Skip to main content
Top
Published in: Molecular Cancer 1/2013

Open Access 01-12-2013 | Research

Reversal of chemosensitivity and induction of cell malignancy of a non-malignant prostate cancer cell line upon extracellular vesicle exposure

Authors: Kiriaki Panagopoulos, Sam Cross-Knorr, Christen Dillard, Dionysios Pantazatos, Michael Del Tatto, David Mills, Lisa Goldstein, Joseph Renzulli, Peter Quesenberry, Devasis Chatterjee

Published in: Molecular Cancer | Issue 1/2013

Login to get access

Abstract

Background

Extracellular vesicle (EV) trafficking is a fundamental cellular process that occurs in cells and is required for different aspects of pathophysiology. EV trafficking leads to changes in cellular function including apoptosis, angiogenesis and proliferation required for increased tumor formation.

Results

We report several phenotypic changes mediated by EVs isolated from non-malignant and malignant prostate cells as well as patient biopsied prostate tumor samples. EVs can reverse the resistance of prostate cancer cells to camptothecin EVs isolated from non-malignant PrECs (Prostate Epithelial Cells) can reverse soft agar colony formation of malignant DU145 cells, with the reciprocal effect observed. Isolation of EVs from 2 Gleason grade 8 prostate cancer patients significantly induced soft agar colony formation of non-malignant PrECs. We have identified proteins via antibody and Mass spectrometry analysis that may be responsible for the phenotypic changes. Mass spectrometry analysis of protein lysates using ProteoIQ revealed protein candidates associated with gene ontology annotations that may be responsible for this phenotypic change. Ingenuity Pathway Analysis was used to identify statistically relevant canonical pathways and functions associated the protein IDs and expression values obtained using ProteoIQ. Western blot analysis confirmed the increase of 14-3-3 zeta, pRKIP and prohibitin protein levels in PrEC cells co-cultured with patient EVs. 14-3-3 proteins were also found as common proteins of 3 other Gleason grade 8 patients.

Conclusion

Our study provides a rational basis to further investigate putative proteins, such as 14-3-3 and prohibitin and genetic factors that may be responsible for phenotypic changes that are associated with prostate cancer progression.
Appendix
Available only for authorised users
Literature
1.
go back to reference Han M, Partin AW, Zahurak M, Piantadosi S, Epstein JI, Walsh PC: Biochemical (prostate specific antigen) recurrence probability following radical prostatectomy for clinically localized prostate cancer. J Urol. 2003, 169: 517-523. 10.1016/S0022-5347(05)63946-8CrossRefPubMed Han M, Partin AW, Zahurak M, Piantadosi S, Epstein JI, Walsh PC: Biochemical (prostate specific antigen) recurrence probability following radical prostatectomy for clinically localized prostate cancer. J Urol. 2003, 169: 517-523. 10.1016/S0022-5347(05)63946-8CrossRefPubMed
2.
go back to reference Bolla M, Collette L, Blank L, Warde P, Dubois JB, Mirimanoff RO, Storme G, Bernier J, Kuten A, Sternberg C: Long-term results with immediate androgen suppression and external irradiation in patients with locally advanced prostate cancer (an EORTC study): a phase III randomised trial. Lancet. 2002, 360: 103-106. 10.1016/S0140-6736(02)09408-4CrossRefPubMed Bolla M, Collette L, Blank L, Warde P, Dubois JB, Mirimanoff RO, Storme G, Bernier J, Kuten A, Sternberg C: Long-term results with immediate androgen suppression and external irradiation in patients with locally advanced prostate cancer (an EORTC study): a phase III randomised trial. Lancet. 2002, 360: 103-106. 10.1016/S0140-6736(02)09408-4CrossRefPubMed
3.
go back to reference Hanks GE, Pajak TF, Porter A, Grignon D, Brereton H, Venkatesan V, Horwitz EM, Lawton C, Rosenthal SA, Sandler HM: Phase III trial of long-term adjuvant androgen deprivation after neoadjuvant hormonal cytoreduction and radiotherapy in locally advanced carcinoma of the prostate: the radiation therapy oncology group protocol 92–02. J Clin Oncol. 2003, 21: 3972-3978. 10.1200/JCO.2003.11.023CrossRefPubMed Hanks GE, Pajak TF, Porter A, Grignon D, Brereton H, Venkatesan V, Horwitz EM, Lawton C, Rosenthal SA, Sandler HM: Phase III trial of long-term adjuvant androgen deprivation after neoadjuvant hormonal cytoreduction and radiotherapy in locally advanced carcinoma of the prostate: the radiation therapy oncology group protocol 92–02. J Clin Oncol. 2003, 21: 3972-3978. 10.1200/JCO.2003.11.023CrossRefPubMed
4.
go back to reference Pilepich MV, Winter K, Lawton CA, Krisch RE, Wolkov HB, Movsas B, Hug EB, Asbell SO, Grignon D: Androgen suppression adjuvant to definitive radiotherapy in prostate carcinoma–long-term results of phase III RTOG 85–31. Int J Radiat Oncol Biol Phys. 2005, 61: 1285-1290. 10.1016/j.ijrobp.2004.08.047CrossRefPubMed Pilepich MV, Winter K, Lawton CA, Krisch RE, Wolkov HB, Movsas B, Hug EB, Asbell SO, Grignon D: Androgen suppression adjuvant to definitive radiotherapy in prostate carcinoma–long-term results of phase III RTOG 85–31. Int J Radiat Oncol Biol Phys. 2005, 61: 1285-1290. 10.1016/j.ijrobp.2004.08.047CrossRefPubMed
5.
go back to reference Pilepich MV, Winter K, John MJ, Mesic JB, Sause W, Rubin P, Lawton C, Machtay M, Grignon D: Phase III radiation therapy oncology group (RTOG) trial 86–10 of androgen deprivation adjuvant to definitive radiotherapy in locally advanced carcinoma of the prostate. Int J Radiat Oncol Biol Phys. 2001, 50: 1243-1252. 10.1016/S0360-3016(01)01579-6CrossRefPubMed Pilepich MV, Winter K, John MJ, Mesic JB, Sause W, Rubin P, Lawton C, Machtay M, Grignon D: Phase III radiation therapy oncology group (RTOG) trial 86–10 of androgen deprivation adjuvant to definitive radiotherapy in locally advanced carcinoma of the prostate. Int J Radiat Oncol Biol Phys. 2001, 50: 1243-1252. 10.1016/S0360-3016(01)01579-6CrossRefPubMed
6.
go back to reference Bavik C, Coleman I, Dean JP, Knudsen B, Plymate S, Nelson PS: The gene expression program of prostate fibroblast senescence modulates neoplastic epithelial cell proliferation through paracrine mechanisms. Cancer Res. 2006, 66: 794-802. 10.1158/0008-5472.CAN-05-1716CrossRefPubMed Bavik C, Coleman I, Dean JP, Knudsen B, Plymate S, Nelson PS: The gene expression program of prostate fibroblast senescence modulates neoplastic epithelial cell proliferation through paracrine mechanisms. Cancer Res. 2006, 66: 794-802. 10.1158/0008-5472.CAN-05-1716CrossRefPubMed
7.
go back to reference Chang BD, Watanabe K, Broude EV, Fang J, Poole JC, Kalinichenko TV, Roninson IB: Effects of p21Waf1/Cip1/Sdi1 on cellular gene expression: implications for carcinogenesis, senescence, and age-related diseases. Proc Natl Acad Sci USA. 2000, 97: 4291-4296. 10.1073/pnas.97.8.4291PubMedCentralCrossRefPubMed Chang BD, Watanabe K, Broude EV, Fang J, Poole JC, Kalinichenko TV, Roninson IB: Effects of p21Waf1/Cip1/Sdi1 on cellular gene expression: implications for carcinogenesis, senescence, and age-related diseases. Proc Natl Acad Sci USA. 2000, 97: 4291-4296. 10.1073/pnas.97.8.4291PubMedCentralCrossRefPubMed
8.
go back to reference Currid CA, O’Connor DP, Chang BD, Gebus C, Harris N, Dawson KA, Dunn MJ, Pennington SR, Roninson IB, Gallagher WM: Proteomic analysis of factors released from p21-overexpressing tumour cells. Proteomics. 2006, 6: 3739-3753. 10.1002/pmic.200500787CrossRefPubMed Currid CA, O’Connor DP, Chang BD, Gebus C, Harris N, Dawson KA, Dunn MJ, Pennington SR, Roninson IB, Gallagher WM: Proteomic analysis of factors released from p21-overexpressing tumour cells. Proteomics. 2006, 6: 3739-3753. 10.1002/pmic.200500787CrossRefPubMed
9.
go back to reference Krtolica A, Parrinello S, Lockett S, Desprez PY, Campisi J: Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci USA. 2001, 98: 12072-12077. 10.1073/pnas.211053698PubMedCentralCrossRefPubMed Krtolica A, Parrinello S, Lockett S, Desprez PY, Campisi J: Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci USA. 2001, 98: 12072-12077. 10.1073/pnas.211053698PubMedCentralCrossRefPubMed
10.
go back to reference Shay JW, Roninson IB: Hallmarks of senescence in carcinogenesis and cancer therapy. Oncogene. 2004, 23: 2919-2933. 10.1038/sj.onc.1207518CrossRefPubMed Shay JW, Roninson IB: Hallmarks of senescence in carcinogenesis and cancer therapy. Oncogene. 2004, 23: 2919-2933. 10.1038/sj.onc.1207518CrossRefPubMed
11.
go back to reference Keller S, Sanderson MP, Stoeck A, Altevogt P: Exosomes: from biogenesis and secretion to biological function. Immunol Lett. 2006, 107: 102-108. 10.1016/j.imlet.2006.09.005CrossRefPubMed Keller S, Sanderson MP, Stoeck A, Altevogt P: Exosomes: from biogenesis and secretion to biological function. Immunol Lett. 2006, 107: 102-108. 10.1016/j.imlet.2006.09.005CrossRefPubMed
12.
go back to reference Abusamra AJ, Zhong Z, Zheng X, Li M, Ichim TE, Chin JL, Min WP: Tumor exosomes expressing Fas ligand mediate CD8+ T-cell apoptosis. Blood Cells Mol Dis. 2005, 35: 169-173. 10.1016/j.bcmd.2005.07.001CrossRefPubMed Abusamra AJ, Zhong Z, Zheng X, Li M, Ichim TE, Chin JL, Min WP: Tumor exosomes expressing Fas ligand mediate CD8+ T-cell apoptosis. Blood Cells Mol Dis. 2005, 35: 169-173. 10.1016/j.bcmd.2005.07.001CrossRefPubMed
13.
go back to reference Muralidharan-Chari V, Clancy JW, Sedgwick A, D’Souza-Schorey C: Microvesicles: mediators of extracellular communication during cancer progression. J Cell Sci. 2010, 123: 1603-1611. 10.1242/jcs.064386PubMedCentralCrossRefPubMed Muralidharan-Chari V, Clancy JW, Sedgwick A, D’Souza-Schorey C: Microvesicles: mediators of extracellular communication during cancer progression. J Cell Sci. 2010, 123: 1603-1611. 10.1242/jcs.064386PubMedCentralCrossRefPubMed
14.
go back to reference Taylor DD, Gercel-Taylor C: Tumour-derived exosomes and their role in cancer-associated T-cell signalling defects. Br J Cancer. 2005, 92: 305-311.PubMedCentralPubMed Taylor DD, Gercel-Taylor C: Tumour-derived exosomes and their role in cancer-associated T-cell signalling defects. Br J Cancer. 2005, 92: 305-311.PubMedCentralPubMed
15.
go back to reference Valenti R, Huber V, Filipazzi P, Pilla L, Sovena G, Villa A, Corbelli A, Fais S, Parmiani G, Rivoltini L: Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-beta-mediated suppressive activity on T lymphocytes. Cancer Res. 2006, 66: 9290-9298. 10.1158/0008-5472.CAN-06-1819CrossRefPubMed Valenti R, Huber V, Filipazzi P, Pilla L, Sovena G, Villa A, Corbelli A, Fais S, Parmiani G, Rivoltini L: Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-beta-mediated suppressive activity on T lymphocytes. Cancer Res. 2006, 66: 9290-9298. 10.1158/0008-5472.CAN-06-1819CrossRefPubMed
16.
go back to reference Di Vizio D, Kim J, Hager MH, Morello M, Yang W, Lafargue CJ, True LD, Rubin MA, Adam RM, Beroukhim R: Oncosome formation in prostate cancer: association with a region of frequent chromosomal deletion in metastatic disease. Cancer Res. 2009, 69: 5601-5609. 10.1158/0008-5472.CAN-08-3860PubMedCentralCrossRefPubMed Di Vizio D, Kim J, Hager MH, Morello M, Yang W, Lafargue CJ, True LD, Rubin MA, Adam RM, Beroukhim R: Oncosome formation in prostate cancer: association with a region of frequent chromosomal deletion in metastatic disease. Cancer Res. 2009, 69: 5601-5609. 10.1158/0008-5472.CAN-08-3860PubMedCentralCrossRefPubMed
17.
go back to reference Sandvig K, Llorente A: Proteomic analysis of microvesicles released by the human prostate cancer cell line PC-3. Mol Cell Proteomics. 2012, 11: M111-012914PubMedCentralCrossRefPubMed Sandvig K, Llorente A: Proteomic analysis of microvesicles released by the human prostate cancer cell line PC-3. Mol Cell Proteomics. 2012, 11: M111-012914PubMedCentralCrossRefPubMed
18.
go back to reference Chatterjee D, Bai Y, Wang Z, Beach S, Mott S, Roy R, Braastad C, Sun Y, Mukhopadhyay A, Aggarwal BB: RKIP sensitizes prostate and breast cancer cells to drug-induced apoptosis. J Biol Chem. 2004, 279: 17515-17523. 10.1074/jbc.M313816200CrossRefPubMed Chatterjee D, Bai Y, Wang Z, Beach S, Mott S, Roy R, Braastad C, Sun Y, Mukhopadhyay A, Aggarwal BB: RKIP sensitizes prostate and breast cancer cells to drug-induced apoptosis. J Biol Chem. 2004, 279: 17515-17523. 10.1074/jbc.M313816200CrossRefPubMed
19.
go back to reference Berger R, Febbo PG, Majumder PK, Zhao JJ, Mukherjee S, Signoretti S, Campbell KT, Sellers WR, Roberts TM, Loda M: Androgen-induced differentiation and tumorigenicity of human prostate epithelial cells. Cancer Res. 2004, 64: 8867-8875. 10.1158/0008-5472.CAN-04-2938CrossRefPubMed Berger R, Febbo PG, Majumder PK, Zhao JJ, Mukherjee S, Signoretti S, Campbell KT, Sellers WR, Roberts TM, Loda M: Androgen-induced differentiation and tumorigenicity of human prostate epithelial cells. Cancer Res. 2004, 64: 8867-8875. 10.1158/0008-5472.CAN-04-2938CrossRefPubMed
20.
go back to reference Renzulli JF, Del Tatto M, Dooner G, Aliotta J, Goldstein L, Dooner M, Colvin G, Chatterjee D, Quesenberry P: Microvesicle induction of prostate specific gene expression in normal human bone marrow cells. J Urol. 2010, 184: 2165-2171. 10.1016/j.juro.2010.06.119PubMedCentralCrossRefPubMed Renzulli JF, Del Tatto M, Dooner G, Aliotta J, Goldstein L, Dooner M, Colvin G, Chatterjee D, Quesenberry P: Microvesicle induction of prostate specific gene expression in normal human bone marrow cells. J Urol. 2010, 184: 2165-2171. 10.1016/j.juro.2010.06.119PubMedCentralCrossRefPubMed
21.
go back to reference Zhang H, Pelech S: Using protein microarrays to study phosphorylation-mediated signal transduction. Semin Cell Dev Biol. 2012, 23: 872-882. 10.1016/j.semcdb.2012.05.009CrossRefPubMed Zhang H, Pelech S: Using protein microarrays to study phosphorylation-mediated signal transduction. Semin Cell Dev Biol. 2012, 23: 872-882. 10.1016/j.semcdb.2012.05.009CrossRefPubMed
22.
go back to reference Kasper S, Breitenbuecher F, Heidel F, Hoffarth S, Markova B, Schuler M, Fischer T: Targeting MCL-1 sensitizes FLT3-ITD-positive leukemias to cytotoxic therapies. Blood Cancer J. 2012, 2: e60- 10.1038/bcj.2012.5PubMedCentralCrossRefPubMed Kasper S, Breitenbuecher F, Heidel F, Hoffarth S, Markova B, Schuler M, Fischer T: Targeting MCL-1 sensitizes FLT3-ITD-positive leukemias to cytotoxic therapies. Blood Cancer J. 2012, 2: e60- 10.1038/bcj.2012.5PubMedCentralCrossRefPubMed
23.
go back to reference Mahon KL, Henshall SM, Sutherland RL, Horvath LG: Pathways of chemotherapy resistance in castration-resistant prostate cancer. Endocr Relat Cancer. 2011, 18: R103-R123. 10.1530/ERC-10-0343CrossRefPubMed Mahon KL, Henshall SM, Sutherland RL, Horvath LG: Pathways of chemotherapy resistance in castration-resistant prostate cancer. Endocr Relat Cancer. 2011, 18: R103-R123. 10.1530/ERC-10-0343CrossRefPubMed
24.
go back to reference Covey JM, Jaxel C, Kohn KW, Pommier Y: Protein-linked DNA strand breaks induced in mammalian cells by camptothecin, an inhibitor of topoisomerase I. Cancer Res. 1989, 49: 5016-5022.PubMed Covey JM, Jaxel C, Kohn KW, Pommier Y: Protein-linked DNA strand breaks induced in mammalian cells by camptothecin, an inhibitor of topoisomerase I. Cancer Res. 1989, 49: 5016-5022.PubMed
25.
go back to reference Mori S, Chang JT, Andrechek ER, Matsumura N, Baba T, Yao G, Kim JW, Gatza M, Murphy S, Nevins JR: Anchorage-independent cell growth signature identifies tumors with metastatic potential. Oncogene. 2009, 28: 2796-2805. 10.1038/onc.2009.139PubMedCentralCrossRefPubMed Mori S, Chang JT, Andrechek ER, Matsumura N, Baba T, Yao G, Kim JW, Gatza M, Murphy S, Nevins JR: Anchorage-independent cell growth signature identifies tumors with metastatic potential. Oncogene. 2009, 28: 2796-2805. 10.1038/onc.2009.139PubMedCentralCrossRefPubMed
27.
go back to reference Goldenberg DM, Zagzag D, Heselmeyer-Haddad KM, Berroa Garcia LY, Ried T, Loo M, Chang CH, Gold DV: Horizontal transmission and retention of malignancy, as well as functional human genes, after spontaneous fusion of human glioblastoma and hamster host cells in vivo. Int J Cancer. 2012, 131: 49-58. 10.1002/ijc.26327PubMedCentralCrossRefPubMed Goldenberg DM, Zagzag D, Heselmeyer-Haddad KM, Berroa Garcia LY, Ried T, Loo M, Chang CH, Gold DV: Horizontal transmission and retention of malignancy, as well as functional human genes, after spontaneous fusion of human glioblastoma and hamster host cells in vivo. Int J Cancer. 2012, 131: 49-58. 10.1002/ijc.26327PubMedCentralCrossRefPubMed
28.
go back to reference Gaiffe E, Pretet JL, Launay S, Jacquin E, Saunier M, Hetzel G, Oudet P, Mougin C: Apoptotic HPV positive cancer cells exhibit transforming properties. PLoS One. 2012, 7: e36766- 10.1371/journal.pone.0036766PubMedCentralCrossRefPubMed Gaiffe E, Pretet JL, Launay S, Jacquin E, Saunier M, Hetzel G, Oudet P, Mougin C: Apoptotic HPV positive cancer cells exhibit transforming properties. PLoS One. 2012, 7: e36766- 10.1371/journal.pone.0036766PubMedCentralCrossRefPubMed
29.
go back to reference Barton BE, Karras JG, Murphy TF, Barton A, Huang HF: Signal transducer and activator of transcription 3 (STAT3) activation in prostate cancer: direct STAT3 inhibition induces apoptosis in prostate cancer lines. Mol Cancer Ther. 2004, 3: 11-20. 10.1186/1476-4598-3-11CrossRefPubMed Barton BE, Karras JG, Murphy TF, Barton A, Huang HF: Signal transducer and activator of transcription 3 (STAT3) activation in prostate cancer: direct STAT3 inhibition induces apoptosis in prostate cancer lines. Mol Cancer Ther. 2004, 3: 11-20. 10.1186/1476-4598-3-11CrossRefPubMed
31.
go back to reference Chatterjee D, Moen EL, Chin YE: Inhibition of STAT3 activation by RKIP in colon cancer. Forum on Immunopathological Diseases and Therapeutics. 2011, 2: 35-45. 10.1615/ForumImmunDisTher.v2.i1.50.CrossRef Chatterjee D, Moen EL, Chin YE: Inhibition of STAT3 activation by RKIP in colon cancer. Forum on Immunopathological Diseases and Therapeutics. 2011, 2: 35-45. 10.1615/ForumImmunDisTher.v2.i1.50.CrossRef
32.
go back to reference Fizazi K: The role of Src in prostate cancer. Ann Oncol. 2007, 18: 1765-1773. 10.1093/annonc/mdm086CrossRefPubMed Fizazi K: The role of Src in prostate cancer. Ann Oncol. 2007, 18: 1765-1773. 10.1093/annonc/mdm086CrossRefPubMed
33.
go back to reference Bluyssen HA, Rastmanesh MM, Tilburgs C, Jie K, Wesseling S, Goumans MJ, Boer P, Joles JA, Braam B: IFN gamma-dependent SOCS3 expression inhibits IL-6-induced STAT3 phosphorylation and differentially affects IL-6 mediated transcriptional responses in endothelial cells. Am J Physiol Cell Physiol. 2010, 299: C354-362. 10.1152/ajpcell.00513.2009CrossRefPubMed Bluyssen HA, Rastmanesh MM, Tilburgs C, Jie K, Wesseling S, Goumans MJ, Boer P, Joles JA, Braam B: IFN gamma-dependent SOCS3 expression inhibits IL-6-induced STAT3 phosphorylation and differentially affects IL-6 mediated transcriptional responses in endothelial cells. Am J Physiol Cell Physiol. 2010, 299: C354-362. 10.1152/ajpcell.00513.2009CrossRefPubMed
34.
go back to reference Sen B, Peng S, Woods DM, Wistuba I, Bell D, El-Naggar AK, Lai SY, Johnson FM: STAT5A-mediated SOCS2 expression regulates Jak2 and STAT3 activity following c-Src inhibition in head and neck squamous carcinoma. Clin Cancer Res. 2012, 18: 127-139. 10.1158/1078-0432.CCR-11-1889PubMedCentralCrossRefPubMed Sen B, Peng S, Woods DM, Wistuba I, Bell D, El-Naggar AK, Lai SY, Johnson FM: STAT5A-mediated SOCS2 expression regulates Jak2 and STAT3 activity following c-Src inhibition in head and neck squamous carcinoma. Clin Cancer Res. 2012, 18: 127-139. 10.1158/1078-0432.CCR-11-1889PubMedCentralCrossRefPubMed
35.
go back to reference Corbit KC, Trakul N, Eves EM, Diaz B, Marshall M, Rosner MR: Activation of Raf-1 signaling by protein kinase C through a mechanism involving Raf kinase inhibitory protein. J Biol Chem. 2003, 278: 13061-13068. 10.1074/jbc.M210015200CrossRefPubMed Corbit KC, Trakul N, Eves EM, Diaz B, Marshall M, Rosner MR: Activation of Raf-1 signaling by protein kinase C through a mechanism involving Raf kinase inhibitory protein. J Biol Chem. 2003, 278: 13061-13068. 10.1074/jbc.M210015200CrossRefPubMed
36.
go back to reference Chander H, Halpern M, Resnick-Silverman L, Manfredi JJ, Germain D: Skp2B overexpression alters a prohibitin-p53 axis and the transcription of PAPP-A, the protease of insulin-like growth factor binding protein 4. PLoS One. 2011, 6: e22456- 10.1371/journal.pone.0022456PubMedCentralCrossRefPubMed Chander H, Halpern M, Resnick-Silverman L, Manfredi JJ, Germain D: Skp2B overexpression alters a prohibitin-p53 axis and the transcription of PAPP-A, the protease of insulin-like growth factor binding protein 4. PLoS One. 2011, 6: e22456- 10.1371/journal.pone.0022456PubMedCentralCrossRefPubMed
37.
go back to reference Wang S, Nath N, Fusaro G, Chellappan S: Rb and prohibitin target distinct regions of E2F1 for repression and respond to different upstream signals. Mol Cell Biol. 1999, 19: 7447-7460.PubMedCentralCrossRefPubMed Wang S, Nath N, Fusaro G, Chellappan S: Rb and prohibitin target distinct regions of E2F1 for repression and respond to different upstream signals. Mol Cell Biol. 1999, 19: 7447-7460.PubMedCentralCrossRefPubMed
38.
go back to reference Fusaro G, Dasgupta P, Rastogi S, Joshi B, Chellappan S: Prohibitin induces the transcriptional activity of p53 and is exported from the nucleus upon apoptotic signaling. J Biol Chem. 2003, 278: 47853-47861. 10.1074/jbc.M305171200CrossRefPubMed Fusaro G, Dasgupta P, Rastogi S, Joshi B, Chellappan S: Prohibitin induces the transcriptional activity of p53 and is exported from the nucleus upon apoptotic signaling. J Biol Chem. 2003, 278: 47853-47861. 10.1074/jbc.M305171200CrossRefPubMed
39.
go back to reference Sievers C, Billig G, Gottschalk K, Rudel T: Prohibitins are required for cancer cell proliferation and adhesion. PLoS One. 2010, 5: e12735- 10.1371/journal.pone.0012735PubMedCentralCrossRefPubMed Sievers C, Billig G, Gottschalk K, Rudel T: Prohibitins are required for cancer cell proliferation and adhesion. PLoS One. 2010, 5: e12735- 10.1371/journal.pone.0012735PubMedCentralCrossRefPubMed
40.
go back to reference Radhakrishnan VM, Martinez JD: 14-3-3gamma induces oncogenic transformation by stimulating MAP kinase and PI3K signaling. PLoS One. 2010, 5: e11433- 10.1371/journal.pone.0011433PubMedCentralCrossRefPubMed Radhakrishnan VM, Martinez JD: 14-3-3gamma induces oncogenic transformation by stimulating MAP kinase and PI3K signaling. PLoS One. 2010, 5: e11433- 10.1371/journal.pone.0011433PubMedCentralCrossRefPubMed
41.
go back to reference Wang Z, Nesland JM, Suo Z, Trope CG, Holm R: The prognostic value of 14-3-3 isoforms in vulvar squamous cell carcinoma cases: 14-3-3beta and epsilon are independent prognostic factors for these tumors. PLoS One. 2011, 6: e24843- 10.1371/journal.pone.0024843PubMedCentralCrossRefPubMed Wang Z, Nesland JM, Suo Z, Trope CG, Holm R: The prognostic value of 14-3-3 isoforms in vulvar squamous cell carcinoma cases: 14-3-3beta and epsilon are independent prognostic factors for these tumors. PLoS One. 2011, 6: e24843- 10.1371/journal.pone.0024843PubMedCentralCrossRefPubMed
42.
go back to reference Pan Y, Zhong LJ, Zhou H, Wang X, Chen K, Yang HP, Xiaokaiti Y, Maimaiti A, Jiang L, Li XJ: Roles of vimentin and 14-3-3 zeta/delta in the inhibitory effects of heparin on PC-3M cell proliferation and B16-F10-luc-G5 cells metastasis. Acta Pharmacol Sin. 2012, 33: 798-808. 10.1038/aps.2012.42PubMedCentralCrossRefPubMed Pan Y, Zhong LJ, Zhou H, Wang X, Chen K, Yang HP, Xiaokaiti Y, Maimaiti A, Jiang L, Li XJ: Roles of vimentin and 14-3-3 zeta/delta in the inhibitory effects of heparin on PC-3M cell proliferation and B16-F10-luc-G5 cells metastasis. Acta Pharmacol Sin. 2012, 33: 798-808. 10.1038/aps.2012.42PubMedCentralCrossRefPubMed
43.
go back to reference Murata T, Takayama K, Urano T, Fujimura T, Ashikari D, Obinata D, Horie-Inoue K, Takahashi S, Ouchi Y, Homma Y, Inoue S: 14-3-3zeta, a novel androgen-responsive gene, is upregulated in prostate cancer and promotes prostate cancer cell proliferation and survival. Clin Cancer Res. 2012, 18: 5617-5627. 10.1158/1078-0432.CCR-12-0281CrossRefPubMed Murata T, Takayama K, Urano T, Fujimura T, Ashikari D, Obinata D, Horie-Inoue K, Takahashi S, Ouchi Y, Homma Y, Inoue S: 14-3-3zeta, a novel androgen-responsive gene, is upregulated in prostate cancer and promotes prostate cancer cell proliferation and survival. Clin Cancer Res. 2012, 18: 5617-5627. 10.1158/1078-0432.CCR-12-0281CrossRefPubMed
44.
go back to reference Titus MA, Tan JA, Gregory CW, Ford OH, Subramanian RR, Fu H, Wilson EM, Mohler JL, French FS: 14-3-3{eta} amplifies androgen receptor actions in prostate cancer. Clin Cancer Res. 2009, 15: 7571-7581. 10.1158/1078-0432.CCR-08-1976PubMedCentralCrossRefPubMed Titus MA, Tan JA, Gregory CW, Ford OH, Subramanian RR, Fu H, Wilson EM, Mohler JL, French FS: 14-3-3{eta} amplifies androgen receptor actions in prostate cancer. Clin Cancer Res. 2009, 15: 7571-7581. 10.1158/1078-0432.CCR-08-1976PubMedCentralCrossRefPubMed
45.
go back to reference Urano T, Takahashi S, Suzuki T, Fujimura T, Fujita M, Kumagai J, Horie-Inoue K, Sasano H, Kitamura T, Ouchi Y, Inoue S: 14-3-3sigma is down-regulated in human prostate cancer. Biochem Biophys Res Commun. 2004, 319: 795-800. 10.1016/j.bbrc.2004.05.056CrossRefPubMed Urano T, Takahashi S, Suzuki T, Fujimura T, Fujita M, Kumagai J, Horie-Inoue K, Sasano H, Kitamura T, Ouchi Y, Inoue S: 14-3-3sigma is down-regulated in human prostate cancer. Biochem Biophys Res Commun. 2004, 319: 795-800. 10.1016/j.bbrc.2004.05.056CrossRefPubMed
46.
go back to reference Lodygin D, Diebold J, Hermeking H: Prostate cancer is characterized by epigenetic silencing of 14-3-3sigma expression. Oncogene. 2004, 23: 9034-9041. 10.1038/sj.onc.1208004CrossRefPubMed Lodygin D, Diebold J, Hermeking H: Prostate cancer is characterized by epigenetic silencing of 14-3-3sigma expression. Oncogene. 2004, 23: 9034-9041. 10.1038/sj.onc.1208004CrossRefPubMed
47.
go back to reference Roy S, McPherson RA, Apolloni A, Yan J, Lane A, Clyde-Smith J, Hancock JF: 14-3-3 facilitates Ras-dependent Raf-1 activation in vitro and in vivo. Mol Cell Biol. 1998, 18: 3947-3955.PubMedCentralCrossRefPubMed Roy S, McPherson RA, Apolloni A, Yan J, Lane A, Clyde-Smith J, Hancock JF: 14-3-3 facilitates Ras-dependent Raf-1 activation in vitro and in vivo. Mol Cell Biol. 1998, 18: 3947-3955.PubMedCentralCrossRefPubMed
48.
go back to reference Freed E, Symons M, Macdonald SG, McCormick F, Ruggieri R: Binding of 14-3-3 proteins to the protein kinase Raf and effects on its activation. Science. 1994, 265: 1713-1716. 10.1126/science.8085158CrossRefPubMed Freed E, Symons M, Macdonald SG, McCormick F, Ruggieri R: Binding of 14-3-3 proteins to the protein kinase Raf and effects on its activation. Science. 1994, 265: 1713-1716. 10.1126/science.8085158CrossRefPubMed
49.
go back to reference Fischer A, Baljuls A, Reinders J, Nekhoroshkova E, Sibilski C, Metz R, Albert S, Rajalingam K, Hekman M, Rapp UR: Regulation of RAF activity by 14-3-3 proteins: RAF kinases associate functionally with both homo- and heterodimeric forms of 14-3-3 proteins. J Biol Chem. 2009, 284: 3183-3194.CrossRefPubMed Fischer A, Baljuls A, Reinders J, Nekhoroshkova E, Sibilski C, Metz R, Albert S, Rajalingam K, Hekman M, Rapp UR: Regulation of RAF activity by 14-3-3 proteins: RAF kinases associate functionally with both homo- and heterodimeric forms of 14-3-3 proteins. J Biol Chem. 2009, 284: 3183-3194.CrossRefPubMed
Metadata
Title
Reversal of chemosensitivity and induction of cell malignancy of a non-malignant prostate cancer cell line upon extracellular vesicle exposure
Authors
Kiriaki Panagopoulos
Sam Cross-Knorr
Christen Dillard
Dionysios Pantazatos
Michael Del Tatto
David Mills
Lisa Goldstein
Joseph Renzulli
Peter Quesenberry
Devasis Chatterjee
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2013
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-12-118

Other articles of this Issue 1/2013

Molecular Cancer 1/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine