Skip to main content
Top
Published in: Cancer Cell International 1/2011

Open Access 01-12-2011 | Review

Therapeutics formulated to target cancer stem cells: Is it in our future?

Authors: Stephanie Clayton, Shaker A Mousa

Published in: Cancer Cell International | Issue 1/2011

Login to get access

Abstract

With the political, social and financial drives for cancer research, many advances have been made in the treatment of many different cancer types. For example, given the increase in awareness, early detection, and treatment of breast and prostate cancers, we have seen substantial increases in survival rates. Unfortunately there are some realms of cancer that have not seen these substantial advancements, largely due to their rapid progression and the inability to specifically target therapy.
The hypothesis that cancers arise from a small population of cells, called cancer stem cells (CSCs), is gaining more popularity amongst researchers. There are, however, still many skeptics who bring into question the validity of this theory. Many skeptics believe that there is not a specific subset of cells that originate with these characteristics, but that they develop certain features over time making them more resistant to conventional therapy. It is theorized that many of the relapses occurring after remission are due to our inability to destroy the self-renewing CSCs. This central idea, that CSCs are biologically different from all other cancer cells, has directed research towards the development of therapy to target CSCs directly. The major dilemma in targeting therapy in myeloproliferative disorders, malignancies of the central nervous system or malignancies in general, is the inability to target CSCs as opposed to normal stem cells. However, with the recent advances in the identifications of unique molecular signatures for CSCs along with ongoing clinical trials targeting CSCs, it is possible to use targeted nanotechnology-based strategies in the management of different types of cancers.
Literature
1.
go back to reference Bonnet D, Dick JE: Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997, 3 (7): 730-7. 10.1038/nm0797-730.CrossRefPubMed Bonnet D, Dick JE: Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997, 3 (7): 730-7. 10.1038/nm0797-730.CrossRefPubMed
2.
go back to reference Tang C, Ang BT, Pervaiz S: Cancer stem cell: target for anti-cancer therapy. FASEB J. 2007, 21 (14): 3777-85. 10.1096/fj.07-8560rev.CrossRefPubMed Tang C, Ang BT, Pervaiz S: Cancer stem cell: target for anti-cancer therapy. FASEB J. 2007, 21 (14): 3777-85. 10.1096/fj.07-8560rev.CrossRefPubMed
3.
go back to reference Karp JE, ed: Acute Myelogenous Leukemia. 2007, Humana Press: Totowa Karp JE, ed: Acute Myelogenous Leukemia. 2007, Humana Press: Totowa
4.
go back to reference ten Cate B: Targeted elimination of leukemia stem cells; a new therapeutic approach in hemato-oncology. Curr Drug Targets. 2010, 11 (1): 95-110. 10.2174/138945010790031063.CrossRefPubMed ten Cate B: Targeted elimination of leukemia stem cells; a new therapeutic approach in hemato-oncology. Curr Drug Targets. 2010, 11 (1): 95-110. 10.2174/138945010790031063.CrossRefPubMed
5.
go back to reference ten Cate B: A novel AML-selective TRAIL fusion protein that is superior to Gemtuzumab Ozogamicin in terms of in vitro selectivity, activity and stability. Leukemia. 2009, 23 (8): 1389-97. 10.1038/leu.2009.34.CrossRefPubMed ten Cate B: A novel AML-selective TRAIL fusion protein that is superior to Gemtuzumab Ozogamicin in terms of in vitro selectivity, activity and stability. Leukemia. 2009, 23 (8): 1389-97. 10.1038/leu.2009.34.CrossRefPubMed
6.
go back to reference Milligan DW: Guidelines on the management of acute myeloid leukaemia in adults. Br J Haematol. 2006, 135 (4): 450-74. 10.1111/j.1365-2141.2006.06314.x.CrossRefPubMed Milligan DW: Guidelines on the management of acute myeloid leukaemia in adults. Br J Haematol. 2006, 135 (4): 450-74. 10.1111/j.1365-2141.2006.06314.x.CrossRefPubMed
7.
go back to reference Leith CP: Acute myeloid leukemia in the elderly: assessment of multidrug resistance (MDR1) and cytogenetics distinguishes biologic subgroups with remarkably distinct responses to standard chemotherapy. A Southwest Oncology Group study. Blood. 1997, 89 (9): 3323-9.PubMed Leith CP: Acute myeloid leukemia in the elderly: assessment of multidrug resistance (MDR1) and cytogenetics distinguishes biologic subgroups with remarkably distinct responses to standard chemotherapy. A Southwest Oncology Group study. Blood. 1997, 89 (9): 3323-9.PubMed
8.
go back to reference Sievers EL: Selective ablation of acute myeloid leukemia using antibody-targeted chemotherapy: a phase I study of an anti-CD33 calicheamicin immunoconjugate. Blood. 1999, 93 (11): 3678-84.PubMed Sievers EL: Selective ablation of acute myeloid leukemia using antibody-targeted chemotherapy: a phase I study of an anti-CD33 calicheamicin immunoconjugate. Blood. 1999, 93 (11): 3678-84.PubMed
9.
go back to reference Sievers EL: Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. J Clin Oncol. 2001, 19 (13): 3244-54.PubMed Sievers EL: Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. J Clin Oncol. 2001, 19 (13): 3244-54.PubMed
10.
go back to reference Larson RA: Final report of the efficacy and safety of gemtuzumab ozogamicin (Mylotarg) in patients with CD33-positive acute myeloid leukemia in first recurrence. Cancer. 2005, 104 (7): 1442-52. 10.1002/cncr.21326.CrossRefPubMed Larson RA: Final report of the efficacy and safety of gemtuzumab ozogamicin (Mylotarg) in patients with CD33-positive acute myeloid leukemia in first recurrence. Cancer. 2005, 104 (7): 1442-52. 10.1002/cncr.21326.CrossRefPubMed
11.
go back to reference Lowenberg B: Gemtuzumab ozogamicin as postremission treatment in AML at 60 years of age or more: results of a multicenter phase 3 study. Blood. 2010, 115 (13): 2586-91. 10.1182/blood-2009-10-246470.CrossRefPubMed Lowenberg B: Gemtuzumab ozogamicin as postremission treatment in AML at 60 years of age or more: results of a multicenter phase 3 study. Blood. 2010, 115 (13): 2586-91. 10.1182/blood-2009-10-246470.CrossRefPubMed
12.
go back to reference Walter RB: CD33 expression and P-glycoprotein-mediated drug efflux inversely correlate and predict clinical outcome in patients with acute myeloid leukemia treated with gemtuzumab ozogamicin monotherapy. Blood. 2007, 109 (10): 4168-70. 10.1182/blood-2006-09-047399.PubMedCentralCrossRefPubMed Walter RB: CD33 expression and P-glycoprotein-mediated drug efflux inversely correlate and predict clinical outcome in patients with acute myeloid leukemia treated with gemtuzumab ozogamicin monotherapy. Blood. 2007, 109 (10): 4168-70. 10.1182/blood-2006-09-047399.PubMedCentralCrossRefPubMed
13.
go back to reference Jawad M: Analysis of factors that affect in vitro chemosensitivity of leukaemic stem and progenitor cells to gemtuzumab ozogamicin (Mylotarg) in acute myeloid leukaemia. Leukemia. 2010, 24 (1): 74-80. 10.1038/leu.2009.199.CrossRefPubMed Jawad M: Analysis of factors that affect in vitro chemosensitivity of leukaemic stem and progenitor cells to gemtuzumab ozogamicin (Mylotarg) in acute myeloid leukaemia. Leukemia. 2010, 24 (1): 74-80. 10.1038/leu.2009.199.CrossRefPubMed
14.
go back to reference Zhao X: Targeting C-type lectin-like molecule-1 for antibody-mediated immunotherapy in acute myeloid leukemia. Haematologica. 2010, 95 (1): 71-8. 10.3324/haematol.2009.009811.PubMedCentralCrossRefPubMed Zhao X: Targeting C-type lectin-like molecule-1 for antibody-mediated immunotherapy in acute myeloid leukemia. Haematologica. 2010, 95 (1): 71-8. 10.3324/haematol.2009.009811.PubMedCentralCrossRefPubMed
15.
go back to reference van Rhenen A: The novel AML stem cell associated antigen CLL-1 aids in discrimination between normal and leukemic stem cells. Blood. 2007, 110 (7): 2659-66. 10.1182/blood-2007-03-083048.CrossRefPubMed van Rhenen A: The novel AML stem cell associated antigen CLL-1 aids in discrimination between normal and leukemic stem cells. Blood. 2007, 110 (7): 2659-66. 10.1182/blood-2007-03-083048.CrossRefPubMed
16.
go back to reference Tang R: Zosuquidar restores drug sensitivity in P-glycoprotein expressing acute myeloid leukemia (AML). BMC Cancer. 2008, 8: 51-10.1186/1471-2407-8-51.PubMedCentralCrossRefPubMed Tang R: Zosuquidar restores drug sensitivity in P-glycoprotein expressing acute myeloid leukemia (AML). BMC Cancer. 2008, 8: 51-10.1186/1471-2407-8-51.PubMedCentralCrossRefPubMed
17.
go back to reference Latagliata R: Liposomal daunorubicin versus standard daunorubicin: long term follow-up of the GIMEMA GSI 103 AMLE randomized trial in patients older than 60 years with acute myelogenous leukaemia. Br J Haematol. 2008, 143 (5): 681-9. 10.1111/j.1365-2141.2008.07400.x.CrossRefPubMed Latagliata R: Liposomal daunorubicin versus standard daunorubicin: long term follow-up of the GIMEMA GSI 103 AMLE randomized trial in patients older than 60 years with acute myelogenous leukaemia. Br J Haematol. 2008, 143 (5): 681-9. 10.1111/j.1365-2141.2008.07400.x.CrossRefPubMed
18.
go back to reference Robert G, Fenton DLL: Cancer Cell Biology and Angiogenesis. 2008, The McGraw-Hill Companies, Inc Robert G, Fenton DLL: Cancer Cell Biology and Angiogenesis. 2008, The McGraw-Hill Companies, Inc
19.
go back to reference Martelli AM: The phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin signaling network and the control of normal myelopoiesis. Histol Histopathol. 2010, 25 (5): 669-80.PubMed Martelli AM: The phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin signaling network and the control of normal myelopoiesis. Histol Histopathol. 2010, 25 (5): 669-80.PubMed
20.
go back to reference Martelli AM: Targeting the PI3K/AKT/mTOR signaling network in acute myelogenous leukemia. Expert Opin Investig Drugs. 2009, 18 (9): 1333-49. 10.1517/14728220903136775.CrossRefPubMed Martelli AM: Targeting the PI3K/AKT/mTOR signaling network in acute myelogenous leukemia. Expert Opin Investig Drugs. 2009, 18 (9): 1333-49. 10.1517/14728220903136775.CrossRefPubMed
22.
go back to reference Bleau AM: PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell. 2009, 4 (3): 226-35. 10.1016/j.stem.2009.01.007.PubMedCentralCrossRefPubMed Bleau AM: PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell. 2009, 4 (3): 226-35. 10.1016/j.stem.2009.01.007.PubMedCentralCrossRefPubMed
23.
go back to reference Goodell MA: Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med. 1996, 183 (4): 1797-806. 10.1084/jem.183.4.1797.CrossRefPubMed Goodell MA: Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med. 1996, 183 (4): 1797-806. 10.1084/jem.183.4.1797.CrossRefPubMed
24.
go back to reference Bapat S, ed: Cancer Stem Cells: Identification and Targets. 2009, John Wiley & Sons: Hoboken, 29-45. 73-81 Bapat S, ed: Cancer Stem Cells: Identification and Targets. 2009, John Wiley & Sons: Hoboken, 29-45. 73-81
26.
go back to reference Muranyi AL, Dedhar S, Hogge DE: Targeting integrin linked kinase and FMS-like tyrosine kinase-3 is cytotoxic to acute myeloid leukemia stem cells but spares normal progenitors. Leuk Res. 2010, 34 (10): 1358-65. 10.1016/j.leukres.2010.01.006.CrossRefPubMed Muranyi AL, Dedhar S, Hogge DE: Targeting integrin linked kinase and FMS-like tyrosine kinase-3 is cytotoxic to acute myeloid leukemia stem cells but spares normal progenitors. Leuk Res. 2010, 34 (10): 1358-65. 10.1016/j.leukres.2010.01.006.CrossRefPubMed
27.
28.
go back to reference Hess G: Phase III study to evaluate temsirolimus compared with investigator's choice therapy for the treatment of relapsed or refractory mantle cell lymphoma. J Clin Oncol. 2009, 27 (23): 3822-9. 10.1200/JCO.2008.20.7977.CrossRefPubMed Hess G: Phase III study to evaluate temsirolimus compared with investigator's choice therapy for the treatment of relapsed or refractory mantle cell lymphoma. J Clin Oncol. 2009, 27 (23): 3822-9. 10.1200/JCO.2008.20.7977.CrossRefPubMed
29.
go back to reference Hainsworth JD: Phase II Trial of Bevacizumab and Everolimus in Patients With Advanced Renal Cell Carcinoma. J Clin Oncol. 2010, 28 (13): 2131-6. 10.1200/JCO.2009.26.3152.CrossRefPubMed Hainsworth JD: Phase II Trial of Bevacizumab and Everolimus in Patients With Advanced Renal Cell Carcinoma. J Clin Oncol. 2010, 28 (13): 2131-6. 10.1200/JCO.2009.26.3152.CrossRefPubMed
30.
go back to reference Ghobrial IM: Phase II trial of the oral mammalian target of rapamycin inhibitor everolimus in relapsed or refractory Waldenstrom macroglobulinemia. J Clin Oncol. 2010, 28 (8): 1408-14. 10.1200/JCO.2009.24.0994.PubMedCentralCrossRefPubMed Ghobrial IM: Phase II trial of the oral mammalian target of rapamycin inhibitor everolimus in relapsed or refractory Waldenstrom macroglobulinemia. J Clin Oncol. 2010, 28 (8): 1408-14. 10.1200/JCO.2009.24.0994.PubMedCentralCrossRefPubMed
31.
go back to reference Pandolfi PP: Breast cancer--loss of PTEN predicts resistance to treatment. N Engl J Med. 2004, 351 (22): 2337-8. 10.1056/NEJMcibr043143.CrossRefPubMed Pandolfi PP: Breast cancer--loss of PTEN predicts resistance to treatment. N Engl J Med. 2004, 351 (22): 2337-8. 10.1056/NEJMcibr043143.CrossRefPubMed
32.
go back to reference Peng C: PTEN is a tumor suppressor in CML stem cells and BCR-ABL-induced leukemias in mice. Blood. 2010, 115 (3): 626-35. 10.1182/blood-2009-06-228130.PubMedCentralCrossRefPubMed Peng C: PTEN is a tumor suppressor in CML stem cells and BCR-ABL-induced leukemias in mice. Blood. 2010, 115 (3): 626-35. 10.1182/blood-2009-06-228130.PubMedCentralCrossRefPubMed
33.
go back to reference Von Hoff DD: Inhibition of the hedgehog pathway in advanced basal-cell carcinoma. N Engl J Med. 2009, 361 (12): 1164-72. 10.1056/NEJMoa0905360.CrossRefPubMed Von Hoff DD: Inhibition of the hedgehog pathway in advanced basal-cell carcinoma. N Engl J Med. 2009, 361 (12): 1164-72. 10.1056/NEJMoa0905360.CrossRefPubMed
34.
go back to reference Rudin CM: Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N Engl J Med. 2009, 361 (12): 1173-8. 10.1056/NEJMoa0902903.CrossRefPubMed Rudin CM: Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N Engl J Med. 2009, 361 (12): 1173-8. 10.1056/NEJMoa0902903.CrossRefPubMed
35.
go back to reference Hofmann I: Hedgehog signaling is dispensable for adult murine hematopoietic stem cell function and hematopoiesis. Cell Stem Cell. 2009, 4 (6): 559-67. 10.1016/j.stem.2009.03.016.PubMedCentralCrossRefPubMed Hofmann I: Hedgehog signaling is dispensable for adult murine hematopoietic stem cell function and hematopoiesis. Cell Stem Cell. 2009, 4 (6): 559-67. 10.1016/j.stem.2009.03.016.PubMedCentralCrossRefPubMed
36.
go back to reference Fang J, Seki T, Maeda H: Therapeutic strategies by modulating oxygen stress in cancer and inflammation. Adv Drug Deliv Rev. 2009, 61 (4): 290-302. 10.1016/j.addr.2009.02.005.CrossRefPubMed Fang J, Seki T, Maeda H: Therapeutic strategies by modulating oxygen stress in cancer and inflammation. Adv Drug Deliv Rev. 2009, 61 (4): 290-302. 10.1016/j.addr.2009.02.005.CrossRefPubMed
37.
go back to reference Kotamraju S, Williams CL, Kalyanaraman B: Statin-induced breast cancer cell death: role of inducible nitric oxide and arginase-dependent pathways. Cancer Res. 2007, 67 (15): 7386-94. 10.1158/0008-5472.CAN-07-0993.CrossRefPubMed Kotamraju S, Williams CL, Kalyanaraman B: Statin-induced breast cancer cell death: role of inducible nitric oxide and arginase-dependent pathways. Cancer Res. 2007, 67 (15): 7386-94. 10.1158/0008-5472.CAN-07-0993.CrossRefPubMed
38.
go back to reference Chen R: Combination of simvastatin and imatinib sensitizes the CD34+ cells in K562 to cell death. Med Oncol. 2010 Chen R: Combination of simvastatin and imatinib sensitizes the CD34+ cells in K562 to cell death. Med Oncol. 2010
39.
go back to reference Li R: P-glycoprotein antibody functionalized carbon nanotube overcomes the multidrug resistance of human leukemia cells. ACS Nano. 2010, 4 (3): 1399-408. 10.1021/nn9011225.CrossRefPubMed Li R: P-glycoprotein antibody functionalized carbon nanotube overcomes the multidrug resistance of human leukemia cells. ACS Nano. 2010, 4 (3): 1399-408. 10.1021/nn9011225.CrossRefPubMed
40.
go back to reference Li GY: Cyclosporine diminishes multidrug resistance in K562/ADM cells and improves complete remission in patients with acute myeloid leukemia. Biomed Pharmacother. 2009, 63 (8): 566-70. 10.1016/j.biopha.2008.10.008.CrossRefPubMed Li GY: Cyclosporine diminishes multidrug resistance in K562/ADM cells and improves complete remission in patients with acute myeloid leukemia. Biomed Pharmacother. 2009, 63 (8): 566-70. 10.1016/j.biopha.2008.10.008.CrossRefPubMed
41.
go back to reference Balyasnikova IV: Mesenchymal stem cells modified with a single-chain antibody against EGFRvIII successfully inhibit the growth of human xenograft malignant glioma. PLoS One. 2010, 5 (3): e9750-10.1371/journal.pone.0009750.PubMedCentralCrossRefPubMed Balyasnikova IV: Mesenchymal stem cells modified with a single-chain antibody against EGFRvIII successfully inhibit the growth of human xenograft malignant glioma. PLoS One. 2010, 5 (3): e9750-10.1371/journal.pone.0009750.PubMedCentralCrossRefPubMed
42.
go back to reference Wei Z: Bone marrow mesenchymal stem cells from leukemia patients inhibit growth and apoptosis in serum-deprived K562 cells. J Exp Clin Cancer Res. 2009, 28: 141-10.1186/1756-9966-28-141.PubMedCentralCrossRefPubMed Wei Z: Bone marrow mesenchymal stem cells from leukemia patients inhibit growth and apoptosis in serum-deprived K562 cells. J Exp Clin Cancer Res. 2009, 28: 141-10.1186/1756-9966-28-141.PubMedCentralCrossRefPubMed
43.
go back to reference Mishima K: Growth suppression of intracranial xenografted glioblastomas overexpressing mutant epidermal growth factor receptors by systemic administration of monoclonal antibody (mAb) 806, a novel monoclonal antibody directed to the receptor. Cancer Res. 2001, 61 (14): 5349-54.PubMed Mishima K: Growth suppression of intracranial xenografted glioblastomas overexpressing mutant epidermal growth factor receptors by systemic administration of monoclonal antibody (mAb) 806, a novel monoclonal antibody directed to the receptor. Cancer Res. 2001, 61 (14): 5349-54.PubMed
44.
Metadata
Title
Therapeutics formulated to target cancer stem cells: Is it in our future?
Authors
Stephanie Clayton
Shaker A Mousa
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2011
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/1475-2867-11-7

Other articles of this Issue 1/2011

Cancer Cell International 1/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine