Skip to main content
Top
Published in: Malaria Journal 1/2003

Open Access 01-12-2003 | Research

Sex-specific and blood meal-induced proteins of Anopheles gambiae midguts: analysis by two-dimensional gel electrophoresis

Authors: GI Prévot, C Laurent-Winter, F Rodhain, C Bourgouin

Published in: Malaria Journal | Issue 1/2003

Login to get access

Abstract

Background

Anopheles gambiae is the main vector of Plasmodium falciparum in Africa. The mosquito midgut constitutes a barrier that the parasite must cross if it is to develop and be transmitted. Despite the central role of the mosquito midgut in the host/parasite interaction, little is known about its protein composition. Characterisation of An. gambiae midgut proteins may identify the proteins that render An. gambiae receptive to the malaria parasite.

Methods

We carried out two-dimensional gel electrophoresis of An. gambiae midgut proteins and compared protein profiles for midguts from males, sugar-fed females and females fed on human blood.

Results

Very few differences were detected between male and female mosquitoes for the approximately 375 silver-stained proteins. Male midguts contained ten proteins not detected in sugar-fed or blood-fed females, which are therefore probably involved in male-specific functions; conversely, female midguts contained twenty-three proteins absent from male midguts. Eight of these proteins were specific to sugar-fed females, and another ten, to blood-fed females.

Conclusion

Mass spectrometry analysis of the proteins found only in blood-fed female midguts, together with data from the recent sequencing of the An. gambiae genome, should make it possible to determine the role of these proteins in blood digestion or parasite receptivity.
Appendix
Available only for authorised users
Literature
2.
go back to reference Sachs J, Malaney P: The economic and social burden of malaria. Nature. 2002, 415: 680-5. 10.1038/415680a.CrossRefPubMed Sachs J, Malaney P: The economic and social burden of malaria. Nature. 2002, 415: 680-5. 10.1038/415680a.CrossRefPubMed
3.
go back to reference Billker O, Lindo V, Panico M, Etienne AE, Paxton T, Dell A, Rogers M, Sinden RE, Morris HR: Identification of xanthurenic acid as the putative inducer of malaria development in the mosquito. Nature. 1998, 392: 289-292. 10.1038/32667.CrossRefPubMed Billker O, Lindo V, Panico M, Etienne AE, Paxton T, Dell A, Rogers M, Sinden RE, Morris HR: Identification of xanthurenic acid as the putative inducer of malaria development in the mosquito. Nature. 1998, 392: 289-292. 10.1038/32667.CrossRefPubMed
4.
go back to reference Garcia GE, Wirtz RA, Rosenberg R: Isolation of a substance from the mosquito that activates Plasmodium fertilization. Mol Biochem Parasitol. 1997, 88: 127-135. 10.1016/S0166-6851(97)00086-8.CrossRefPubMed Garcia GE, Wirtz RA, Rosenberg R: Isolation of a substance from the mosquito that activates Plasmodium fertilization. Mol Biochem Parasitol. 1997, 88: 127-135. 10.1016/S0166-6851(97)00086-8.CrossRefPubMed
5.
go back to reference Shahabuddin M, Kaslow DC: Plasmodium: Parasite chitinase and its role in malaria transmission. Exp Parasitol. 1994, 79: 85-88. 10.1006/expr.1994.1066.CrossRefPubMed Shahabuddin M, Kaslow DC: Plasmodium: Parasite chitinase and its role in malaria transmission. Exp Parasitol. 1994, 79: 85-88. 10.1006/expr.1994.1066.CrossRefPubMed
6.
go back to reference Shahabuddin M, Lemos FJA, Kaslow DC, Jacobslorena M: Antibody-mediated inhibition of Aedes aegypti midgut trypsins blocks sporogonic development of Plasmodium gallinaceum. Infect Immun. 1996, 64: 739-743.PubMedCentralPubMed Shahabuddin M, Lemos FJA, Kaslow DC, Jacobslorena M: Antibody-mediated inhibition of Aedes aegypti midgut trypsins blocks sporogonic development of Plasmodium gallinaceum. Infect Immun. 1996, 64: 739-743.PubMedCentralPubMed
7.
go back to reference Dimopoulos G, Seeley D, Wolf A, Kafatos FC: Malaria infection of the mosquito Anopheles gambiae activates immune-responsive genes during critical transition stages of the parasite life cycle. EMBO J. 1998, 17: 6115-6123. 10.1093/emboj/17.21.6115.PubMedCentralCrossRefPubMed Dimopoulos G, Seeley D, Wolf A, Kafatos FC: Malaria infection of the mosquito Anopheles gambiae activates immune-responsive genes during critical transition stages of the parasite life cycle. EMBO J. 1998, 17: 6115-6123. 10.1093/emboj/17.21.6115.PubMedCentralCrossRefPubMed
8.
go back to reference Dimopoulos G, Muller H, Levashina EA, Kafatos FC: Innate immune defense against malaria infection in the mosquito. Curr Opin Immunol. 2001, 13: 79-88. 10.1016/S0952-7915(00)00186-2.CrossRefPubMed Dimopoulos G, Muller H, Levashina EA, Kafatos FC: Innate immune defense against malaria infection in the mosquito. Curr Opin Immunol. 2001, 13: 79-88. 10.1016/S0952-7915(00)00186-2.CrossRefPubMed
9.
go back to reference Tahar R, Boudin C, Thiery I, Bourgouin C: Immune response of Anopheles gambiae to the early sporogonic stages of the human malaria parasite, Plasmodium falciparum. EMBO J. 2002, 21: 6673-6680. 10.1093/emboj/cdf664.PubMedCentralCrossRefPubMed Tahar R, Boudin C, Thiery I, Bourgouin C: Immune response of Anopheles gambiae to the early sporogonic stages of the human malaria parasite, Plasmodium falciparum. EMBO J. 2002, 21: 6673-6680. 10.1093/emboj/cdf664.PubMedCentralCrossRefPubMed
10.
go back to reference Kokoza V, Ahmed A, Cho WL, Jasinskiene N, James AA, Raikhel A: Engineering bloodmeal-activated systemic immunity in the yellow fever mosquito, Aedes aegypti. Proc Natl Acad Sci U S A. 2000, 97: 9144-9. 10.1073/pnas.160258197.PubMedCentralCrossRefPubMed Kokoza V, Ahmed A, Cho WL, Jasinskiene N, James AA, Raikhel A: Engineering bloodmeal-activated systemic immunity in the yellow fever mosquito, Aedes aegypti. Proc Natl Acad Sci U S A. 2000, 97: 9144-9. 10.1073/pnas.160258197.PubMedCentralCrossRefPubMed
11.
go back to reference Raikhel AS, Kokoza VA, Zhu J, Martin D, Wang S-F, Li C, Sun G, Ahmed A, Dittmer N, Attardo G: Molecular biology of mosquito vitellogenesis: from basic studies to genetic engineering of antipathogen immunity. Insect Biochem Mol Biol. 2002, 32: 1275-1286. 10.1016/S0965-1748(02)00090-5.CrossRefPubMed Raikhel AS, Kokoza VA, Zhu J, Martin D, Wang S-F, Li C, Sun G, Ahmed A, Dittmer N, Attardo G: Molecular biology of mosquito vitellogenesis: from basic studies to genetic engineering of antipathogen immunity. Insect Biochem Mol Biol. 2002, 32: 1275-1286. 10.1016/S0965-1748(02)00090-5.CrossRefPubMed
12.
go back to reference Shen Z, Dimopoulos G, Kafatos FC, Jacobs-Lorena M: A cell surface mucin specifically expressed in the midgut of the malaria mosquito Anopheles gambiae. Proc Natl Acad Sci U S A. 1999, 96: 5610-5. 10.1073/pnas.96.10.5610.PubMedCentralCrossRefPubMed Shen Z, Dimopoulos G, Kafatos FC, Jacobs-Lorena M: A cell surface mucin specifically expressed in the midgut of the malaria mosquito Anopheles gambiae. Proc Natl Acad Sci U S A. 1999, 96: 5610-5. 10.1073/pnas.96.10.5610.PubMedCentralCrossRefPubMed
13.
go back to reference Oduol F, Xu JN, Niare O, Natarajan R, Vernick KD: Genes identified by an expression screen of the vector mosquito Anopheles gambiae display differential molecular immune response to malaria parasites and bacteria. Proc Natl Acad Sci U S A. 2000, 97: 11397-11402. 10.1073/pnas.180060997.PubMedCentralCrossRefPubMed Oduol F, Xu JN, Niare O, Natarajan R, Vernick KD: Genes identified by an expression screen of the vector mosquito Anopheles gambiae display differential molecular immune response to malaria parasites and bacteria. Proc Natl Acad Sci U S A. 2000, 97: 11397-11402. 10.1073/pnas.180060997.PubMedCentralCrossRefPubMed
14.
go back to reference Billingsley PF, Hecker H: Blood digestion in the mosquito Anopheles stephensi Liston (Diptera: Culicidae): activity and distribution of trypsin, aminopeptidase and α-glucosidase in the midgut. J Med Entomol. 1991, 28: 865-871.CrossRefPubMed Billingsley PF, Hecker H: Blood digestion in the mosquito Anopheles stephensi Liston (Diptera: Culicidae): activity and distribution of trypsin, aminopeptidase and α-glucosidase in the midgut. J Med Entomol. 1991, 28: 865-871.CrossRefPubMed
15.
go back to reference Chadee DD, Beier JC: Blood-digestion kinetics of four Anopheles species from Trinidad, West Indies. Ann Trop Med Parasitol. 1995, 89: 531-540.PubMed Chadee DD, Beier JC: Blood-digestion kinetics of four Anopheles species from Trinidad, West Indies. Ann Trop Med Parasitol. 1995, 89: 531-540.PubMed
16.
go back to reference Chege GM, Beier JC: Blood acquisition and processing by three Anopheles (Diptera: Culicidae) species with different innate susceptibilities to Plasmodium falciparum. J Med Entomol. 1998, 35: 319-23.CrossRefPubMed Chege GM, Beier JC: Blood acquisition and processing by three Anopheles (Diptera: Culicidae) species with different innate susceptibilities to Plasmodium falciparum. J Med Entomol. 1998, 35: 319-23.CrossRefPubMed
17.
go back to reference Clements AN: The biology of mosquitoes. London: Chapman and Hall. 1992 Clements AN: The biology of mosquitoes. London: Chapman and Hall. 1992
18.
go back to reference Lehane MJ, Billingsley PF: The Insect Midgut. Chapman and Hall. 1996 Lehane MJ, Billingsley PF: The Insect Midgut. Chapman and Hall. 1996
19.
go back to reference Graf R, Raikhel AS, Brown MR, Lea AO, Briegel H: Mosquito trypsin: immunocytochemical localisation in the midgut of blood-fed Aedes aegypti (L.). Cell Tissue Res. 1986, 245: 19-27.CrossRefPubMed Graf R, Raikhel AS, Brown MR, Lea AO, Briegel H: Mosquito trypsin: immunocytochemical localisation in the midgut of blood-fed Aedes aegypti (L.). Cell Tissue Res. 1986, 245: 19-27.CrossRefPubMed
20.
go back to reference Muller HM, Vizioli I, della Torre A, Crisanti A: Temporal and spatial expression of serine protease genes in Anopheles gambiae. Parassitologia. 1993, 35: 73-6.PubMed Muller HM, Vizioli I, della Torre A, Crisanti A: Temporal and spatial expression of serine protease genes in Anopheles gambiae. Parassitologia. 1993, 35: 73-6.PubMed
21.
go back to reference Müller HM, Crampton JM, Dellatorre A, Sinden R, Crisanti A: Members of a trypsin gene family in Anopheles gambiae are induced in the gut by bloodmeal. EMBO J. 1993, 12: 2891-2900.PubMedCentralPubMed Müller HM, Crampton JM, Dellatorre A, Sinden R, Crisanti A: Members of a trypsin gene family in Anopheles gambiae are induced in the gut by bloodmeal. EMBO J. 1993, 12: 2891-2900.PubMedCentralPubMed
22.
go back to reference Lal AA, Patterson PS, Sacci JB, Vaughan JA, Paul C, Collins WE, Wirtz RA, Azad AF: Anti-mosquito midgut antibodies block development of Plasmodium falciparum and Plasmodium vivax in multiple species of Anopheles mosquitoes and reduce vector fecundity and survivorship. Proc Natl Acad Sci U S A. 2001, 98: 5228-33. 10.1073/pnas.091447398.PubMedCentralCrossRefPubMed Lal AA, Patterson PS, Sacci JB, Vaughan JA, Paul C, Collins WE, Wirtz RA, Azad AF: Anti-mosquito midgut antibodies block development of Plasmodium falciparum and Plasmodium vivax in multiple species of Anopheles mosquitoes and reduce vector fecundity and survivorship. Proc Natl Acad Sci U S A. 2001, 98: 5228-33. 10.1073/pnas.091447398.PubMedCentralCrossRefPubMed
23.
go back to reference Ghosh AK, Ribolla PE, Jacobs-Lorena M: Targeting Plasmodium ligands on mosquito salivary glands and midgut with a phage display peptide library. Proc Natl Acad Sci U S A. 2001, 98: 13278-81. 10.1073/pnas.241491198.PubMedCentralCrossRefPubMed Ghosh AK, Ribolla PE, Jacobs-Lorena M: Targeting Plasmodium ligands on mosquito salivary glands and midgut with a phage display peptide library. Proc Natl Acad Sci U S A. 2001, 98: 13278-81. 10.1073/pnas.241491198.PubMedCentralCrossRefPubMed
24.
go back to reference Ito J, Ghosh A, Moreira LA, Wimmer EA, Jacobs-Lorena M: Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite. Nature. 2002, 417: 452-5. 10.1038/417452a.CrossRefPubMed Ito J, Ghosh A, Moreira LA, Wimmer EA, Jacobs-Lorena M: Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite. Nature. 2002, 417: 452-5. 10.1038/417452a.CrossRefPubMed
25.
go back to reference Tchuinkam T, Mulder B, Dechering K, Stoffels H, Verhave JP, Cot M, Carnevale P, Meuwissen JHET, Robert V: Experimental infections of Anopheles gambiae with Plasmodium falciparum of naturally infected gametocyte carriers in Cameroon – factors influencing the infectivity to mosquitoes. Trop Med Parasitol. 1993, 44: 271-276.PubMed Tchuinkam T, Mulder B, Dechering K, Stoffels H, Verhave JP, Cot M, Carnevale P, Meuwissen JHET, Robert V: Experimental infections of Anopheles gambiae with Plasmodium falciparum of naturally infected gametocyte carriers in Cameroon – factors influencing the infectivity to mosquitoes. Trop Med Parasitol. 1993, 44: 271-276.PubMed
26.
go back to reference Prévot GI, Laurent-Winter C, Feldmann AM, Rodhain F, Bourgouin C: Two-dimensional gel analysis of midgut proteins of Anopheles stephensi lines with different susceptibility to Plasmodium falciparum infection. Insect Mol Biol. 1998, 7: 375-383. 10.1046/j.1365-2583.1998.740375.x.CrossRefPubMed Prévot GI, Laurent-Winter C, Feldmann AM, Rodhain F, Bourgouin C: Two-dimensional gel analysis of midgut proteins of Anopheles stephensi lines with different susceptibility to Plasmodium falciparum infection. Insect Mol Biol. 1998, 7: 375-383. 10.1046/j.1365-2583.1998.740375.x.CrossRefPubMed
27.
go back to reference Harrington CR: Lowry protein assay containing sodium dodecyl sulfate in microtiter plates for protein determinations on fractions from brain tissue. Anal Biochem. 1990, 186: 285-287.CrossRefPubMed Harrington CR: Lowry protein assay containing sodium dodecyl sulfate in microtiter plates for protein determinations on fractions from brain tissue. Anal Biochem. 1990, 186: 285-287.CrossRefPubMed
28.
go back to reference Markwell MAK, Haas SM, Bieber LL, Tolbert NE: A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem. 1978, 87: 206-210.CrossRefPubMed Markwell MAK, Haas SM, Bieber LL, Tolbert NE: A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem. 1978, 87: 206-210.CrossRefPubMed
29.
go back to reference Garrels JI: Quantitative two-dimensional gel electrophoresis of proteins. Meth Enzymol. 1983, 100: 411-423.CrossRefPubMed Garrels JI: Quantitative two-dimensional gel electrophoresis of proteins. Meth Enzymol. 1983, 100: 411-423.CrossRefPubMed
30.
go back to reference Laurent-Winter C, Fougère-Deschatrette C, Weiss MC: Identification of polypeptides whose presence correlates with retention or loss of an albumin extinguisher chromosome in rat hepatoma-mouse L cell fibroblast microcell hybrids. Differentiation. 1994, 55: 225-232. 10.1046/j.1432-0436.1994.5530225.x.CrossRefPubMed Laurent-Winter C, Fougère-Deschatrette C, Weiss MC: Identification of polypeptides whose presence correlates with retention or loss of an albumin extinguisher chromosome in rat hepatoma-mouse L cell fibroblast microcell hybrids. Differentiation. 1994, 55: 225-232. 10.1046/j.1432-0436.1994.5530225.x.CrossRefPubMed
31.
go back to reference Morrissey JH: Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem. 1981, 117: 307-310.CrossRefPubMed Morrissey JH: Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem. 1981, 117: 307-310.CrossRefPubMed
32.
go back to reference Hecker H, Freyvogel TA, Briegel H, Steiger R: The ultrastructure of midgut epithelium in Aedes aegypti L. (Insecta, Diptera) males. Acta Trop. 1971, 28: 275-290.PubMed Hecker H, Freyvogel TA, Briegel H, Steiger R: The ultrastructure of midgut epithelium in Aedes aegypti L. (Insecta, Diptera) males. Acta Trop. 1971, 28: 275-290.PubMed
33.
go back to reference Hecker H, Freyvogel TA, Briegel H, Steiger R: Ultrastructural differentiation of the midgut epithelium in female Aedes aegytpi L. (Insecta, Diptera) imagines. Acta Trop. 1971, 28: 80-104.PubMed Hecker H, Freyvogel TA, Briegel H, Steiger R: Ultrastructural differentiation of the midgut epithelium in female Aedes aegytpi L. (Insecta, Diptera) imagines. Acta Trop. 1971, 28: 80-104.PubMed
34.
go back to reference Hecker H: Structure and function of midgut epithelial cells in Culicidae mosquitoes (Insecta, Diptera). Cell Tissue Res. 1977, 184: 321-341.CrossRefPubMed Hecker H: Structure and function of midgut epithelial cells in Culicidae mosquitoes (Insecta, Diptera). Cell Tissue Res. 1977, 184: 321-341.CrossRefPubMed
35.
go back to reference Cazares-Raga FE, Sanchez-Contreras ME, Rodriguez MH, Hernandez-Hernandez FC: Sex-specific proteins and proteases present in the midguts of Anopheles albimanus (Diptera: Culicidae). J Med Entomol. 1998, 35: 184-6.CrossRefPubMed Cazares-Raga FE, Sanchez-Contreras ME, Rodriguez MH, Hernandez-Hernandez FC: Sex-specific proteins and proteases present in the midguts of Anopheles albimanus (Diptera: Culicidae). J Med Entomol. 1998, 35: 184-6.CrossRefPubMed
36.
go back to reference Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, Wincker P, Clark AG, Ribeiro JM, Wides R: The genome sequence of the malaria mosquito Anopheles gambiae. Science. 2002, 298: 129-49. 10.1126/science.1076181.CrossRefPubMed Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, Wincker P, Clark AG, Ribeiro JM, Wides R: The genome sequence of the malaria mosquito Anopheles gambiae. Science. 2002, 298: 129-49. 10.1126/science.1076181.CrossRefPubMed
37.
go back to reference Grossman GL, Rafferty CS, Clayton JR, Stevens TK, Mukabayire O, Benedict MQ: Germline transformation of the malaria vector, Anopheles gambiae, with the piggyBac transposable element. Insect Mol Biol. 2001, 10: 597-604. 10.1046/j.0962-1075.2001.00299.x.CrossRefPubMed Grossman GL, Rafferty CS, Clayton JR, Stevens TK, Mukabayire O, Benedict MQ: Germline transformation of the malaria vector, Anopheles gambiae, with the piggyBac transposable element. Insect Mol Biol. 2001, 10: 597-604. 10.1046/j.0962-1075.2001.00299.x.CrossRefPubMed
Metadata
Title
Sex-specific and blood meal-induced proteins of Anopheles gambiae midguts: analysis by two-dimensional gel electrophoresis
Authors
GI Prévot
C Laurent-Winter
F Rodhain
C Bourgouin
Publication date
01-12-2003
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2003
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/1475-2875-2-1

Other articles of this Issue 1/2003

Malaria Journal 1/2003 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine