Skip to main content
Top
Published in: Malaria Journal 1/2014

Open Access 01-12-2014 | Research

Molecular characterization of Plasmodium falciparum uracil-DNA glycosylase and its potential as a new anti-malarial drug target

Authors: Thidarat Suksangpleng, Ubolsree Leartsakulpanich, Saengduen Moonsom, Saranya Siribal, Usa Boonyuen, George E Wright, Porntip Chavalitshewinkoon-Petmitr

Published in: Malaria Journal | Issue 1/2014

Login to get access

Abstract

Background

Based on resistance of currently used anti-malarials, a new anti-malarial drug target against Plasmodium falciparum is urgently needed. Damaged DNA cannot be transcribed without prior DNA repair; therefore, uracil-DNA glycosylase, playing an important role in base excision repair, may act as a candidate for a new anti-malarial drug target.

Methods

Initially, the native PfUDG from parasite crude extract was partially purified using two columns, and the glycosylase activity was monitored. The existence of malarial UDG activity prompted the recombinant expression of PfUDG for further characterization. The PfUDG from chloroquine and pyrimethamine resistant P. falciparum strain K1 was amplified, cloned into the expression vector, and expressed in Escherichia coli. The recombinant PfUDG was analysed by SDS-PAGE and identified by LC-MS/MS. The three dimensional structure was modelled. Biochemical properties were characterized. Inhibitory effects of 12 uracil-derivatives on PfUDG activity were investigated. Inhibition of parasite growth was determined in vitro using SYBR Green I and compared with results from human cytotoxicity tests.

Results

The native PfUDG was partially purified with a specific activity of 1,811.7 units/mg (113.2 fold purification). After cloning of 966-bp PCR product, the 40-kDa hexa-histidine tagged PfUDG was expressed and identified. The amino acid sequence of PfUDG showed only 24.8% similarity compared with the human enzyme. The biochemical characteristics of PfUDGs were quite similar. They were inhibited by uracil glycosylase inhibitor protein as found in other organisms. Interestingly, recombinant PfUDG was inhibited by two uracil-derived compounds; 1-methoxyethyl-6-(p-n-octylanilino)uracil (IC50 of 16.75 μM) and 6-(phenylhydrazino)uracil (IC50 of 77.5 μM). Both compounds also inhibited parasite growth with IC50s of 15.6 and 12.8 μM, respectively. Moreover, 1-methoxyethyl-6-(p-n-octylanilino)uracil was not toxic to HepG2 cells, with IC50 of > 160 μM while 6-(phenylhydrazino)uracil exhibited cytoxicity, with IC50 of 27.5 μM.

Conclusions

The recombinant PfUDG was expressed, characterized and compared to partially purified native PfUDG. Their characteristics were not significantly different. PfUDG differs from human enzyme in its size and predicted amino acid sequence. Two uracil derivatives inhibited PfUDG and parasite growth; however, only one non-cytotoxic compound was found. Therefore, this selective compound can act as a lead compound for anti-malarial development in the future.
Appendix
Available only for authorised users
Literature
2.
go back to reference Noedl H, Se Y, Schaccher K, Smith BL, Socheat D, Fukuda MM: Evidence of artemisinin-resistant malaria in western Cambodia. N Engl J Med. 2008, 359: 2619-2620. 10.1056/NEJMc0805011.CrossRefPubMed Noedl H, Se Y, Schaccher K, Smith BL, Socheat D, Fukuda MM: Evidence of artemisinin-resistant malaria in western Cambodia. N Engl J Med. 2008, 359: 2619-2620. 10.1056/NEJMc0805011.CrossRefPubMed
3.
go back to reference Dondrop AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, Lwin KM, Ariey F, Hanpithakpong W, Lee SJ, Ringwald P, Silamut K, Imwong M, Chotivanich K, Lim P, Herdman T, An SS, Yeung S, Singhasivanon P, Day NP, Lindegardh N, Socheat D, White NJ: Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2009, 361: 455-467. 10.1056/NEJMoa0808859.CrossRef Dondrop AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, Lwin KM, Ariey F, Hanpithakpong W, Lee SJ, Ringwald P, Silamut K, Imwong M, Chotivanich K, Lim P, Herdman T, An SS, Yeung S, Singhasivanon P, Day NP, Lindegardh N, Socheat D, White NJ: Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2009, 361: 455-467. 10.1056/NEJMoa0808859.CrossRef
4.
go back to reference Adhin MR, Labadie-Bracho M, Vreden SG: Status of potential PfATP6 molecular markers for artemisinin resistance in Suriname. Malar J. 2012, 11: 322-10.1186/1475-2875-11-322.PubMedCentralCrossRefPubMed Adhin MR, Labadie-Bracho M, Vreden SG: Status of potential PfATP6 molecular markers for artemisinin resistance in Suriname. Malar J. 2012, 11: 322-10.1186/1475-2875-11-322.PubMedCentralCrossRefPubMed
5.
go back to reference Amaratunga C, Sreng S, Suon S, Phelps ES, Stepniewska K, Lim P, Zhou C, Mao S, Anderson JM, Lindegardh N, Jiang H, Song J, Su XZ, White NJ, Dondorp AM, Anderson TJ, Fay MP, Mu J, Duong S, Fairhurst RM: Artemisinin-resistant Plasmodium falciparum in Pursat province, western Cambodia: a parasite clearance rate study. Lancet Infect Dis. 2012, 12: 851-858. 10.1016/S1473-3099(12)70181-0.PubMedCentralCrossRefPubMed Amaratunga C, Sreng S, Suon S, Phelps ES, Stepniewska K, Lim P, Zhou C, Mao S, Anderson JM, Lindegardh N, Jiang H, Song J, Su XZ, White NJ, Dondorp AM, Anderson TJ, Fay MP, Mu J, Duong S, Fairhurst RM: Artemisinin-resistant Plasmodium falciparum in Pursat province, western Cambodia: a parasite clearance rate study. Lancet Infect Dis. 2012, 12: 851-858. 10.1016/S1473-3099(12)70181-0.PubMedCentralCrossRefPubMed
6.
go back to reference Das D, Tripura R, Phyo AP, Lwin KM, Tarning J, Lee SJ, Hanpithakpong W, Stepniewska K, Menard D, Ringwald P, Silamut K, Imwong M, Chotivanich K, Yi P, Day NP, Lindegardh N, Socheat D, Nguon C, White NJ, Nosten F, Dondorp AM: Effect of high dose or split dose artesunate on parasite clearance in artemisinin resistant falciparum malaria. Clin Infect Dis. 2013, 56: 48-58. 10.1093/cid/cis958.CrossRef Das D, Tripura R, Phyo AP, Lwin KM, Tarning J, Lee SJ, Hanpithakpong W, Stepniewska K, Menard D, Ringwald P, Silamut K, Imwong M, Chotivanich K, Yi P, Day NP, Lindegardh N, Socheat D, Nguon C, White NJ, Nosten F, Dondorp AM: Effect of high dose or split dose artesunate on parasite clearance in artemisinin resistant falciparum malaria. Clin Infect Dis. 2013, 56: 48-58. 10.1093/cid/cis958.CrossRef
7.
go back to reference Calas M, Ancelin ML, Cordina G, Portefaix P, Piquet G, Vidal-Sailhan V, Vial H: Antimalarial activity of compounds interfering with Plasmodium falciparum phospholipid metabolism: comparison between mono- and bisquaternary ammonium salts. J Med Chem. 2000, 43: 505-515. 10.1021/jm9911027.CrossRefPubMed Calas M, Ancelin ML, Cordina G, Portefaix P, Piquet G, Vidal-Sailhan V, Vial H: Antimalarial activity of compounds interfering with Plasmodium falciparum phospholipid metabolism: comparison between mono- and bisquaternary ammonium salts. J Med Chem. 2000, 43: 505-515. 10.1021/jm9911027.CrossRefPubMed
8.
go back to reference Wengelnik K, Vidal V, Ancelin ML, Cathiard AM, Morgat JL, Kocken CH, Calas M, Herrera S, Thomas AW, Vial HJ: A class of potent antimalarials and their specific accumulation in infected erythrocytes. Science. 2002, 295: 1311-1314. 10.1126/science.1067236.CrossRefPubMed Wengelnik K, Vidal V, Ancelin ML, Cathiard AM, Morgat JL, Kocken CH, Calas M, Herrera S, Thomas AW, Vial HJ: A class of potent antimalarials and their specific accumulation in infected erythrocytes. Science. 2002, 295: 1311-1314. 10.1126/science.1067236.CrossRefPubMed
9.
go back to reference Joet T, Eckstein-Ludwig U, Morin C, Krishna S: Validation of the hexose transporter of Plasmodium falciparum as a novel drug target. Proc Natl Acad Sci U S A. 2003, 100: 7476-7479. 10.1073/pnas.1330865100.PubMedCentralCrossRefPubMed Joet T, Eckstein-Ludwig U, Morin C, Krishna S: Validation of the hexose transporter of Plasmodium falciparum as a novel drug target. Proc Natl Acad Sci U S A. 2003, 100: 7476-7479. 10.1073/pnas.1330865100.PubMedCentralCrossRefPubMed
10.
go back to reference Bailly E, Jambou R, Savel J, Jaureguiberry G: Plasmodium falciparum: differential sensitivity in vitro to E-64 (cysteine protease inhibitor) and Pepstatin A (aspartyl protease inhibitor). J Protozool. 1992, 39: 593-599. 10.1111/j.1550-7408.1992.tb04856.x.CrossRefPubMed Bailly E, Jambou R, Savel J, Jaureguiberry G: Plasmodium falciparum: differential sensitivity in vitro to E-64 (cysteine protease inhibitor) and Pepstatin A (aspartyl protease inhibitor). J Protozool. 1992, 39: 593-599. 10.1111/j.1550-7408.1992.tb04856.x.CrossRefPubMed
11.
go back to reference Salmon BL, Oksman A, Goldberg DE: Malaria parasite exit from the host erythrocyte: a two-step process requiring extraerythrocytic proteolysis. Proc Natl Acad Sci U S A. 2001, 98: 271-276. 10.1073/pnas.98.1.271.PubMedCentralCrossRefPubMed Salmon BL, Oksman A, Goldberg DE: Malaria parasite exit from the host erythrocyte: a two-step process requiring extraerythrocytic proteolysis. Proc Natl Acad Sci U S A. 2001, 98: 271-276. 10.1073/pnas.98.1.271.PubMedCentralCrossRefPubMed
12.
go back to reference Naughton JA, Nasizadeh S, Bell A: Downstream effects of haemoglobinase inhibition in Plasmodium falciparum-infected erythrocytes. Mol Biochem Parasitol. 2010, 173: 81-87. 10.1016/j.molbiopara.2010.05.007.CrossRefPubMed Naughton JA, Nasizadeh S, Bell A: Downstream effects of haemoglobinase inhibition in Plasmodium falciparum-infected erythrocytes. Mol Biochem Parasitol. 2010, 173: 81-87. 10.1016/j.molbiopara.2010.05.007.CrossRefPubMed
13.
go back to reference Wang PF, Arscott LD, Gilberger TW, Muller S, Williams CH: Thioredoxin reductase from Plasmodium falciparum: evidence for interaction between the C-terminal cysteine residues and the active site disulfide-dithiol. Biochemistry. 1999, 38: 3187-3196. 10.1021/bi982674g.CrossRefPubMed Wang PF, Arscott LD, Gilberger TW, Muller S, Williams CH: Thioredoxin reductase from Plasmodium falciparum: evidence for interaction between the C-terminal cysteine residues and the active site disulfide-dithiol. Biochemistry. 1999, 38: 3187-3196. 10.1021/bi982674g.CrossRefPubMed
14.
go back to reference Krauth-Siegel RL, Coombs GH: Enzymes of parasite thiol metabolism as drug targets. Parasitol Today. 1999, 15: 404-409. 10.1016/S0169-4758(99)01516-1.CrossRefPubMed Krauth-Siegel RL, Coombs GH: Enzymes of parasite thiol metabolism as drug targets. Parasitol Today. 1999, 15: 404-409. 10.1016/S0169-4758(99)01516-1.CrossRefPubMed
15.
go back to reference Krungkrai J, Krungkrai SR, Suraveratum N, Prapunwattana P: Mitochondrial ubiquinol-cytochrome c reductase and cytochrome c oxidase: chemotherapeutic targets in malarial parasites. Biochem Mol Biol Int. 1997, 42: 1007-1014.PubMed Krungkrai J, Krungkrai SR, Suraveratum N, Prapunwattana P: Mitochondrial ubiquinol-cytochrome c reductase and cytochrome c oxidase: chemotherapeutic targets in malarial parasites. Biochem Mol Biol Int. 1997, 42: 1007-1014.PubMed
16.
go back to reference Srivastava IK, Rottenberg H, Vaidya AB: Atovaquone, a broad spectrum antiparasitic drug, collapses mitochondrial membrane potential in a malaria parasite. J Biol Chem. 1997, 272: 3961-3966. 10.1074/jbc.272.7.3961.CrossRefPubMed Srivastava IK, Rottenberg H, Vaidya AB: Atovaquone, a broad spectrum antiparasitic drug, collapses mitochondrial membrane potential in a malaria parasite. J Biol Chem. 1997, 272: 3961-3966. 10.1074/jbc.272.7.3961.CrossRefPubMed
18.
go back to reference Wilson DM, Bohr VA: The mechanics of base excision repair, and its relationship to aging and disease. DNA Repair. 2007, 6: 544-559. 10.1016/j.dnarep.2006.10.017.CrossRefPubMed Wilson DM, Bohr VA: The mechanics of base excision repair, and its relationship to aging and disease. DNA Repair. 2007, 6: 544-559. 10.1016/j.dnarep.2006.10.017.CrossRefPubMed
19.
go back to reference Lindahl T: Instability and decay of the primary structure of DNA. Nature. 1993, 362: 709-715. 10.1038/362709a0.CrossRefPubMed Lindahl T: Instability and decay of the primary structure of DNA. Nature. 1993, 362: 709-715. 10.1038/362709a0.CrossRefPubMed
20.
go back to reference Lindahl T: An N-glycosidase from Escherichia coli that releases free uracil from DNA containing deaminated cytosine residues. Proc Natl Acad Sci U S A. 1974, 71: 3649-3653. 10.1073/pnas.71.9.3649.PubMedCentralCrossRefPubMed Lindahl T: An N-glycosidase from Escherichia coli that releases free uracil from DNA containing deaminated cytosine residues. Proc Natl Acad Sci U S A. 1974, 71: 3649-3653. 10.1073/pnas.71.9.3649.PubMedCentralCrossRefPubMed
21.
go back to reference Lindahl T, Ljungquist S, Siegert W, Nyberg B, Sperens B: DNA N-glycosidases: properties of uracil-DNA glycosidase from Escherichia coli. J Biol Chem. 1977, 252: 3286-3294.PubMed Lindahl T, Ljungquist S, Siegert W, Nyberg B, Sperens B: DNA N-glycosidases: properties of uracil-DNA glycosidase from Escherichia coli. J Biol Chem. 1977, 252: 3286-3294.PubMed
22.
go back to reference Stuart DT, Upton C, Higman MA, Niles EG, McFadden G: A poxvirus-encoded uracil DNA glycosylase is essential for virus viability. J Virol. 1993, 67: 2503-2512.PubMedCentralPubMed Stuart DT, Upton C, Higman MA, Niles EG, McFadden G: A poxvirus-encoded uracil DNA glycosylase is essential for virus viability. J Virol. 1993, 67: 2503-2512.PubMedCentralPubMed
23.
go back to reference Argnani R, Focher F, Zucchini S, Verri A, Wright GE, Spadari S, Manservigi R: Herpes simplex virus type 1 (HSV-1) uracil-DNA glycosylase: functional expression in Escherichia coli, biochemical characterization, and selective inhibition by 6-(p-n-octylanilino)uracil. Virology. 1995, 211: 307-311. 10.1006/viro.1995.1406.CrossRefPubMed Argnani R, Focher F, Zucchini S, Verri A, Wright GE, Spadari S, Manservigi R: Herpes simplex virus type 1 (HSV-1) uracil-DNA glycosylase: functional expression in Escherichia coli, biochemical characterization, and selective inhibition by 6-(p-n-octylanilino)uracil. Virology. 1995, 211: 307-311. 10.1006/viro.1995.1406.CrossRefPubMed
24.
go back to reference Peña-Diaz J, Akbari M, Sundheim O, Farez-Vidal ME, Andersen S, Sneve R, Gonzalez-Pacanowska D, Krokan HE, Slupphaug G: Trypanosoma cruzi contains a single detectable uracil-DNA glycosylase and repairs uracil exclusively via short patch base excision repair. J Mol Biol. 2004, 342: 787-799. 10.1016/j.jmb.2004.07.043.CrossRefPubMed Peña-Diaz J, Akbari M, Sundheim O, Farez-Vidal ME, Andersen S, Sneve R, Gonzalez-Pacanowska D, Krokan HE, Slupphaug G: Trypanosoma cruzi contains a single detectable uracil-DNA glycosylase and repairs uracil exclusively via short patch base excision repair. J Mol Biol. 2004, 342: 787-799. 10.1016/j.jmb.2004.07.043.CrossRefPubMed
25.
go back to reference Slupphaug G, Olsen LC, Helland D, Aasland R, Krokan HE: Cell cycle regulation and in vitro hybrid arrest analysis of the major human uracil-DNA glycosylase. Nucleic Acids Res. 1991, 19: 5131-5137. 10.1093/nar/19.19.5131.PubMedCentralCrossRefPubMed Slupphaug G, Olsen LC, Helland D, Aasland R, Krokan HE: Cell cycle regulation and in vitro hybrid arrest analysis of the major human uracil-DNA glycosylase. Nucleic Acids Res. 1991, 19: 5131-5137. 10.1093/nar/19.19.5131.PubMedCentralCrossRefPubMed
26.
go back to reference Visnes T, Doseth B, Pettersen HS, Hagen L, Sousa MM, Akbari M, Otterlei M, Kavli B, Slupphaug G, Krokan HE: Uracil in DNA and its processing by different DNA glycosylases. Philos Trans R Soc Lond B Biol Sci. 2009, 364: 563-568. 10.1098/rstb.2008.0186.PubMedCentralCrossRefPubMed Visnes T, Doseth B, Pettersen HS, Hagen L, Sousa MM, Akbari M, Otterlei M, Kavli B, Slupphaug G, Krokan HE: Uracil in DNA and its processing by different DNA glycosylases. Philos Trans R Soc Lond B Biol Sci. 2009, 364: 563-568. 10.1098/rstb.2008.0186.PubMedCentralCrossRefPubMed
27.
go back to reference Kavli B, Sundheim O, Akbari M, Otterlei M, Nilsen H, Skorpen F, Aas PA, Hagen L, Krokan HE, Slupphaug G: hUNG2 is the major repair enzyme for removal of uracil from U:A matches, U:G mismatches, and U in Single-stranded DNA, with hSMUG1 as a broad specificity backup. J Biol Chem. 2002, 277: 39926-39936. 10.1074/jbc.M207107200.CrossRefPubMed Kavli B, Sundheim O, Akbari M, Otterlei M, Nilsen H, Skorpen F, Aas PA, Hagen L, Krokan HE, Slupphaug G: hUNG2 is the major repair enzyme for removal of uracil from U:A matches, U:G mismatches, and U in Single-stranded DNA, with hSMUG1 as a broad specificity backup. J Biol Chem. 2002, 277: 39926-39936. 10.1074/jbc.M207107200.CrossRefPubMed
28.
go back to reference Bennett SE, Schimerlik MI, Mosbaugh DW: Kinetics of the uracil-DNA glycosylase/inhibitor protein association. Ung interaction with Ugi, nucleic acids, and uracil compounds. J Biol Chem. 1993, 268: 26879-26885.PubMed Bennett SE, Schimerlik MI, Mosbaugh DW: Kinetics of the uracil-DNA glycosylase/inhibitor protein association. Ung interaction with Ugi, nucleic acids, and uracil compounds. J Biol Chem. 1993, 268: 26879-26885.PubMed
29.
go back to reference Scaramozzino N, Sanz G, Crance JM, Saparbaev M, Drillien R, Laval J, Kavil B, Garin D: Characterization of the substrate specificity of homogeneous vaccinia virus uracil-DNA glycosylase. Nucleic Acids Res. 2003, 31: 4950-4957. 10.1093/nar/gkg672.PubMedCentralCrossRefPubMed Scaramozzino N, Sanz G, Crance JM, Saparbaev M, Drillien R, Laval J, Kavil B, Garin D: Characterization of the substrate specificity of homogeneous vaccinia virus uracil-DNA glycosylase. Nucleic Acids Res. 2003, 31: 4950-4957. 10.1093/nar/gkg672.PubMedCentralCrossRefPubMed
30.
go back to reference Lu CC, Huang HT, Wang JT, Slupphaug G, Li TK, Wu MC, Chen YC, Lee CP, Chen MR: Characterization of the uracil-DNA glycosylase activity of Epstein-Barr virus BKRF3 and its role in lytic viral DNA replication. J Virol. 2007, 81: 1195-1208. 10.1128/JVI.01518-06.PubMedCentralCrossRefPubMed Lu CC, Huang HT, Wang JT, Slupphaug G, Li TK, Wu MC, Chen YC, Lee CP, Chen MR: Characterization of the uracil-DNA glycosylase activity of Epstein-Barr virus BKRF3 and its role in lytic viral DNA replication. J Virol. 2007, 81: 1195-1208. 10.1128/JVI.01518-06.PubMedCentralCrossRefPubMed
31.
go back to reference Nakamura N, Morinaga H, Kikuchi M, Yonekura SI, Ishii N, Yamamoto K, Yonei S, Zhang QM: Cloning and characterization of uracil-DNA glycosylase and the biological consequences of the loss of its function in the nematode Caenorhabditis elegans. Mutagenesis. 2008, 23: 407-413. 10.1093/mutage/gen030.CrossRefPubMed Nakamura N, Morinaga H, Kikuchi M, Yonekura SI, Ishii N, Yamamoto K, Yonei S, Zhang QM: Cloning and characterization of uracil-DNA glycosylase and the biological consequences of the loss of its function in the nematode Caenorhabditis elegans. Mutagenesis. 2008, 23: 407-413. 10.1093/mutage/gen030.CrossRefPubMed
32.
go back to reference Sun H, Zhi C, Wright GE, Ubiali D, Pregnolato M, Verri A, Focher F, Spadari S: Molecular modelling and synthesis of inhibitors of herpes simplex virus type 1 uracil-DNA glycosylase. J Med Chem. 1999, 42: 2344-2350. 10.1021/jm980718d.CrossRefPubMed Sun H, Zhi C, Wright GE, Ubiali D, Pregnolato M, Verri A, Focher F, Spadari S: Molecular modelling and synthesis of inhibitors of herpes simplex virus type 1 uracil-DNA glycosylase. J Med Chem. 1999, 42: 2344-2350. 10.1021/jm980718d.CrossRefPubMed
33.
go back to reference Focher F, Verri A, Spadari S, Manservigi R, Gambino J, Wright GE: Herpes simplex virus type 1 uracil-DNA glycosylase: isolation and selective inhibition by novel uracil derivatives. Biochem J. 1993, 292: 883-889.PubMedCentralCrossRefPubMed Focher F, Verri A, Spadari S, Manservigi R, Gambino J, Wright GE: Herpes simplex virus type 1 uracil-DNA glycosylase: isolation and selective inhibition by novel uracil derivatives. Biochem J. 1993, 292: 883-889.PubMedCentralCrossRefPubMed
34.
go back to reference Thaithong S, Beale GH, Chutmongkonkul M: Susceptibility of Plasmodium falciparum to five drugs: and in vitro study of isolates mainly from Thailand. Trans R Soc Trop Med Hyg. 1983, 77: 228-231. 10.1016/0035-9203(83)90080-9.CrossRefPubMed Thaithong S, Beale GH, Chutmongkonkul M: Susceptibility of Plasmodium falciparum to five drugs: and in vitro study of isolates mainly from Thailand. Trans R Soc Trop Med Hyg. 1983, 77: 228-231. 10.1016/0035-9203(83)90080-9.CrossRefPubMed
35.
go back to reference Lasonder E, Ishihama Y, Andersen JS, Vermunt AMW, Pain A, Sauerwein RW, Eling WMC, Hall N, Waters AP, Stunnenberg HG, Mann M: Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry. Nature. 2002, 419: 537-542. 10.1038/nature01111.CrossRefPubMed Lasonder E, Ishihama Y, Andersen JS, Vermunt AMW, Pain A, Sauerwein RW, Eling WMC, Hall N, Waters AP, Stunnenberg HG, Mann M: Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry. Nature. 2002, 419: 537-542. 10.1038/nature01111.CrossRefPubMed
36.
go back to reference Arnold K, Bordoli L, Kopp J, Schwede T: The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics. 2006, 22: 195-201. 10.1093/bioinformatics/bti770.CrossRefPubMed Arnold K, Bordoli L, Kopp J, Schwede T: The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics. 2006, 22: 195-201. 10.1093/bioinformatics/bti770.CrossRefPubMed
37.
go back to reference Bordoli L, Kiefer F, Arnold K, Benkert P, Battery J, Schwede T: Protein structure homology modelling using SWISS-MODEL workspace. Nat Protoc. 2009, 4: 1-13.CrossRefPubMed Bordoli L, Kiefer F, Arnold K, Benkert P, Battery J, Schwede T: Protein structure homology modelling using SWISS-MODEL workspace. Nat Protoc. 2009, 4: 1-13.CrossRefPubMed
38.
go back to reference Kiefer F, Arnold K, Kunzli M, Bordoli L, Schwede T: The SWISS-MODEL Repository and assaociated resources. Nucleic Acids Res. 2009, 37: D387-D392. 10.1093/nar/gkn750.PubMedCentralCrossRefPubMed Kiefer F, Arnold K, Kunzli M, Bordoli L, Schwede T: The SWISS-MODEL Repository and assaociated resources. Nucleic Acids Res. 2009, 37: D387-D392. 10.1093/nar/gkn750.PubMedCentralCrossRefPubMed
39.
go back to reference Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton JM: AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR. 1996, 8: 477-486.CrossRefPubMed Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton JM: AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR. 1996, 8: 477-486.CrossRefPubMed
40.
go back to reference Rason MA, Randriantsoa T, Andrianantenaina H, Ratsimbasoa A, Menard D: Performance and reliability of the SYBR Green I based assay for the routine monitoring of susceptibility of Plasmodium falciparum clinical isolates. Trans R Soc Trop Med Hyg. 2008, 104: 346-351.CrossRef Rason MA, Randriantsoa T, Andrianantenaina H, Ratsimbasoa A, Menard D: Performance and reliability of the SYBR Green I based assay for the routine monitoring of susceptibility of Plasmodium falciparum clinical isolates. Trans R Soc Trop Med Hyg. 2008, 104: 346-351.CrossRef
41.
go back to reference Plumb JA, Milroy R, Kaye SB: Effects of the pH dependence of 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide-formazan absorption on chemosensitivity determined by a novel tetrazolium-based assay. Cancer Res. 1989, 49: 4435-4440.PubMed Plumb JA, Milroy R, Kaye SB: Effects of the pH dependence of 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide-formazan absorption on chemosensitivity determined by a novel tetrazolium-based assay. Cancer Res. 1989, 49: 4435-4440.PubMed
42.
go back to reference Franklin A, Blanden RV: On the molecular mechanism of somatic hypermutation of rearranged immunoglobulin genes. Immunol Cell Biol. 2004, 82: 557-567. 10.1111/j.1440-1711.2004.01289.x.CrossRefPubMed Franklin A, Blanden RV: On the molecular mechanism of somatic hypermutation of rearranged immunoglobulin genes. Immunol Cell Biol. 2004, 82: 557-567. 10.1111/j.1440-1711.2004.01289.x.CrossRefPubMed
43.
go back to reference Huffman JL, Sundheim O, Tainer JA: DNA base damage recognition and removal: new twists and grooves. Mutat Res. 2005, 577: 55-76. 10.1016/j.mrfmmm.2005.03.012.CrossRefPubMed Huffman JL, Sundheim O, Tainer JA: DNA base damage recognition and removal: new twists and grooves. Mutat Res. 2005, 577: 55-76. 10.1016/j.mrfmmm.2005.03.012.CrossRefPubMed
44.
go back to reference Dabrowski S, Kiaer Ahring B: Cloning, expression, and purification of the His6-tagged hyper-thermostable dUTPase from Pyrococcus woesei in Escherichia coli: application in PCR. Protein Expr Purif. 2003, 31: 72-78. 10.1016/S1046-5928(03)00108-6.CrossRefPubMed Dabrowski S, Kiaer Ahring B: Cloning, expression, and purification of the His6-tagged hyper-thermostable dUTPase from Pyrococcus woesei in Escherichia coli: application in PCR. Protein Expr Purif. 2003, 31: 72-78. 10.1016/S1046-5928(03)00108-6.CrossRefPubMed
45.
go back to reference Siribal S, Weinfeld M, Karimi-Busheri F, Mark Glover JN, Bernstein NK, Aceytuno D, Chavalitshewinkoon-Petmitr P: Molecular characterization of Plasmodium falciparum putative polynucleotide kinase/phosphatase. Mol Biochem Parasitol. 2011, 180: 1-7. 10.1016/j.molbiopara.2011.06.007.CrossRefPubMed Siribal S, Weinfeld M, Karimi-Busheri F, Mark Glover JN, Bernstein NK, Aceytuno D, Chavalitshewinkoon-Petmitr P: Molecular characterization of Plasmodium falciparum putative polynucleotide kinase/phosphatase. Mol Biochem Parasitol. 2011, 180: 1-7. 10.1016/j.molbiopara.2011.06.007.CrossRefPubMed
46.
go back to reference Pearl LH: Structure and function in the uracil-DNA glycosylase superfamily. Mutat Res. 2000, 460: 165-181. 10.1016/S0921-8777(00)00025-2.CrossRefPubMed Pearl LH: Structure and function in the uracil-DNA glycosylase superfamily. Mutat Res. 2000, 460: 165-181. 10.1016/S0921-8777(00)00025-2.CrossRefPubMed
47.
go back to reference Warren JC, Stowring L, Morales MF: The effect of structure-disrupting ions on the activity of myosin and other enzymes. J Biol Chem. 1966, 241: 309-316.PubMed Warren JC, Stowring L, Morales MF: The effect of structure-disrupting ions on the activity of myosin and other enzymes. J Biol Chem. 1966, 241: 309-316.PubMed
48.
go back to reference Winters TA, Williams MV: Purification and characterization of the herpes simplex virus type 2-encoded uracil-DNA glycosylase. Virology. 1993, 195: 315-326. 10.1006/viro.1993.1382.CrossRefPubMed Winters TA, Williams MV: Purification and characterization of the herpes simplex virus type 2-encoded uracil-DNA glycosylase. Virology. 1993, 195: 315-326. 10.1006/viro.1993.1382.CrossRefPubMed
49.
go back to reference Akhtar MS, Ahmad A, Bhakuni V: Divalent cation induced changes in structural properties of the dimeric enzyme glucose oxidase: dual effect of dimer stabilization and dissociation with loss of cooperative interactions in enzyme monomer. Biochemistry. 2002, 41: 7142-7149. 10.1021/bi020080e.CrossRefPubMed Akhtar MS, Ahmad A, Bhakuni V: Divalent cation induced changes in structural properties of the dimeric enzyme glucose oxidase: dual effect of dimer stabilization and dissociation with loss of cooperative interactions in enzyme monomer. Biochemistry. 2002, 41: 7142-7149. 10.1021/bi020080e.CrossRefPubMed
50.
go back to reference Khattar SK, Van Drunen Littel-Van Den Hurk S, Babiuk LA, Tikoo SK: Identification and transcriptional analysis of a 3'-coterminal gene cluster containing UL1, UL2, UL3, and UL3.5 open reading frames of bovine herpesvirus-1. Virology. 1995, 213: 28-37. 10.1006/viro.1995.1543.CrossRefPubMed Khattar SK, Van Drunen Littel-Van Den Hurk S, Babiuk LA, Tikoo SK: Identification and transcriptional analysis of a 3'-coterminal gene cluster containing UL1, UL2, UL3, and UL3.5 open reading frames of bovine herpesvirus-1. Virology. 1995, 213: 28-37. 10.1006/viro.1995.1543.CrossRefPubMed
Metadata
Title
Molecular characterization of Plasmodium falciparum uracil-DNA glycosylase and its potential as a new anti-malarial drug target
Authors
Thidarat Suksangpleng
Ubolsree Leartsakulpanich
Saengduen Moonsom
Saranya Siribal
Usa Boonyuen
George E Wright
Porntip Chavalitshewinkoon-Petmitr
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2014
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/1475-2875-13-149

Other articles of this Issue 1/2014

Malaria Journal 1/2014 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine