Skip to main content
Top
Published in: Cancer Cell International 1/2006

Open Access 01-12-2006 | Primary research

Action of Lovastatin (Mevinolin) on an in vitro model of angiogenesis and its co-culture with malignant melanoma cell lines

Authors: Ivan Depasquale, Denys N Wheatley

Published in: Cancer Cell International | Issue 1/2006

Login to get access

Abstract

Background

Lovastatin and other statins may reduce the development of melanomas. The effects on melanoma cells and their ability to enhance angiogenesis in a co-culture system presented an opportunity to assess whether Lovastatin act on melanoma cells, HUVEC or both types of cells.

Results

Direct effects of co-culturing two different malignant melanoma cells (A375 and G361) on the process of angiogenesis in vitro was studied with our angiogenesis model[1], based on human dermal fibroblasts and human umbilical vein endothelial cells (HUVEC). Co-cultures were set up using "sland" and "dispersed seeding" techniques. A statistically significant increase in tubule formation in both cases was observed compared to controls. The effects of doses equivalent to therapeutic concentrations of Lovastatin were analysed. The drug inhibited the growth of all cell types, induced apoptosis, and markedly reduced the formation of tubules in the angiogenesis model at low concentrations. Its action was successfully reversed by the introduction of geranylgeranyl pyrophosphate.

Conclusion

Lovastatin can reduce both tumour (melanoma) cell growth, and the angiogenic activity of these cells in co-cultures using an established 2-dimensional model angiogenesis system beyond that which would be seen by reduced proliferation alone.
Appendix
Available only for authorised users
Literature
1.
go back to reference Gimbrone MA, Leapman SB, Cotran RS, Folkman J: Tumor dormancy in vivo by prevention of neovascularization. J Exp Med. 1972, 136: 261-276. 10.1084/jem.136.2.261.PubMedCentralCrossRefPubMed Gimbrone MA, Leapman SB, Cotran RS, Folkman J: Tumor dormancy in vivo by prevention of neovascularization. J Exp Med. 1972, 136: 261-276. 10.1084/jem.136.2.261.PubMedCentralCrossRefPubMed
2.
go back to reference Thompson WD, Shiach KJ, Fraser RA, McIntosh LC, Simpson JG: Tumours acquire their vasculature by vessel incorporation, not vessel ingrowth. J Path. 1987, 151: 323-332. 10.1002/path.1711510413.CrossRefPubMed Thompson WD, Shiach KJ, Fraser RA, McIntosh LC, Simpson JG: Tumours acquire their vasculature by vessel incorporation, not vessel ingrowth. J Path. 1987, 151: 323-332. 10.1002/path.1711510413.CrossRefPubMed
3.
go back to reference Folkman J: What is the evidence that tumors are angiogenesis-dependent?. J Nat Cancer Inst. 1990, 82: 4-6.CrossRefPubMed Folkman J: What is the evidence that tumors are angiogenesis-dependent?. J Nat Cancer Inst. 1990, 82: 4-6.CrossRefPubMed
4.
go back to reference Srivastava A, Laidler P, Davies RP, Horgan K, Hughes LE: The prognostic significance of tumor vascularity in intermediate-thickness (0.76–4.0 mm thick) skin melanoma. A quantitative histologic study. Am J Path. 1988, 133: 419-423.PubMedCentralPubMed Srivastava A, Laidler P, Davies RP, Horgan K, Hughes LE: The prognostic significance of tumor vascularity in intermediate-thickness (0.76–4.0 mm thick) skin melanoma. A quantitative histologic study. Am J Path. 1988, 133: 419-423.PubMedCentralPubMed
5.
go back to reference Srivastava A, Hughes LE, Woodcock JP, Shedden EJ: The significance of blood flow in cutaneous malignant melanoma demonstrated by Doppler flowmetry. Eur J Surg Oncol. 1986, 12: 13-18.PubMed Srivastava A, Hughes LE, Woodcock JP, Shedden EJ: The significance of blood flow in cutaneous malignant melanoma demonstrated by Doppler flowmetry. Eur J Surg Oncol. 1986, 12: 13-18.PubMed
6.
go back to reference Barnhill RL, Fandrey K, Levy MA, Mihm MC, Hyman B: Angiogenesis and tumor progression of melanoma. Quantification of vascularity in melanocytic nevi and cutaneous malignant melanoma. Lab Invest. 1992, 67: 331-337.PubMed Barnhill RL, Fandrey K, Levy MA, Mihm MC, Hyman B: Angiogenesis and tumor progression of melanoma. Quantification of vascularity in melanocytic nevi and cutaneous malignant melanoma. Lab Invest. 1992, 67: 331-337.PubMed
7.
go back to reference Smolle J, Soyer HP, Hofmann-Wellenhof R, Smolle-Juettner FM, Kerl H: Vascular architecture of melanocytic skin tumors. A quantitative immunohistochemical study using automated image analysis. Path Res & Pract. 1989, 185: 740-745.CrossRef Smolle J, Soyer HP, Hofmann-Wellenhof R, Smolle-Juettner FM, Kerl H: Vascular architecture of melanocytic skin tumors. A quantitative immunohistochemical study using automated image analysis. Path Res & Pract. 1989, 185: 740-745.CrossRef
8.
go back to reference Straume O, Akslen LA: Expression of vascular endothelial growth factor, its receptors (FLT-1, KDR) and TSP-1 related to microvessel density and patient outcome in vertical growth phase melanomas. Am J Path. 2001, 159: 223-235.PubMedCentralCrossRefPubMed Straume O, Akslen LA: Expression of vascular endothelial growth factor, its receptors (FLT-1, KDR) and TSP-1 related to microvessel density and patient outcome in vertical growth phase melanomas. Am J Path. 2001, 159: 223-235.PubMedCentralCrossRefPubMed
9.
go back to reference Dome B, Paku S, Somlai B, Timar J: Vascularization of cutaneous melanoma involves vessel co-option and has clinical significance. J Pathol. 2002, 197: 355-362. 10.1002/path.1124.CrossRefPubMed Dome B, Paku S, Somlai B, Timar J: Vascularization of cutaneous melanoma involves vessel co-option and has clinical significance. J Pathol. 2002, 197: 355-362. 10.1002/path.1124.CrossRefPubMed
10.
go back to reference Kashani-Sabet M, Sagebiel RW, Ferreira CM, Nosrati M, Miller JR: Tumor vascularity in the prognostic assessment of primary cutaneous melanoma. J Clin Oncol. 2002, 20: 1826-1831. 10.1200/JCO.2002.07.082.CrossRefPubMed Kashani-Sabet M, Sagebiel RW, Ferreira CM, Nosrati M, Miller JR: Tumor vascularity in the prognostic assessment of primary cutaneous melanoma. J Clin Oncol. 2002, 20: 1826-1831. 10.1200/JCO.2002.07.082.CrossRefPubMed
11.
go back to reference Bishop ET, Bell GT, Broom IJ, Hendry N, Wheatley DN: An in vitro model of angiogenesis: basic features. Angiogenesis. 1999, 3: 335-344. 10.1023/A:1026546219962.CrossRefPubMed Bishop ET, Bell GT, Broom IJ, Hendry N, Wheatley DN: An in vitro model of angiogenesis: basic features. Angiogenesis. 1999, 3: 335-344. 10.1023/A:1026546219962.CrossRefPubMed
12.
go back to reference Splichal JE, Ornstein DL, Gia Hong-Dice Y, Downs JR, Fischer JR: Lovastatin for the prevention of melanoma: Analysis of AFCAPS/TexCAPS. Am Soc Clin Oncol Abstract. 2001, 1397: Splichal JE, Ornstein DL, Gia Hong-Dice Y, Downs JR, Fischer JR: Lovastatin for the prevention of melanoma: Analysis of AFCAPS/TexCAPS. Am Soc Clin Oncol Abstract. 2001, 1397:
13.
go back to reference Feleszko W, Golab WJ, Lasek J, Jakobisiak M: Synergistic anti-tumor activity of tumor necrosis factor-alpha and Lovastatin against MmB16 melanoma in mice. Neoplasma. 1995, 42: 69-74.PubMed Feleszko W, Golab WJ, Lasek J, Jakobisiak M: Synergistic anti-tumor activity of tumor necrosis factor-alpha and Lovastatin against MmB16 melanoma in mice. Neoplasma. 1995, 42: 69-74.PubMed
14.
go back to reference Feleszko W, Zagozdzon R, Golab J, Jakobisiak M: Potentiated anti-tumour effects of cisplatin and Lovastatin against MmB16 melanoma in mice. Eur J Cancer. 1998, 34: 406-411. 10.1016/S0959-8049(97)10034-X.CrossRefPubMed Feleszko W, Zagozdzon R, Golab J, Jakobisiak M: Potentiated anti-tumour effects of cisplatin and Lovastatin against MmB16 melanoma in mice. Eur J Cancer. 1998, 34: 406-411. 10.1016/S0959-8049(97)10034-X.CrossRefPubMed
15.
go back to reference Li X, Liu L, Tupper JC, Bannerman DD, Winn RK, Sebti SM, Hamilton AD, Harlan JM: Inhibition of protein geranylgeanylation and RhoA/RhoA kinase pathway induced apoptosis in human endothelial cells. J Biol Chem. 2002, 277: 15309-15316. 10.1074/jbc.M201253200.CrossRefPubMed Li X, Liu L, Tupper JC, Bannerman DD, Winn RK, Sebti SM, Hamilton AD, Harlan JM: Inhibition of protein geranylgeanylation and RhoA/RhoA kinase pathway induced apoptosis in human endothelial cells. J Biol Chem. 2002, 277: 15309-15316. 10.1074/jbc.M201253200.CrossRefPubMed
16.
go back to reference Shellman YG, Ribble D, Miller L, Gendall J, Vanbuskirk K, Kelly D, Norris DA, Dellaville RP: Lovastatin-induced apoptosis in human melanoma cell lines. Melanoma Res. 2005, 15: 83-89. 10.1097/00008390-200504000-00001.CrossRefPubMed Shellman YG, Ribble D, Miller L, Gendall J, Vanbuskirk K, Kelly D, Norris DA, Dellaville RP: Lovastatin-induced apoptosis in human melanoma cell lines. Melanoma Res. 2005, 15: 83-89. 10.1097/00008390-200504000-00001.CrossRefPubMed
17.
go back to reference Borenfreund E, Babich H, Martin-Alguacil N: Comparisons of two in vitro cytotoxicity assays -the neutral red (NR) and tetrazolium MTT tests. Toxicol in Vitro. 1988, 2: 1-6. 10.1016/0887-2333(88)90030-6.CrossRefPubMed Borenfreund E, Babich H, Martin-Alguacil N: Comparisons of two in vitro cytotoxicity assays -the neutral red (NR) and tetrazolium MTT tests. Toxicol in Vitro. 1988, 2: 1-6. 10.1016/0887-2333(88)90030-6.CrossRefPubMed
18.
go back to reference Jani JP, Specht S, Stemmler N, Blanock K, Singh SV, Gupta V, Katoh A: Metastasis of B16F10 mouse melanoma inhibited by Lovastatin, an inhibitor of cholesterol biosynthesis. Invasion & Metastasis. 1993, 13: 314-324. Jani JP, Specht S, Stemmler N, Blanock K, Singh SV, Gupta V, Katoh A: Metastasis of B16F10 mouse melanoma inhibited by Lovastatin, an inhibitor of cholesterol biosynthesis. Invasion & Metastasis. 1993, 13: 314-324.
19.
go back to reference Park HJ, Kong D, Iruela-Arispe L, Begley U, Tang D, Galper JB: 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors interfere with angiogenesis by inhibiting the geranylgeranylation of RhoA. Circ Res. 2002, 91: 43-150. Park HJ, Kong D, Iruela-Arispe L, Begley U, Tang D, Galper JB: 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors interfere with angiogenesis by inhibiting the geranylgeranylation of RhoA. Circ Res. 2002, 91: 43-150.
20.
go back to reference Wei H, Fang L, Song J, Chatterjee S: Statin-inhibited endothelial permeability could be associated with its effect on PECAM-1 in endothelial cells. Febs Lett. 2005, 579: 1272-1278. 10.1016/j.febslet.2005.01.020.CrossRefPubMed Wei H, Fang L, Song J, Chatterjee S: Statin-inhibited endothelial permeability could be associated with its effect on PECAM-1 in endothelial cells. Febs Lett. 2005, 579: 1272-1278. 10.1016/j.febslet.2005.01.020.CrossRefPubMed
Metadata
Title
Action of Lovastatin (Mevinolin) on an in vitro model of angiogenesis and its co-culture with malignant melanoma cell lines
Authors
Ivan Depasquale
Denys N Wheatley
Publication date
01-12-2006
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2006
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/1475-2867-6-9

Other articles of this Issue 1/2006

Cancer Cell International 1/2006 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine