Skip to main content
Top
Published in: Molecular Cancer 1/2005

Open Access 01-12-2005 | Research

Survivin 2α: a novel Survivin splice variant expressed in human malignancies

Authors: Hugo Caldas, Laura E Honsey, Rachel A Altura

Published in: Molecular Cancer | Issue 1/2005

Login to get access

Abstract

Background

Survivin and its alternative splice forms are involved in critical cellular processes, including cell division and programmed cell death. Survivin is expressed in the majority of human cancers, but minimally in differentiated normal tissues. Expression levels correlate with tumor aggressiveness and resistance to therapy.

Results

In the present study, we identify and characterize a novel survivin isoform that we designate survivin 2α. Structurally, the transcript consists of 2 exons: exon 1 and exon 2, as well as a 3' 197 bp region of intron 2. Acquisition of a new in-frame stop codon within intron 2 results in an open reading frame of 225 nucleotides, predicting a truncated 74 amino acid protein. Survivin 2α is expressed at high levels in several malignant cell lines and primary tumors. Functional assays show that survivin 2α attenuates the anti-apoptotic activity of survivin. Subcellular localization and immunoprecipitation of survivin 2α suggests a physical interaction with survivin.

Conclusion

We characterized a novel survivin splice variant that we designated survivin 2α. We hypothesize that survivin 2α can alter the anti-apoptotic functions of survivin in malignant cells. Thus survivin 2α may be useful as a therapeutic tool in sensitizing chemoresistant tumor cells to chemotherapy.
Appendix
Available only for authorised users
Literature
2.
go back to reference Fridman JS, Hernando E, Hemann MT, de Stanchina E, Cordon-Cardo C, Lowe SW: Tumor promotion by Mdm2 splice variants unable to bind p53. Cancer Res. 2003, 63: 5703-5706.PubMed Fridman JS, Hernando E, Hemann MT, de Stanchina E, Cordon-Cardo C, Lowe SW: Tumor promotion by Mdm2 splice variants unable to bind p53. Cancer Res. 2003, 63: 5703-5706.PubMed
3.
go back to reference Bodescot M, Brison O: Characterization of new human c-myc mRNA species produced by alternative splicing. Gene. 1996, 174: 115-120.CrossRefPubMed Bodescot M, Brison O: Characterization of new human c-myc mRNA species produced by alternative splicing. Gene. 1996, 174: 115-120.CrossRefPubMed
4.
go back to reference Ambrosini G, Adida C, Altieri DC: A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med. 1997, 3: 917-921.CrossRefPubMed Ambrosini G, Adida C, Altieri DC: A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med. 1997, 3: 917-921.CrossRefPubMed
5.
go back to reference LaCasse EC, Baird S, Korneluk RG, MacKenzie AE: The inhibitors of apoptosis (IAPs) and their emerging role in cancer. Oncogene. 1998, 17: 3247-3259.CrossRefPubMed LaCasse EC, Baird S, Korneluk RG, MacKenzie AE: The inhibitors of apoptosis (IAPs) and their emerging role in cancer. Oncogene. 1998, 17: 3247-3259.CrossRefPubMed
6.
go back to reference Badran A, Yoshida A, Ishikawa K, Goi T, Yamaguchi A, Ueda T, Inuzuka M: Identification of a novel splice variant of the human anti-apoptopsis gene survivin. Biochem Biophys Res Commun. 2004, 314: 902-907.CrossRefPubMed Badran A, Yoshida A, Ishikawa K, Goi T, Yamaguchi A, Ueda T, Inuzuka M: Identification of a novel splice variant of the human anti-apoptopsis gene survivin. Biochem Biophys Res Commun. 2004, 314: 902-907.CrossRefPubMed
7.
go back to reference Mahotka C, Wenzel M, Springer E, Gabbert HE, Gerharz CD: Survivin-deltaEx3 and survivin-2B: two novel splice variants of the apoptosis inhibitor survivin with different antiapoptotic properties. Cancer Res. 1999, 59: 6097-6102.PubMed Mahotka C, Wenzel M, Springer E, Gabbert HE, Gerharz CD: Survivin-deltaEx3 and survivin-2B: two novel splice variants of the apoptosis inhibitor survivin with different antiapoptotic properties. Cancer Res. 1999, 59: 6097-6102.PubMed
8.
go back to reference Conway EM, Pollefeyt S, Cornelissen J, DeBaere I, Steiner-Mosonyi M, Ong K, Baens M, Collen D, Schuh AC: Three differentially expressed survivin cDNA variants encode proteins with distinct antiapoptotic functions. Blood. 2000, 95: 1435-1442.PubMed Conway EM, Pollefeyt S, Cornelissen J, DeBaere I, Steiner-Mosonyi M, Ong K, Baens M, Collen D, Schuh AC: Three differentially expressed survivin cDNA variants encode proteins with distinct antiapoptotic functions. Blood. 2000, 95: 1435-1442.PubMed
9.
go back to reference Carvalho A, Carmena M, Sambade C, Earnshaw WC, Wheatley SP: Survivin is required for stable checkpoint activation in taxol-treated HeLa cells. J Cell Sci. 2003, 116: 2987-2998.CrossRefPubMed Carvalho A, Carmena M, Sambade C, Earnshaw WC, Wheatley SP: Survivin is required for stable checkpoint activation in taxol-treated HeLa cells. J Cell Sci. 2003, 116: 2987-2998.CrossRefPubMed
10.
go back to reference Adida C, Berrebi D, Peuchmaur M, Reyes-Mugica M, Altieri DC: Anti-apoptosis gene, survivin, and prognosis of neuroblastoma. Lancet. 1998, 351: 882-883.CrossRefPubMed Adida C, Berrebi D, Peuchmaur M, Reyes-Mugica M, Altieri DC: Anti-apoptosis gene, survivin, and prognosis of neuroblastoma. Lancet. 1998, 351: 882-883.CrossRefPubMed
11.
go back to reference Zhu N, Gu L, Findley HW, Li F, Zhou M: An alternatively spliced survivin variant is positively regulated by p53 and sensitizes leukemia cells to chemotherapy. Oncogene. 2004, 23: 7545-7551.CrossRefPubMed Zhu N, Gu L, Findley HW, Li F, Zhou M: An alternatively spliced survivin variant is positively regulated by p53 and sensitizes leukemia cells to chemotherapy. Oncogene. 2004, 23: 7545-7551.CrossRefPubMed
12.
go back to reference Muchmore SW, Chen J, Jakob C, Zakula D, Matayoshi ED, Wu W, Zhang H, Li F, Ng SC, Altieri DC: Crystal structure and mutagenic analysis of the inhibitor-of-apoptosis protein survivin. Mol Cell. 2000, 6: 173-182.CrossRefPubMed Muchmore SW, Chen J, Jakob C, Zakula D, Matayoshi ED, Wu W, Zhang H, Li F, Ng SC, Altieri DC: Crystal structure and mutagenic analysis of the inhibitor-of-apoptosis protein survivin. Mol Cell. 2000, 6: 173-182.CrossRefPubMed
13.
14.
go back to reference Ambrosini G, Adida C, Sirugo G, Altieri DC: Induction of apoptosis and inhibition of cell proliferation by survivin gene targeting. J Biol Chem. 1998, 273: 11177-11182.CrossRefPubMed Ambrosini G, Adida C, Sirugo G, Altieri DC: Induction of apoptosis and inhibition of cell proliferation by survivin gene targeting. J Biol Chem. 1998, 273: 11177-11182.CrossRefPubMed
15.
go back to reference Adida C, Crotty PL, McGrath J, Berrebi D, Diebold J, Altieri DC: Developmentally regulated expression of the novel cancer anti-apoptosis gene survivin in human and mouse differentiation. Am J Pathol. 1998, 152: 43-49.PubMedCentralPubMed Adida C, Crotty PL, McGrath J, Berrebi D, Diebold J, Altieri DC: Developmentally regulated expression of the novel cancer anti-apoptosis gene survivin in human and mouse differentiation. Am J Pathol. 1998, 152: 43-49.PubMedCentralPubMed
16.
go back to reference Uren AG, Wong L, Pakusch M, Fowler KJ, Burrows FJ, Vaux DL, Choo KH: Survivin and the inner centromere protein INCENP show similar cell-cycle localization and gene knockout phenotype. Curr Biol. 2000, 10: 1319-1328.CrossRefPubMed Uren AG, Wong L, Pakusch M, Fowler KJ, Burrows FJ, Vaux DL, Choo KH: Survivin and the inner centromere protein INCENP show similar cell-cycle localization and gene knockout phenotype. Curr Biol. 2000, 10: 1319-1328.CrossRefPubMed
17.
go back to reference Conway EM, Pollefeyt S, Steiner-Mosonyi M, Luo W, Devriese A, Lupu F, Bono F, Leducq N, Dol F, Schaeffer P, Collen D, Herbert JM: Deficiency of survivin in transgenic mice exacerbates Fas-induced apoptosis via mitochondrial pathways. Gastroenterology. 2002, 123: 619-631.CrossRefPubMed Conway EM, Pollefeyt S, Steiner-Mosonyi M, Luo W, Devriese A, Lupu F, Bono F, Leducq N, Dol F, Schaeffer P, Collen D, Herbert JM: Deficiency of survivin in transgenic mice exacerbates Fas-induced apoptosis via mitochondrial pathways. Gastroenterology. 2002, 123: 619-631.CrossRefPubMed
18.
go back to reference Fukuda S, Foster RG, Porter SB, Pelus LM: The antiapoptosis protein survivin is associated with cell cycle entry of normal cord blood CD34(+) cells and modulates cell cycle and proliferation of mouse hematopoietic progenitor cells. Blood. 2002, 100: 2463-2471.CrossRefPubMed Fukuda S, Foster RG, Porter SB, Pelus LM: The antiapoptosis protein survivin is associated with cell cycle entry of normal cord blood CD34(+) cells and modulates cell cycle and proliferation of mouse hematopoietic progenitor cells. Blood. 2002, 100: 2463-2471.CrossRefPubMed
19.
go back to reference Altura RA, Olshefski RS, Jiang Y, Boue DR: Nuclear expression of Survivin in paediatric ependymomas and choroid plexus tumours correlates with morphologic tumour grade. Br J Cancer. 2003, 89: 1743-1749.PubMedCentralCrossRefPubMed Altura RA, Olshefski RS, Jiang Y, Boue DR: Nuclear expression of Survivin in paediatric ependymomas and choroid plexus tumours correlates with morphologic tumour grade. Br J Cancer. 2003, 89: 1743-1749.PubMedCentralCrossRefPubMed
20.
go back to reference Dohi T, Beltrami E, Wall NR, Plescia J, Altieri DC: Mitochondrial survivin inhibits apoptosis and promotes tumorigenesis. J Clin Invest. 2004, 114: 1117-1127.PubMedCentralCrossRefPubMed Dohi T, Beltrami E, Wall NR, Plescia J, Altieri DC: Mitochondrial survivin inhibits apoptosis and promotes tumorigenesis. J Clin Invest. 2004, 114: 1117-1127.PubMedCentralCrossRefPubMed
Metadata
Title
Survivin 2α: a novel Survivin splice variant expressed in human malignancies
Authors
Hugo Caldas
Laura E Honsey
Rachel A Altura
Publication date
01-12-2005
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2005
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-4-11

Other articles of this Issue 1/2005

Molecular Cancer 1/2005 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine