, Kamataki A, Nagura H, Kang MJ, Fujino T, Suzuki H, Yamamoto TT: A novel acyl-CoA synthetase, ACS5, expressed in intestinal epithelial cells and proliferating preadipocytes. J Biochem (Tokyo). 1998, 124: 679-685. 10.1007/s005950050208CrossRef
34.
go back to reference Loikkanen I, Haghighi S, Vainio S, Pajunen A: Expression of cytosolic acetyl-CoA synthetase gene is developmentally regulated. Mech Dev. 2002, 115: 139-141. 10.1016/S0925-4773(02)00097-7CrossRefPubMed Loikkanen I, Haghighi S, Vainio S, Pajunen A: Expression of cytosolic acetyl-CoA synthetase gene is developmentally regulated. Mech Dev. 2002, 115: 139-141. 10.1016/S0925-4773(02)00097-7CrossRefPubMed
35.
go back to reference Sone H, Shimano H, Sakakura Y, Inoue N, Amemiya-Kudo M, Yahagi N, Osawa M, Suzuki H, Yokoo T, Takahashi A, Iida K, Toyoshima H, Iwama A, Yamada N: Acetyl-coenzyme A synthetase is a lipogenic enzyme controlled by SREBP-1 and energy status. Am J Physiol Endocrinol Metab. 2002, 282: E222-230.CrossRefPubMed Sone H, Shimano H, Sakakura Y, Inoue N, Amemiya-Kudo M, Yahagi N, Osawa M, Suzuki H, Yokoo T, Takahashi A, Iida K, Toyoshima H, Iwama A, Yamada N: Acetyl-coenzyme A synthetase is a lipogenic enzyme controlled by SREBP-1 and energy status. Am J Physiol Endocrinol Metab. 2002, 282: E222-230.CrossRefPubMed
36.
go back to reference Pomare EW, Branch WJ, Cummings JH: Carbohydrate fermentation in the human colon and its relation to acetate concentrations in venous blood. J Clin Invest. 1985, 75: 1448-1454.PubMedCentralCrossRefPubMed Pomare EW, Branch WJ, Cummings JH: Carbohydrate fermentation in the human colon and its relation to acetate concentrations in venous blood. J Clin Invest. 1985, 75: 1448-1454.PubMedCentralCrossRefPubMed
37.
go back to reference Hatzivassiliou G, Zhao F, Bauer DE, Andreadis C, Shaw AN, Dhanak D, Hingorani SR, Tuveson DA, Thompson CB: ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell. 2005, 8: 311-321. 10.1016/j.ccr.2005.09.008CrossRefPubMed Hatzivassiliou G, Zhao F, Bauer DE, Andreadis C, Shaw AN, Dhanak D, Hingorani SR, Tuveson DA, Thompson CB: ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell. 2005, 8: 311-321. 10.1016/j.ccr.2005.09.008CrossRefPubMed
38.
go back to reference Costello LC, Franklin RB, Narayan P: Citrate in the diagnosis of prostate cancer. Prostate. 1999, 38: 237-245. 10.1002/(SICI)1097-0045(19990215)38:3<237::AID-PROS8>3.0.CO;2-OPubMedCentralCrossRefPubMed Costello LC, Franklin RB, Narayan P: Citrate in the diagnosis of prostate cancer. Prostate. 1999, 38: 237-245. 10.1002/(SICI)1097-0045(19990215)38:3<237::AID-PROS8>3.0.CO;2-OPubMedCentralCrossRefPubMed
39.
go back to reference Costello LC, Franklin RB, Kurhanewicz J: The metabolic characterization of prostate malignancy by magnetic resonance spectroscopy. Encyclopedia of Cancer. Edited by: Betino JR. 2002, 1: 167-178. Academic Press, NY.CrossRef Costello LC, Franklin RB, Kurhanewicz J: The metabolic characterization of prostate malignancy by magnetic resonance spectroscopy. Encyclopedia of Cancer. Edited by: Betino JR. 2002, 1: 167-178. Academic Press, NY.CrossRef
40.
go back to reference Kurhanewicz J, Swanson MG, Nelson SJ, Vigneron DB: Combined magnetic resonance imaging and spectroscopic imaging approach to molecular imaging of prostate cancer. J Mag Reson Imag. 2002, 16: 451-463. 10.1002/jmri.10172.CrossRef Kurhanewicz J, Swanson MG, Nelson SJ, Vigneron DB: Combined magnetic resonance imaging and spectroscopic imaging approach to molecular imaging of prostate cancer. J Mag Reson Imag. 2002, 16: 451-463. 10.1002/jmri.10172.CrossRef
41.
go back to reference Costello LC, Franklin RB: Concepts of citrate production and secretion by prostate. 2. Hormone relationships in normal and neoplastic prostate. Prostate. 1991, 19: 181-205.CrossRefPubMed Costello LC, Franklin RB: Concepts of citrate production and secretion by prostate. 2. Hormone relationships in normal and neoplastic prostate. Prostate. 1991, 19: 181-205.CrossRefPubMed
42.
go back to reference Kurhanewicz J, Vigneron DB, Hricak H, Narayan P, Carroll P, Nelson SJ: Three dimensional hydrogen-1 MR spectroscopic imaging of the in situ human prostate with high spatial resolution. Radiology. 1996, 198: 795-805.CrossRefPubMed Kurhanewicz J, Vigneron DB, Hricak H, Narayan P, Carroll P, Nelson SJ: Three dimensional hydrogen-1 MR spectroscopic imaging of the in situ human prostate with high spatial resolution. Radiology. 1996, 198: 795-805.CrossRefPubMed
43.
go back to reference Heerschap A, Jager GJ, Van Der Graaf M, Barentsz JO, De La Rosette J, Oosterhoff GO, Ruijter E, Ruijs S: In vivo proton MR spectroscopy reveals altered metabolite content in malignant prostate tissue. Anticancer Res. 1997, 17: 1455-1460.PubMed Heerschap A, Jager GJ, Van Der Graaf M, Barentsz JO, De La Rosette J, Oosterhoff GO, Ruijter E, Ruijs S: In vivo proton MR spectroscopy reveals altered metabolite content in malignant prostate tissue. Anticancer Res. 1997, 17: 1455-1460.PubMed
44.
go back to reference Liney GP, Turnbull LW, Lowry M, Turnbull LS, Knowles AJ, Horsman A: In vivo quantification of citrate concentration and water T2 relaxation time of the pathologic prostate gland using 1H MRS and MRI. Magn Reson Imaging. 1997, 15: 1177-1186. 10.1016/S0730-725X(97)00182-3CrossRefPubMed Liney GP, Turnbull LW, Lowry M, Turnbull LS, Knowles AJ, Horsman A: In vivo quantification of citrate concentration and water T2 relaxation time of the pathologic prostate gland using 1H MRS and MRI. Magn Reson Imaging. 1997, 15: 1177-1186. 10.1016/S0730-725X(97)00182-3CrossRefPubMed
45.
go back to reference Zaichick VYe, Sviridova TV, Zaichick SV: Zinc in the human prostate gland: normal, hyperplastic and cancerous. Int Urol Nephrol. 1997, 29 (5): 565-74.CrossRefPubMed Zaichick VYe, Sviridova TV, Zaichick SV: Zinc in the human prostate gland: normal, hyperplastic and cancerous. Int Urol Nephrol. 1997, 29 (5): 565-74.CrossRefPubMed
46.
go back to reference Franklin RB, Feng P, Milon BC, Desouki MM, Singh KK, Kajdacsy-Balla A, Bagasra O, Costello LC: hZIP1 zinc uptake transporter down regulation and zinc depletion in prostate cancer. Mol Cancer. 2005, 4: 32- 10.1186/1476-4598-4-32PubMedCentralCrossRefPubMed Franklin RB, Feng P, Milon BC, Desouki MM, Singh KK, Kajdacsy-Balla A, Bagasra O, Costello LC: hZIP1 zinc uptake transporter down regulation and zinc depletion in prostate cancer. Mol Cancer. 2005, 4: 32- 10.1186/1476-4598-4-32PubMedCentralCrossRefPubMed
47.
go back to reference Costello LC, Guan Z, Kukoui B, Feng P, Franklin RB: Terminal Oxidation and the Effects of Zinc in Prostate and Liver Mitochondria. Mitochondrion. 2004, 4: 331-338. 10.1016/j.mito.2004.07.031PubMedCentralCrossRefPubMed Costello LC, Guan Z, Kukoui B, Feng P, Franklin RB: Terminal Oxidation and the Effects of Zinc in Prostate and Liver Mitochondria. Mitochondrion. 2004, 4: 331-338. 10.1016/j.mito.2004.07.031PubMedCentralCrossRefPubMed
48.
go back to reference Liang J-Y, Liu Y-Y, Zou J, Franklin RB, Costello LC, Feng P: Inhibitory effect of zinc on human prostatic carcinoma cell growth. Prostate. 1999, 40: 200-207. 10.1002/(SICI)1097-0045(19990801)40:3<200::AID-PROS8>3.0.CO;2-3PubMedCentralCrossRefPubMed Liang J-Y, Liu Y-Y, Zou J, Franklin RB, Costello LC, Feng P: Inhibitory effect of zinc on human prostatic carcinoma cell growth. Prostate. 1999, 40: 200-207. 10.1002/(SICI)1097-0045(19990801)40:3<200::AID-PROS8>3.0.CO;2-3PubMedCentralCrossRefPubMed
49.
go back to reference Feng P, Liang J-Y, Li T-L, Guan Z-X, Zou J, Franklin RB, Costello LC: Zinc induces mitochondria apoptogenesis in prostate cells. Mol Urol. 2000, 4: 31-36.PubMed Feng P, Liang J-Y, Li T-L, Guan Z-X, Zou J, Franklin RB, Costello LC: Zinc induces mitochondria apoptogenesis in prostate cells. Mol Urol. 2000, 4: 31-36.PubMed
50.
go back to reference Feng P, Li T-L, Guan Z-X, Franklin RB, Costello LC: Direct effect of zinc on mitochondrial apoptogenesis in prostate cells. Prostate. 2002, 52: 311-318. 10.1002/pros.10128PubMedCentralCrossRefPubMed Feng P, Li T-L, Guan Z-X, Franklin RB, Costello LC: Direct effect of zinc on mitochondrial apoptogenesis in prostate cells. Prostate. 2002, 52: 311-318. 10.1002/pros.10128PubMedCentralCrossRefPubMed
51.
go back to reference Huang L, Kirschke CP, Zhang Y: Decreased intracellular zinc in human tumorigenic prostate epithelial cells: a possible role in prostate cancer progression. Cancer Cell Int. 2006, 31. 10.10.1186/1475-2867-6-10. [Epub ahead of print],.CrossRef Huang L, Kirschke CP, Zhang Y: Decreased intracellular zinc in human tumorigenic prostate epithelial cells: a possible role in prostate cancer progression. Cancer Cell Int. 2006, 31. 10.10.1186/1475-2867-6-10. [Epub ahead of print],.CrossRef
52.
go back to reference Uzzo RG, Leavis P, Hatch W, Gabai VL, Dulin N, Zvartau N, Kolenko VM: Zinc inhibits nuclear factor-kappa B activation and sensitizes prostate cancer cells to cytotoxic agents. Clin Cancer Res. 2002, 8: 3579-3583.PubMed Uzzo RG, Leavis P, Hatch W, Gabai VL, Dulin N, Zvartau N, Kolenko VM: Zinc inhibits nuclear factor-kappa B activation and sensitizes prostate cancer cells to cytotoxic agents. Clin Cancer Res. 2002, 8: 3579-3583.PubMed
53.
go back to reference Ishii K, Otsuka T, Iguchi K, Usui S, Yamamoto H, Sugimura Y, Yoshikawa K, Hayward SW, Hirano K: Evidence that the prostate-specific antigen (PSA)/Zn2+ axis may play a role in human prostate cancer cell invasion. Cancer Lett. 2004, 207: 79-87. 10.1016/j.canlet.2003.09.029CrossRefPubMed Ishii K, Otsuka T, Iguchi K, Usui S, Yamamoto H, Sugimura Y, Yoshikawa K, Hayward SW, Hirano K: Evidence that the prostate-specific antigen (PSA)/Zn2+ axis may play a role in human prostate cancer cell invasion. Cancer Lett. 2004, 207: 79-87. 10.1016/j.canlet.2003.09.029CrossRefPubMed
54.
go back to reference Ishii K, Usui S, Sugimura Y, Yoshida S, Hioki T, Tatematsu M, Yamamoto H, Hirano K: Aminopeptidase N regulated by zinc in human prostate participates in tumor cell invasion. Int J Cancer. 2001, 92: 49-54. 10.1002/1097-0215(200102)9999:9999<::AID-IJC1161>3.0.CO;2-SCrossRefPubMed Ishii K, Usui S, Sugimura Y, Yoshida S, Hioki T, Tatematsu M, Yamamoto H, Hirano K: Aminopeptidase N regulated by zinc in human prostate participates in tumor cell invasion. Int J Cancer. 2001, 92: 49-54. 10.1002/1097-0215(200102)9999:9999<::AID-IJC1161>3.0.CO;2-SCrossRefPubMed
55.
go back to reference Uzzo RG, Crispen PL, Golovine K, Makhov P, Horwitz EM, Kolenko VM: Diverse effects of zinc on NF-{kappa}B and AP-1 transcription factors: implications for prostate cancer progression. Carcinogenesis. 2006 Apr 10; [Epub ahead of print]. Uzzo RG, Crispen PL, Golovine K, Makhov P, Horwitz EM, Kolenko VM: Diverse effects of zinc on NF-{kappa}B and AP-1 transcription factors: implications for prostate cancer progression. Carcinogenesis. 2006 Apr 10; [Epub ahead of print].
56.
go back to reference Costello LC, Liu Y, Zou J, Franklin RB: Evidence for a zinc uptake transporter in human prostate cancer cells which is regulated by prolactin and testosterone. J Biol Chem. 1999, 274: 17499-17504. 10.1074/jbc.274.25.17499CrossRefPubMed Costello LC, Liu Y, Zou J, Franklin RB: Evidence for a zinc uptake transporter in human prostate cancer cells which is regulated by prolactin and testosterone. J Biol Chem. 1999, 274: 17499-17504. 10.1074/jbc.274.25.17499CrossRefPubMed
57.
go back to reference Franklin RB, Ma J, Zou J, Guan Z, Kukoyi BI, Feng P, Costello LC: Human ZIP1 is a major zinc uptake transporter for the accumulation of zinc in prostate cells. J Inorgan Biochem. 2003, 96: 435-442. 10.1016/S0162-0134(03)00249-6.CrossRef Franklin RB, Ma J, Zou J, Guan Z, Kukoyi BI, Feng P, Costello LC: Human ZIP1 is a major zinc uptake transporter for the accumulation of zinc in prostate cells. J Inorgan Biochem. 2003, 96: 435-442. 10.1016/S0162-0134(03)00249-6.CrossRef
58.
go back to reference Milon B, Dhermy D, Pountney D, Bourgeois M, Beaumont C: Differential subcellular localization of hZip1 in adherent and non-adherent cells. FEBS Lett. 2001, 507: 241-246. 10.1016/S0014-5793(01)02950-7CrossRefPubMed Milon B, Dhermy D, Pountney D, Bourgeois M, Beaumont C: Differential subcellular localization of hZip1 in adherent and non-adherent cells. FEBS Lett. 2001, 507: 241-246. 10.1016/S0014-5793(01)02950-7CrossRefPubMed
59.
go back to reference Rishi I, Baidouri H, Abbasi JA, Bullard-Dilland R, Kajdacsy-Balla A, Pestaner JP, Skacel M, Tubbs R, Bagasra O: Prostate cancer in African American men is associated with downregulation of zinc transporters. Appl Immunohistochem Mol Morphol. 2003, 11: 253-260.CrossRefPubMed Rishi I, Baidouri H, Abbasi JA, Bullard-Dilland R, Kajdacsy-Balla A, Pestaner JP, Skacel M, Tubbs R, Bagasra O: Prostate cancer in African American men is associated with downregulation of zinc transporters. Appl Immunohistochem Mol Morphol. 2003, 11: 253-260.CrossRefPubMed
60.
go back to reference Li H, Myeroff L, Smiraglia D, Romero MF, Pretlow TP, Kasturi L, Lutterbaugh J, Rerko RM, Casey G, Issa JP, Willis J, Willson JK, Plass C, Markowitz SD: SLC5A8, a sodium transporter, is a tumor suppressor gene silenced by methylation in human colon aberrant crypt foci and cancers. Pro of the National Acad of Sci (USA). 2003, 100: 8412-8417. 10.1073/pnas.1430846100.CrossRef Li H, Myeroff L, Smiraglia D, Romero MF, Pretlow TP, Kasturi L, Lutterbaugh J, Rerko RM, Casey G, Issa JP, Willis J, Willson JK, Plass C, Markowitz SD: SLC5A8, a sodium transporter, is a tumor suppressor gene silenced by methylation in human colon aberrant crypt foci and cancers. Pro of the National Acad of Sci (USA). 2003, 100: 8412-8417. 10.1073/pnas.1430846100.CrossRef
61.
go back to reference Coady MJ, Chang M-H, Charron FM, Consuelo Plata , Bernadette Wallendorff , Jerome Sah Frank , Sanford Markowitz D, Michael Romero F, Jean-Yves Lapointe : The human tumour suppressor gene SLC5A8 expresses a Na+-monocarboxylate cotransporter. J Physiol (Lond). 2004, 557: 719-731. 10.1113/jphysiol.2004.063859CrossRef Coady MJ, Chang M-H, Charron FM, Consuelo Plata , Bernadette Wallendorff , Jerome Sah Frank , Sanford Markowitz D, Michael Romero F, Jean-Yves Lapointe : The human tumour suppressor gene SLC5A8 expresses a Na+-monocarboxylate cotransporter. J Physiol (Lond). 2004, 557: 719-731. 10.1113/jphysiol.2004.063859CrossRef
62.
go back to reference Ganapathy V, Gopal E, Miyauchi S, Prasad PD: Biological functions of SLC5A8, a candidate tumour suppressor. Biochemical Society Transactions. 2005, 33 (Pt 1): 237-240.CrossRefPubMed Ganapathy V, Gopal E, Miyauchi S, Prasad PD: Biological functions of SLC5A8, a candidate tumour suppressor. Biochemical Society Transactions. 2005, 33 (Pt 1): 237-240.CrossRefPubMed
63.
go back to reference Miyauchi S, Gopal E, Fei YJ, Ganapathy V: Functional identification of SLC5A8, a tumor suppressor down-regulated in colon cancer, as a Na(+)-coupled transporter for short-chain fatty acids. Journal of Biological Chemistry. 2004, 279: 13293-13296. 10.1074/jbc.C400059200CrossRefPubMed Miyauchi S, Gopal E, Fei YJ, Ganapathy V: Functional identification of SLC5A8, a tumor suppressor down-regulated in colon cancer, as a Na(+)-coupled transporter for short-chain fatty acids. Journal of Biological Chemistry. 2004, 279: 13293-13296. 10.1074/jbc.C400059200CrossRefPubMed
64.
go back to reference Ueno M, Toyota M, Akino K, Suzuki H, Kusano M, Satoh A, Mita H, Sasaki Y, Nojima M, Yanagihara K, Hinoda Y, Tokino T, Imai K: Aberrant methylation and histone deacetylation associated with silencing of SLC5A8 in gastric cancer. Tumour Biology. 2004, 253: 134-140. 10.1159/000079145.CrossRef Ueno M, Toyota M, Akino K, Suzuki H, Kusano M, Satoh A, Mita H, Sasaki Y, Nojima M, Yanagihara K, Hinoda Y, Tokino T, Imai K: Aberrant methylation and histone deacetylation associated with silencing of SLC5A8 in gastric cancer. Tumour Biology. 2004, 253: 134-140. 10.1159/000079145.CrossRef
65.
go back to reference Porra V, Ferraro-Peyret C, Durand C, Selmi-Ruby S, Giroud H, Berger-Dutrieux N, Decaussin M, Peix JL, Bournaud C, Orgiazzi J, Borson-Chazot F, Dante R, Rousset B: Silencing of the tumor suppressor gene SLC5A8 is associated with BRAF mutations in classical papillary thyroid carcinomas. Journal of Clinical Endocrinology & Metabolism. 2005, 905: 3028-3035. 10.1210/jc.2004-1394.CrossRef Porra V, Ferraro-Peyret C, Durand C, Selmi-Ruby S, Giroud H, Berger-Dutrieux N, Decaussin M, Peix JL, Bournaud C, Orgiazzi J, Borson-Chazot F, Dante R, Rousset B: Silencing of the tumor suppressor gene SLC5A8 is associated with BRAF mutations in classical papillary thyroid carcinomas. Journal of Clinical Endocrinology & Metabolism. 2005, 905: 3028-3035. 10.1210/jc.2004-1394.CrossRef
Metadata
Title
The clinical relevance of the metabolism of prostate cancer; zinc and tumor suppression: connecting the dots
Authors
Leslie C Costello
Renty B Franklin
Publication date
01-12-2006
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2006
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-5-17

Other articles of this Issue 1/2006

Molecular Cancer 1/2006 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine