Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2014

Open Access 01-12-2014 | Research article

In vitro bioaccessibility and antioxidant properties of edible bird’s nest following simulated human gastro-intestinal digestion

Authors: Zhang Yida, Mustapha Umar Imam, Maznah Ismail

Published in: BMC Complementary Medicine and Therapies | Issue 1/2014

Login to get access

Abstract

Background

Edible birds’ nest (EBN) is reported to be antioxidant-rich. However, the fate of its antioxidants after oral consumption is not yet reported. To explore this, we hypothesized that EBN antioxidants are released from their matrix when subjected to in vitro simulated gastrointestinal digestion.

Methods

EBN samples were extracted using hot water (100°C) with or without subsequent sequential enzymatic digestion using pepsin (10,000 units), pancreatin (36 mg) and bile extracts (112.5 mg). Additionally, pH changes (8.9 to 2 and back to 8.9) similar to the gut were applied, and a 10 KDa dialysis tubing was used to simulate gut absorption. The antioxidant capacities of the water extracts of EBN before and after digestion were then determined using ABTS and oxygen radical absorbance capacity (ORAC) assays, while the protective effects of the EBN samples against hydrogen peroxide-induced toxicity in HEPG2 cells were determined using MTT assay and acridine orange (AO)/propidium iodide (PI) staining.

Results

Antioxidant assays (ABTS and ORAC) showed that the undigested EBN water extract had little antioxidant activity (1 and 1%, respectively at 1000 μg/mL) while at similar concentrations the digested samples had significantly (p < 0.05) enhanced antioxidant activities, for samples inside (38 and 50%, respectively at 1000 μg/mL) and outside (36 and 50%, respectively at 1000 μg/mL) the dialysis tubing, representing absorbed and unabsorbed samples, respectively. Cell viability and toxicity assays also suggested that the EBN extracts were non-toxic to HEPG2 cells (cell viabilities of over 80% at 1000 μg/mL), while AOPI showed that the extracts protected HEPG2 cells from hydrogen peroxide induced-toxicity.

Conclusions

Based on the findings, it is likely that EBN bioactives are released from their matrix when digested in the gut and then absorbed through the gut by passive-mediated transport to exert their functional effects. However, there is need to confirm these findings using in vivo systems to determine their clinical significance.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hamzah Z, Ibrahim NH, Jaafar MN, Lee BB, Hashim O, Hussin K: Nutritional properties of edible bird nest. J Asian Sci Res. 2013, 3 (6): 600-607. Hamzah Z, Ibrahim NH, Jaafar MN, Lee BB, Hashim O, Hussin K: Nutritional properties of edible bird nest. J Asian Sci Res. 2013, 3 (6): 600-607.
2.
go back to reference Wong RS: Edible bird’s nest: food or medicine?. Chin J Integr Med. 2013, 19 (9): 643-649. 10.1007/s11655-013-1563-y.CrossRefPubMed Wong RS: Edible bird’s nest: food or medicine?. Chin J Integr Med. 2013, 19 (9): 643-649. 10.1007/s11655-013-1563-y.CrossRefPubMed
3.
go back to reference Chua KH, Lee TH, Nagandran K, Yahaya NHM, Lee CT, Tjih ETT, Aziz RA: Edible Bird’s nest extract as a chondro-protective agent for human chondrocytes isolated from osteoarthritic knee: in vitro study. BMC Complement Alternat Med. 2013, 13 (1): 19-10.1186/1472-6882-13-19.CrossRef Chua KH, Lee TH, Nagandran K, Yahaya NHM, Lee CT, Tjih ETT, Aziz RA: Edible Bird’s nest extract as a chondro-protective agent for human chondrocytes isolated from osteoarthritic knee: in vitro study. BMC Complement Alternat Med. 2013, 13 (1): 19-10.1186/1472-6882-13-19.CrossRef
4.
go back to reference Vimala B, Hussain H, Nazaimoon WW: Effects of edible bird’s nest on tumour necrosis factor-alpha secretion, nitric oxide production and cell viability of lipopolysaccharide-stimulated RAW 264.7 macrophages. Food Agric Immunol. 2012, 23 (4): 303-314. 10.1080/09540105.2011.625494.CrossRef Vimala B, Hussain H, Nazaimoon WW: Effects of edible bird’s nest on tumour necrosis factor-alpha secretion, nitric oxide production and cell viability of lipopolysaccharide-stimulated RAW 264.7 macrophages. Food Agric Immunol. 2012, 23 (4): 303-314. 10.1080/09540105.2011.625494.CrossRef
5.
go back to reference Chua YG, Bloodworth BC, Leong LP, Li SFY: Metabolite profiling of edible bird’s nest using gas chromatography/mass spectrometry and liquid chromatography/mass spectrometry. Rapid Commun Mass Spectrom. 2014, 28 (12): 1387-1400. 10.1002/rcm.6914.CrossRefPubMed Chua YG, Bloodworth BC, Leong LP, Li SFY: Metabolite profiling of edible bird’s nest using gas chromatography/mass spectrometry and liquid chromatography/mass spectrometry. Rapid Commun Mass Spectrom. 2014, 28 (12): 1387-1400. 10.1002/rcm.6914.CrossRefPubMed
6.
go back to reference Liu X, Lai X, Zhang S, Huang X, Lan Q, Li Y, Li B, Chen W, Zhang Q, Hong D, Yang G: Proteomic profile of edible bird’s nest proteins. J Agric Food Chem. 2012, 60 (51): 12477-12481. 10.1021/jf303533p.CrossRefPubMed Liu X, Lai X, Zhang S, Huang X, Lan Q, Li Y, Li B, Chen W, Zhang Q, Hong D, Yang G: Proteomic profile of edible bird’s nest proteins. J Agric Food Chem. 2012, 60 (51): 12477-12481. 10.1021/jf303533p.CrossRefPubMed
7.
go back to reference Marcone MF: Characterization of the edible bird’s nest the “Caviar of the East”. Food Res Int. 2005, 38 (10): 1125-1134. 10.1016/j.foodres.2005.02.008.CrossRef Marcone MF: Characterization of the edible bird’s nest the “Caviar of the East”. Food Res Int. 2005, 38 (10): 1125-1134. 10.1016/j.foodres.2005.02.008.CrossRef
8.
go back to reference Aruoma OI: Free radicals, oxidative stress, and antioxidants in human health and disease. J Am Oil Chem Soc. 1998, 75 (2): 199-212. 10.1007/s11746-998-0032-9.CrossRef Aruoma OI: Free radicals, oxidative stress, and antioxidants in human health and disease. J Am Oil Chem Soc. 1998, 75 (2): 199-212. 10.1007/s11746-998-0032-9.CrossRef
9.
go back to reference Holst B, Williamson G: Nutrients and phytochemicals: from bioavailability to bioefficacy beyond antioxidants. Curr Opin Biotechnol. 2008, 19 (2): 73-82. 10.1016/j.copbio.2008.03.003.CrossRefPubMed Holst B, Williamson G: Nutrients and phytochemicals: from bioavailability to bioefficacy beyond antioxidants. Curr Opin Biotechnol. 2008, 19 (2): 73-82. 10.1016/j.copbio.2008.03.003.CrossRefPubMed
10.
go back to reference Chan KW, Khong NM, Iqbal S, Umar IM, Ismail M: Antioxidant property enhancement of sweet potato flour under simulated gastrointestinal pH. Int J Mol Sci. 2012, 13 (7): 8987-8997.CrossRefPubMedPubMedCentral Chan KW, Khong NM, Iqbal S, Umar IM, Ismail M: Antioxidant property enhancement of sweet potato flour under simulated gastrointestinal pH. Int J Mol Sci. 2012, 13 (7): 8987-8997.CrossRefPubMedPubMedCentral
11.
go back to reference Gil-Izquierdo A, Zafrilla P, Tomás-Barberán FA: An in vitro method to simulate phenolic compound release from the food matrix in the gastrointestinal tract. Eur Food Res Technol. 2002, 214 (2): 155-159. 10.1007/s00217-001-0428-3.CrossRef Gil-Izquierdo A, Zafrilla P, Tomás-Barberán FA: An in vitro method to simulate phenolic compound release from the food matrix in the gastrointestinal tract. Eur Food Res Technol. 2002, 214 (2): 155-159. 10.1007/s00217-001-0428-3.CrossRef
12.
go back to reference Kim H, Moon JY, Kim H, Lee DS, Cho M, Choi HK, Kim YS, Mosaddik A, Cho SK: Antioxidant and antiproliferative activities of mango (Mangifera indica L.) flesh and peel. Food Chem. 2010, 121 (2): 429-436. 10.1016/j.foodchem.2009.12.060.CrossRef Kim H, Moon JY, Kim H, Lee DS, Cho M, Choi HK, Kim YS, Mosaddik A, Cho SK: Antioxidant and antiproliferative activities of mango (Mangifera indica L.) flesh and peel. Food Chem. 2010, 121 (2): 429-436. 10.1016/j.foodchem.2009.12.060.CrossRef
13.
go back to reference Handelman GJ, Cao G, Walter MF, Nightingale ZD, Paul GL, Prior RL, Blumberg JB: Antioxidant capacity of oat (Avena sativa L.) extracts. 1. Inhibition of low-density lipoprotein oxidation and oxygen radical absorbance capacity. J Agr Food Chem. 1999, 47 (12): 4888-4893. 10.1021/jf990529j.CrossRef Handelman GJ, Cao G, Walter MF, Nightingale ZD, Paul GL, Prior RL, Blumberg JB: Antioxidant capacity of oat (Avena sativa L.) extracts. 1. Inhibition of low-density lipoprotein oxidation and oxygen radical absorbance capacity. J Agr Food Chem. 1999, 47 (12): 4888-4893. 10.1021/jf990529j.CrossRef
14.
go back to reference Wang H, Joseph JA: Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med. 1999, 27 (5): 612-616.CrossRefPubMed Wang H, Joseph JA: Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med. 1999, 27 (5): 612-616.CrossRefPubMed
15.
go back to reference Azmi NH, Ismail N, Imam MU, Ismail M: Ethyl acetate extract of germinated brown rice attenuates hydrogen peroxide-induced oxidative stress in human SH-SY5Y neuroblastoma cells: role of anti-apoptotic, pro-survival and antioxidant genes. BMC Complement Alternat Med. 2013, 13 (1): 177-10.1186/1472-6882-13-177.CrossRef Azmi NH, Ismail N, Imam MU, Ismail M: Ethyl acetate extract of germinated brown rice attenuates hydrogen peroxide-induced oxidative stress in human SH-SY5Y neuroblastoma cells: role of anti-apoptotic, pro-survival and antioxidant genes. BMC Complement Alternat Med. 2013, 13 (1): 177-10.1186/1472-6882-13-177.CrossRef
16.
go back to reference Kuwata H, Yamauchi K, Teraguchi S, Ushida Y, Shimokawa Y, Toida T, Hayasawa H: Functional fragments of ingested lactoferrin are resistant to proteolytic degradation in the gastrointestinal tract of adult rats. J Nutr. 2001, 131 (8): 2121-2127.PubMed Kuwata H, Yamauchi K, Teraguchi S, Ushida Y, Shimokawa Y, Toida T, Hayasawa H: Functional fragments of ingested lactoferrin are resistant to proteolytic degradation in the gastrointestinal tract of adult rats. J Nutr. 2001, 131 (8): 2121-2127.PubMed
Metadata
Title
In vitro bioaccessibility and antioxidant properties of edible bird’s nest following simulated human gastro-intestinal digestion
Authors
Zhang Yida
Mustapha Umar Imam
Maznah Ismail
Publication date
01-12-2014
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2014
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/1472-6882-14-468

Other articles of this Issue 1/2014

BMC Complementary Medicine and Therapies 1/2014 Go to the issue