Skip to main content
Top
Published in: Cancer Cell International 1/2013

Open Access 01-12-2013 | Primary research

Curcumin induces apoptosis in gallbladder carcinoma cell line GBC-SD cells

Authors: Tian-Yu Liu, Zhu-Jun Tan, Lin Jiang, Jian-Feng Gu, Xiang-Song Wu, Yang Cao, Mao-Lan Li, Ke-Jin Wu, Ying-Bin Liu

Published in: Cancer Cell International | Issue 1/2013

Login to get access

Abstract

Background

Gallbladder carcinoma is a malignant tumor with a very low 5-year survival rate because of the difficulty with its early diagnosis and the very poor prognosis of the advanced cancer state. The aims of this study were to determine whether curcumin could induce the apoptosis of a gallbladder carcinoma cell line, GBC-SD, and to clarify its related mechanism.

Methods

First, the anti-proliferative activities of curcumin-treated and untreated GBC-SD cells were determined using the MTT and colony formation assays. Then, the early apoptosis of cells was detected by the annexin V/propidium iodide double-staining assay and Hoechst 33342 staining assay. Detection of mitochondrial membrane potential was used to validate the ability of curcumin on inducing apoptosis in GBC-SD cells. Cell cycle changes were detected by flow cytometric analysis. Finally, the expressions of the apoptosis-related proteins or genes caspase-3, PARP, Bcl-2, and Bax were analyzed by western blot and quantitative real time PCR assay. Statistical analyses were performed using the Student’s t-test for comparison of the results obtained from cells with or without curcumin treatment.

Results

The MTT assay revealed that curcumin had induced a dose- and a time-dependent decrease in cell viability. Colony counting indicated that curcumin had induced a dose-dependent decrease in the colony formation ability in GBC-SD cells. Cells treated with curcumin were arrested at the S phase, according to the flow cytometric analysis. A significant induction of both the early and late phases of apoptosis was shown by the annexin V-FITC and PI staining. Morphological changes in apoptotic cells were also found by the Hoechst 33342 staining. After treatment with curcumin fluorescence shifted from red to green as ΔΨm decreased. Furthermore, western blot and quantitative real time PCR assays demonstrated that the curcumin induced apoptosis in GBC-SD cells by regulating the ratio of Bcl-2/Bax and activating the expression of cleaved caspase-3.

Conclusions

Taken together, the results indicate that curcumin may be a potential agent for the treatment of gallbladder cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kaza RK, Gulati M, Wig JD, Chawla YK: Evaluation of gall bladder carcinoma with dynamic magnetic resonance imaging and magnetic resonance cholangiopancreatography. Australas Radiol. 2006, 50 (3): 212-217. 10.1111/j.1440-1673.2006.01564.x.CrossRefPubMed Kaza RK, Gulati M, Wig JD, Chawla YK: Evaluation of gall bladder carcinoma with dynamic magnetic resonance imaging and magnetic resonance cholangiopancreatography. Australas Radiol. 2006, 50 (3): 212-217. 10.1111/j.1440-1673.2006.01564.x.CrossRefPubMed
2.
go back to reference Tan Z, Li M, Wu W, Zhang L, Ding Q, Wu X, Mu J, Liu Y: NLK is a key regulator of proliferation and migration in gallbladder carcinoma cells. Mol Cell Biochem. 2012, 369 (1–2): 27-33.CrossRefPubMed Tan Z, Li M, Wu W, Zhang L, Ding Q, Wu X, Mu J, Liu Y: NLK is a key regulator of proliferation and migration in gallbladder carcinoma cells. Mol Cell Biochem. 2012, 369 (1–2): 27-33.CrossRefPubMed
3.
go back to reference Wang JW, Peng SY, Li JT, Wang Y, Zhang ZP, Cheng Y, Cheng DQ, Weng WH, Wu XS, Fei XZ: Identification of metastasis-associated proteins involved in gallbladder carcinoma metastasis by proteomic analysis and functional exploration of chloride intracellular channel 1. Cancer Lett. 2009, 281 (1): 71-81. 10.1016/j.canlet.2009.02.020.CrossRefPubMed Wang JW, Peng SY, Li JT, Wang Y, Zhang ZP, Cheng Y, Cheng DQ, Weng WH, Wu XS, Fei XZ: Identification of metastasis-associated proteins involved in gallbladder carcinoma metastasis by proteomic analysis and functional exploration of chloride intracellular channel 1. Cancer Lett. 2009, 281 (1): 71-81. 10.1016/j.canlet.2009.02.020.CrossRefPubMed
4.
go back to reference Wang JD, Shi WB, Shen J, Zhuang PY, Quan ZW, Wang XF, Zhou XP, Li SG, Liu YB, Yang Y: Evaluation of two modified ECF regimens in the treatment of advanced gallbladder cancer. Med Oncol. 2011, 28 (Suppl 1): S295-300.CrossRefPubMed Wang JD, Shi WB, Shen J, Zhuang PY, Quan ZW, Wang XF, Zhou XP, Li SG, Liu YB, Yang Y: Evaluation of two modified ECF regimens in the treatment of advanced gallbladder cancer. Med Oncol. 2011, 28 (Suppl 1): S295-300.CrossRefPubMed
5.
go back to reference Dong P, He XW, Gu J, Wu WG, Li ML, Yang JH, Zhang L, Ding QC, Lu JH, Mu JS: Vimentin significantly promoted gallbladder carcinoma metastasis. Chin Med J (Engl). 2011, 124 (24): 4236-4244. Dong P, He XW, Gu J, Wu WG, Li ML, Yang JH, Zhang L, Ding QC, Lu JH, Mu JS: Vimentin significantly promoted gallbladder carcinoma metastasis. Chin Med J (Engl). 2011, 124 (24): 4236-4244.
6.
go back to reference Miller G, Jarnagin WR: Gallbladder carcinoma. Eur J Surg Oncol. 2008, 34 (3): 306-312. 10.1016/j.ejso.2007.07.206.CrossRefPubMed Miller G, Jarnagin WR: Gallbladder carcinoma. Eur J Surg Oncol. 2008, 34 (3): 306-312. 10.1016/j.ejso.2007.07.206.CrossRefPubMed
7.
go back to reference Shimada K, Nara S, Esaki M, Sakamoto Y, Kosuge T, Hiraoka N: Extended right hemihepatectomy for gallbladder carcinoma involving the hepatic hilum. Br J Surg. 2011, 98 (1): 117-123. 10.1002/bjs.7262.CrossRefPubMed Shimada K, Nara S, Esaki M, Sakamoto Y, Kosuge T, Hiraoka N: Extended right hemihepatectomy for gallbladder carcinoma involving the hepatic hilum. Br J Surg. 2011, 98 (1): 117-123. 10.1002/bjs.7262.CrossRefPubMed
8.
go back to reference Malka D, Boige V, Dromain C, Debaere T, Pocard M, Ducreux M: Biliary tract neoplasms: update 2003. Curr Opin Oncol. 2004, 16 (4): 364-371. 10.1097/01.cco.0000129679.49651.50.CrossRefPubMed Malka D, Boige V, Dromain C, Debaere T, Pocard M, Ducreux M: Biliary tract neoplasms: update 2003. Curr Opin Oncol. 2004, 16 (4): 364-371. 10.1097/01.cco.0000129679.49651.50.CrossRefPubMed
9.
go back to reference Ye F, Zhang GH, Guan BX, Xu XC: Suppression of esophageal cancer cell growth using curcumin, (-)-epigallocatechin-3-gallate and lovastatin. World J Gastroenterol. 2012, 18 (2): 126-135. 10.3748/wjg.v18.i2.126.PubMedCentralCrossRefPubMed Ye F, Zhang GH, Guan BX, Xu XC: Suppression of esophageal cancer cell growth using curcumin, (-)-epigallocatechin-3-gallate and lovastatin. World J Gastroenterol. 2012, 18 (2): 126-135. 10.3748/wjg.v18.i2.126.PubMedCentralCrossRefPubMed
10.
go back to reference Saha A, Kuzuhara T, Echigo N, Fujii A, Suganuma M, Fujiki H: Apoptosis of human lung cancer cells by curcumin mediated through up-regulation of "growth arrest and DNA damage inducible genes 45 and 153". Biol Pharm Bull. 2010, 33 (8): 1291-1299. 10.1248/bpb.33.1291.CrossRefPubMed Saha A, Kuzuhara T, Echigo N, Fujii A, Suganuma M, Fujiki H: Apoptosis of human lung cancer cells by curcumin mediated through up-regulation of "growth arrest and DNA damage inducible genes 45 and 153". Biol Pharm Bull. 2010, 33 (8): 1291-1299. 10.1248/bpb.33.1291.CrossRefPubMed
11.
go back to reference Kumaravel M, Sankar P, Latha P, Benson CS, Rukkumani R: Antiproliferative effects of an analog of curcumin in Hep-2 cells: a comparative study with curcumin. Nat Prod Commun. 2013, 8 (2): 183-186.PubMed Kumaravel M, Sankar P, Latha P, Benson CS, Rukkumani R: Antiproliferative effects of an analog of curcumin in Hep-2 cells: a comparative study with curcumin. Nat Prod Commun. 2013, 8 (2): 183-186.PubMed
12.
go back to reference Guimaraes MR, Coimbra LS, de Aquino SG, Spolidorio LC, Kirkwood KL, Rossa C: Potent anti-inflammatory effects of systemically administered curcumin modulate periodontal disease in vivo. J Periodontal Res. 2011, 46 (2): 269-279. 10.1111/j.1600-0765.2010.01342.x.PubMedCentralCrossRefPubMed Guimaraes MR, Coimbra LS, de Aquino SG, Spolidorio LC, Kirkwood KL, Rossa C: Potent anti-inflammatory effects of systemically administered curcumin modulate periodontal disease in vivo. J Periodontal Res. 2011, 46 (2): 269-279. 10.1111/j.1600-0765.2010.01342.x.PubMedCentralCrossRefPubMed
13.
go back to reference Debnath S, Saloum D, Dolai S, Sun C, Averick S, Raja K, Fata JE: Dendrimer-curcumin. 2013, A Water Soluble and Effective Cytotoxic Agent against Breast Cancer Cell Lines. Anticancer Agents Med Chem: Conjugate Debnath S, Saloum D, Dolai S, Sun C, Averick S, Raja K, Fata JE: Dendrimer-curcumin. 2013, A Water Soluble and Effective Cytotoxic Agent against Breast Cancer Cell Lines. Anticancer Agents Med Chem: Conjugate
14.
go back to reference Faiao-Flores F, Suarez JA, Maria-Engler SS, Soto-Cerrato V, Perez-Tomas R, Maria DA: The curcumin analog DM-1 induces apoptotic cell death in melanoma. Tumour Biol. 2013, 34 (2): 1119-1129. 10.1007/s13277-013-0653-y.CrossRefPubMed Faiao-Flores F, Suarez JA, Maria-Engler SS, Soto-Cerrato V, Perez-Tomas R, Maria DA: The curcumin analog DM-1 induces apoptotic cell death in melanoma. Tumour Biol. 2013, 34 (2): 1119-1129. 10.1007/s13277-013-0653-y.CrossRefPubMed
15.
go back to reference Wang WZ, Li L, Liu MY, Jin XB, Mao JW, Pu QH, Meng MJ, Chen XG, Zhu JY: Curcumin induces FasL-related apoptosis through p38 activation in human hepatocellular carcinoma Huh7 cells. Life Sci. 2013, 92 (6–7): 352-358.PubMed Wang WZ, Li L, Liu MY, Jin XB, Mao JW, Pu QH, Meng MJ, Chen XG, Zhu JY: Curcumin induces FasL-related apoptosis through p38 activation in human hepatocellular carcinoma Huh7 cells. Life Sci. 2013, 92 (6–7): 352-358.PubMed
16.
go back to reference Zhang CY, Zhang L, Yu HX, Bao JD, Lu RR: Curcumin inhibits the metastasis of K1 papillary thyroid cancer cells via modulating E-cadherin and matrix metalloproteinase-9 expression. Biotechnol Lett. 2013, 35 (7): 995-1000. 10.1007/s10529-013-1173-y.CrossRefPubMed Zhang CY, Zhang L, Yu HX, Bao JD, Lu RR: Curcumin inhibits the metastasis of K1 papillary thyroid cancer cells via modulating E-cadherin and matrix metalloproteinase-9 expression. Biotechnol Lett. 2013, 35 (7): 995-1000. 10.1007/s10529-013-1173-y.CrossRefPubMed
17.
go back to reference Cheng TS, Chen WC, Lin YY, Tsai CH, Liao CI, Shyu HY, Ko CJ, Tzeng SF, Huang CY, Yang PC: Curcumin-targeting pericellular serine protease matriptase role in suppression of prostate cancer cell invasion, tumor growth, and metastasis. Cancer Prev Res (Phila). 2013, 6 (5): 495-505. 10.1158/1940-6207.CAPR-12-0293-T.CrossRef Cheng TS, Chen WC, Lin YY, Tsai CH, Liao CI, Shyu HY, Ko CJ, Tzeng SF, Huang CY, Yang PC: Curcumin-targeting pericellular serine protease matriptase role in suppression of prostate cancer cell invasion, tumor growth, and metastasis. Cancer Prev Res (Phila). 2013, 6 (5): 495-505. 10.1158/1940-6207.CAPR-12-0293-T.CrossRef
18.
go back to reference Liu L, Sun L, Wu Q, Guo W, Li L, Chen Y, Li Y, Gong C, Qian Z, Wei Y: Curcumin loaded polymeric micelles inhibit breast tumor growth and spontaneous pulmonary metastasis. Int J Pharm. 2013, 443 (1–2): 175-182.CrossRefPubMed Liu L, Sun L, Wu Q, Guo W, Li L, Chen Y, Li Y, Gong C, Qian Z, Wei Y: Curcumin loaded polymeric micelles inhibit breast tumor growth and spontaneous pulmonary metastasis. Int J Pharm. 2013, 443 (1–2): 175-182.CrossRefPubMed
19.
go back to reference Masuelli L, Benvenuto M, Fantini M, Marzocchella L, Sacchetti P, Di Stefano E, Tresoldi I, Izzi V, Bernardini R, Palumbo C: Curcumin induces apoptosis in breast cancer cell lines and delays the growth of mammary tumors in neu transgenic mice. J Biol Regul Homeost Agents. 2013, 27 (1): 105-119.PubMed Masuelli L, Benvenuto M, Fantini M, Marzocchella L, Sacchetti P, Di Stefano E, Tresoldi I, Izzi V, Bernardini R, Palumbo C: Curcumin induces apoptosis in breast cancer cell lines and delays the growth of mammary tumors in neu transgenic mice. J Biol Regul Homeost Agents. 2013, 27 (1): 105-119.PubMed
20.
go back to reference Choudhury D, Ganguli A, Dastidar DG, Acharya BR, Das A, Chakrabarti G: Apigenin shows synergistic anticancer activity with curcumin by binding at different sites of tubulin. Biochimie. 2013, 95 (6): 1297-1309. 10.1016/j.biochi.2013.02.010.CrossRefPubMed Choudhury D, Ganguli A, Dastidar DG, Acharya BR, Das A, Chakrabarti G: Apigenin shows synergistic anticancer activity with curcumin by binding at different sites of tubulin. Biochimie. 2013, 95 (6): 1297-1309. 10.1016/j.biochi.2013.02.010.CrossRefPubMed
21.
go back to reference Subramaniam D, Ponnurangam S, Ramamoorthy P, Standing D, Battafarano RJ, Anant S, Sharma P: Curcumin induces cell death in esophageal cancer cells through modulating Notch signaling. PLoS One. 2012, 7 (2): e30590-10.1371/journal.pone.0030590.PubMedCentralCrossRefPubMed Subramaniam D, Ponnurangam S, Ramamoorthy P, Standing D, Battafarano RJ, Anant S, Sharma P: Curcumin induces cell death in esophageal cancer cells through modulating Notch signaling. PLoS One. 2012, 7 (2): e30590-10.1371/journal.pone.0030590.PubMedCentralCrossRefPubMed
22.
go back to reference Han X, Xu B, Beevers CS, Odaka Y, Chen L, Liu L, Luo Y, Zhou H, Chen W, Shen T: Curcumin inhibits protein phosphatases 2A and 5, leading to activation of mitogen-activated protein kinases and death in tumor cells. Carcinogenesis. 2012, 33 (4): 868-875. 10.1093/carcin/bgs029.PubMedCentralCrossRefPubMed Han X, Xu B, Beevers CS, Odaka Y, Chen L, Liu L, Luo Y, Zhou H, Chen W, Shen T: Curcumin inhibits protein phosphatases 2A and 5, leading to activation of mitogen-activated protein kinases and death in tumor cells. Carcinogenesis. 2012, 33 (4): 868-875. 10.1093/carcin/bgs029.PubMedCentralCrossRefPubMed
23.
go back to reference Tu SP, Jin H, Shi JD, Zhu LM, Suo Y, Lu G, Liu A, Wang TC, Yang CS: Curcumin induces the differentiation of myeloid-derived suppressor cells and inhibits their interaction with cancer cells and related tumor growth. Cancer Prev Res (Phila). 2012, 5 (2): 205-215. 10.1158/1940-6207.CAPR-11-0247.CrossRef Tu SP, Jin H, Shi JD, Zhu LM, Suo Y, Lu G, Liu A, Wang TC, Yang CS: Curcumin induces the differentiation of myeloid-derived suppressor cells and inhibits their interaction with cancer cells and related tumor growth. Cancer Prev Res (Phila). 2012, 5 (2): 205-215. 10.1158/1940-6207.CAPR-11-0247.CrossRef
24.
go back to reference Quitschke WW: Curcuminoid binding to embryonal carcinoma cells: reductive metabolism, induction of apoptosis, senescence, and inhibition of cell proliferation. PLoS One. 2012, 7 (6): e39568-10.1371/journal.pone.0039568.PubMedCentralCrossRefPubMed Quitschke WW: Curcuminoid binding to embryonal carcinoma cells: reductive metabolism, induction of apoptosis, senescence, and inhibition of cell proliferation. PLoS One. 2012, 7 (6): e39568-10.1371/journal.pone.0039568.PubMedCentralCrossRefPubMed
25.
go back to reference Sahu RP, Batra S, Srivastava SK: Activation of ATM/Chk1 by curcumin causes cell cycle arrest and apoptosis in human pancreatic cancer cells. Br J Cancer. 2009, 100 (9): 1425-1433. 10.1038/sj.bjc.6605039.PubMedCentralCrossRefPubMed Sahu RP, Batra S, Srivastava SK: Activation of ATM/Chk1 by curcumin causes cell cycle arrest and apoptosis in human pancreatic cancer cells. Br J Cancer. 2009, 100 (9): 1425-1433. 10.1038/sj.bjc.6605039.PubMedCentralCrossRefPubMed
26.
go back to reference Miller M, Chen S, Woodliff J, Kansra S: Curcumin (diferuloylmethane) inhibits cell proliferation, induces apoptosis, and decreases hormone levels and secretion in pituitary tumor cells. Endocrinology. 2008, 149 (8): 4158-4167. 10.1210/en.2007-1760.PubMedCentralCrossRefPubMed Miller M, Chen S, Woodliff J, Kansra S: Curcumin (diferuloylmethane) inhibits cell proliferation, induces apoptosis, and decreases hormone levels and secretion in pituitary tumor cells. Endocrinology. 2008, 149 (8): 4158-4167. 10.1210/en.2007-1760.PubMedCentralCrossRefPubMed
27.
go back to reference Milacic V, Banerjee S, Landis-Piwowar KR, Sarkar FH, Majumdar AP, Dou QP: Curcumin inhibits the proteasome activity in human colon cancer cells in vitro and in vivo. Cancer Res. 2008, 68 (18): 7283-7292. 10.1158/0008-5472.CAN-07-6246.PubMedCentralCrossRefPubMed Milacic V, Banerjee S, Landis-Piwowar KR, Sarkar FH, Majumdar AP, Dou QP: Curcumin inhibits the proteasome activity in human colon cancer cells in vitro and in vivo. Cancer Res. 2008, 68 (18): 7283-7292. 10.1158/0008-5472.CAN-07-6246.PubMedCentralCrossRefPubMed
28.
go back to reference Bao B, Ali S, Banerjee S, Wang Z, Logna F, Azmi AS, Kong D, Ahmad A, Li Y, Padhye S: Curcumin analogue CDF inhibits pancreatic tumor growth by switching on suppressor microRNAs and attenuating EZH2 expression. Cancer Res. 2012, 72 (1): 335-345. 10.1158/0008-5472.CAN-11-2182.PubMedCentralCrossRefPubMed Bao B, Ali S, Banerjee S, Wang Z, Logna F, Azmi AS, Kong D, Ahmad A, Li Y, Padhye S: Curcumin analogue CDF inhibits pancreatic tumor growth by switching on suppressor microRNAs and attenuating EZH2 expression. Cancer Res. 2012, 72 (1): 335-345. 10.1158/0008-5472.CAN-11-2182.PubMedCentralCrossRefPubMed
29.
go back to reference Kelly PN, Strasser A: The role of Bcl-2 and its pro-survival relatives in tumourigenesis and cancer therapy. Cell Death Differ. 2011, 18 (9): 1414-1424. 10.1038/cdd.2011.17.PubMedCentralCrossRefPubMed Kelly PN, Strasser A: The role of Bcl-2 and its pro-survival relatives in tumourigenesis and cancer therapy. Cell Death Differ. 2011, 18 (9): 1414-1424. 10.1038/cdd.2011.17.PubMedCentralCrossRefPubMed
30.
go back to reference Strasser A, Cory S, Adams JM: Deciphering the rules of programmed cell death to improve therapy of cancer and other diseases. EMBO J. 2011, 30 (18): 3667-3683. 10.1038/emboj.2011.307.PubMedCentralCrossRefPubMed Strasser A, Cory S, Adams JM: Deciphering the rules of programmed cell death to improve therapy of cancer and other diseases. EMBO J. 2011, 30 (18): 3667-3683. 10.1038/emboj.2011.307.PubMedCentralCrossRefPubMed
31.
go back to reference Kroemer G, Galluzzi L, Brenner C: Mitochondrial membrane permeabilization in cell death. Physiol Rev. 2007, 87 (1): 99-163. 10.1152/physrev.00013.2006.CrossRefPubMed Kroemer G, Galluzzi L, Brenner C: Mitochondrial membrane permeabilization in cell death. Physiol Rev. 2007, 87 (1): 99-163. 10.1152/physrev.00013.2006.CrossRefPubMed
32.
go back to reference Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry WS, Fulda S: Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ. 2012, 19 (1): 107-120. 10.1038/cdd.2011.96.PubMedCentralCrossRefPubMed Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry WS, Fulda S: Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ. 2012, 19 (1): 107-120. 10.1038/cdd.2011.96.PubMedCentralCrossRefPubMed
33.
go back to reference Korsmeyer SJ, Shutter JR, Veis DJ, Merry DE, Oltvai ZN: Bcl-2/Bax: a rheostat that regulates an anti-oxidant pathway and cell death. Semin Cancer Biol. 1993, 4 (6): 327-332.PubMed Korsmeyer SJ, Shutter JR, Veis DJ, Merry DE, Oltvai ZN: Bcl-2/Bax: a rheostat that regulates an anti-oxidant pathway and cell death. Semin Cancer Biol. 1993, 4 (6): 327-332.PubMed
34.
go back to reference Lindsay J, Esposti MD, Gilmore AP: Bcl-2 proteins and mitochondria–specificity in membrane targeting for death. Biochim Biophys Acta. 2011, 1813 (4): 532-539. 10.1016/j.bbamcr.2010.10.017.CrossRefPubMed Lindsay J, Esposti MD, Gilmore AP: Bcl-2 proteins and mitochondria–specificity in membrane targeting for death. Biochim Biophys Acta. 2011, 1813 (4): 532-539. 10.1016/j.bbamcr.2010.10.017.CrossRefPubMed
35.
go back to reference Walensky LD: BCL-2 in the crosshairs: tipping the balance of life and death. Cell Death Differ. 2006, 13 (8): 1339-1350. 10.1038/sj.cdd.4401992.CrossRefPubMed Walensky LD: BCL-2 in the crosshairs: tipping the balance of life and death. Cell Death Differ. 2006, 13 (8): 1339-1350. 10.1038/sj.cdd.4401992.CrossRefPubMed
36.
go back to reference Plumb JA: Cell sensitivity assays: the MTT assay. Methods Mol Med. 2004, 88: 165-169.PubMed Plumb JA: Cell sensitivity assays: the MTT assay. Methods Mol Med. 2004, 88: 165-169.PubMed
37.
go back to reference Dong P, Zhang Y, Gu J, Wu W, Li M, Yang J, Zhang L, Lu J, Mu J, Chen L: Wogonin, an active ingredient of Chinese herb medicine Scutellaria baicalensis, inhibits the mobility and invasion of human gallbladder carcinoma GBC-SD cells by inducing the expression of maspin. J Ethnopharmacol. 2011, 137 (3): 1373-1380. 10.1016/j.jep.2011.08.005.CrossRefPubMed Dong P, Zhang Y, Gu J, Wu W, Li M, Yang J, Zhang L, Lu J, Mu J, Chen L: Wogonin, an active ingredient of Chinese herb medicine Scutellaria baicalensis, inhibits the mobility and invasion of human gallbladder carcinoma GBC-SD cells by inducing the expression of maspin. J Ethnopharmacol. 2011, 137 (3): 1373-1380. 10.1016/j.jep.2011.08.005.CrossRefPubMed
38.
go back to reference Quan Z, Gu J, Dong P, Lu J, Wu X, Wu W, Fei X, Li S, Wang Y, Wang J: Reactive oxygen species-mediated endoplasmic reticulum stress and mitochondrial dysfunction contribute to cirsimaritin-induced apoptosis in human gallbladder carcinoma GBC-SD cells. Cancer Lett. 2010, 295 (2): 252-259. 10.1016/j.canlet.2010.03.008.CrossRefPubMed Quan Z, Gu J, Dong P, Lu J, Wu X, Wu W, Fei X, Li S, Wang Y, Wang J: Reactive oxygen species-mediated endoplasmic reticulum stress and mitochondrial dysfunction contribute to cirsimaritin-induced apoptosis in human gallbladder carcinoma GBC-SD cells. Cancer Lett. 2010, 295 (2): 252-259. 10.1016/j.canlet.2010.03.008.CrossRefPubMed
Metadata
Title
Curcumin induces apoptosis in gallbladder carcinoma cell line GBC-SD cells
Authors
Tian-Yu Liu
Zhu-Jun Tan
Lin Jiang
Jian-Feng Gu
Xiang-Song Wu
Yang Cao
Mao-Lan Li
Ke-Jin Wu
Ying-Bin Liu
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2013
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/1475-2867-13-64

Other articles of this Issue 1/2013

Cancer Cell International 1/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine