Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2014

Open Access 01-12-2014 | Research article

Essential oil of Pinus koraiensis inhibits cell proliferation and migration via inhibition of p21-activated kinase 1 pathway in HCT116 colorectal cancer cells

Authors: Sun-Mi Cho, Eun-Ok Lee, Sung-Hoon Kim, Hyo-Jeong Lee

Published in: BMC Complementary Medicine and Therapies | Issue 1/2014

Login to get access

Abstract

Background

The essential oil of Pinus koraiensis (EOPK) is biologically active compound obtained from the leaves of P. koraiensis. The goal of this study was to investigate the anti-cancer mechanism of EOPK in HCT116 colorectal cancer cells.

Methods

HCT116 cell proliferation was assessed by conducting crystal violet and BrdU assays. To assess the effects of EOPK on cell migration, we performed a wound-healing assay. Further, the contribution of PAK1 to EOPK-induced AKT and extracellular signal-regulated kinase (ERK) suppression was assessed by siRNA-mediated PAK1 knockdown. Changes to the expression and phosphorylation of PAK1 and its effectors were determined by western blotting, and changes to the actin cytoskeleton were determined by performing an immunofluorescence assay.

Results

EOPK significantly decreased HCT116 cell proliferation and migration, and induced G1 arrest without affecting normal cells. Additionally, EOPK suppressed the expression of PAK1, and decreased ERK and AKT phosphorylation in HCT116 cells. Finally, EOPK suppressed β-catenin, cyclin D1, and CDK4/6 expression.

Conclusions

Our studies indicate that EOPK significantly reduced proliferation and migration of colorectal cancer cells. Furthermore, EOPK suppressed PAK1 expression in a dose-dependent manner, and this suppression of PAK1 led to inhibition of ERK, AKT, and β-catenin activities. Our findings suggest that EOPK exerts its anticancer activity via the inhibition of PAK1 expression, suggesting it may be a potent chemotherapeutic agent for colorectal cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sala-Vila A, Folkes J, Calder PC: The effect of three lipid emulsions differing in fatty acid composition on growth, apoptosis and cell cycle arrest in the HT-29 colorectal cancer cell line. Clin Nutr. 2010, 29 (4): 519-524. 10.1016/j.clnu.2009.11.004.CrossRefPubMed Sala-Vila A, Folkes J, Calder PC: The effect of three lipid emulsions differing in fatty acid composition on growth, apoptosis and cell cycle arrest in the HT-29 colorectal cancer cell line. Clin Nutr. 2010, 29 (4): 519-524. 10.1016/j.clnu.2009.11.004.CrossRefPubMed
2.
3.
go back to reference Yuen ST, Davies H, Chan TL, Ho JW, Bignell GR, Cox C, Stephens P, Edkins S, Tsui WW, Chan AS, Futreal PA, Stratton MR, Wooster R, Leung SY: Similarity of the phenotypic patterns associated with BRAF and KRAS mutations in colorectal neoplasia. Cancer Res. 2002, 62 (22): 6451-6455.PubMed Yuen ST, Davies H, Chan TL, Ho JW, Bignell GR, Cox C, Stephens P, Edkins S, Tsui WW, Chan AS, Futreal PA, Stratton MR, Wooster R, Leung SY: Similarity of the phenotypic patterns associated with BRAF and KRAS mutations in colorectal neoplasia. Cancer Res. 2002, 62 (22): 6451-6455.PubMed
4.
go back to reference Baldus SE, Schaefer KL, Engers R, Hartleb D, Stoecklein NH, Gabbert HE: Prevalence and heterogeneity of KRAS, BRAF, and PIK3CA mutations in primary colorectal adenocarcinomas and their corresponding metastases. Clin Cancer Res. 2010, 16 (3): 790-799. 10.1158/1078-0432.CCR-09-2446.CrossRefPubMed Baldus SE, Schaefer KL, Engers R, Hartleb D, Stoecklein NH, Gabbert HE: Prevalence and heterogeneity of KRAS, BRAF, and PIK3CA mutations in primary colorectal adenocarcinomas and their corresponding metastases. Clin Cancer Res. 2010, 16 (3): 790-799. 10.1158/1078-0432.CCR-09-2446.CrossRefPubMed
5.
go back to reference Fransen K, Klintenas M, Osterstrom A, Dimberg J, Monstein HJ, Soderkvist P: Mutation analysis of the BRAF, ARAF and RAF-1 genes in human colorectal adenocarcinomas. Carcinogenesis. 2004, 25 (4): 527-533.CrossRefPubMed Fransen K, Klintenas M, Osterstrom A, Dimberg J, Monstein HJ, Soderkvist P: Mutation analysis of the BRAF, ARAF and RAF-1 genes in human colorectal adenocarcinomas. Carcinogenesis. 2004, 25 (4): 527-533.CrossRefPubMed
6.
go back to reference Huynh N, Liu KH, Baldwin GS, He H: P21-activated kinase 1 stimulates colon cancer cell growth and migration/invasion via ERK- and AKT-dependent pathways. Biochim Biophys Acta. 2010, 1803 (9): 1106-1113. 10.1016/j.bbamcr.2010.05.007.CrossRefPubMed Huynh N, Liu KH, Baldwin GS, He H: P21-activated kinase 1 stimulates colon cancer cell growth and migration/invasion via ERK- and AKT-dependent pathways. Biochim Biophys Acta. 2010, 1803 (9): 1106-1113. 10.1016/j.bbamcr.2010.05.007.CrossRefPubMed
7.
go back to reference Arias-Romero LE, Chernoff J: A tale of two Paks. Biol Cell. 2008, 100 (2): 97-108. 10.1042/BC20070109.CrossRefPubMed Arias-Romero LE, Chernoff J: A tale of two Paks. Biol Cell. 2008, 100 (2): 97-108. 10.1042/BC20070109.CrossRefPubMed
8.
go back to reference Bokoch GM: Biology of the p21-activated kinases. Annu Rev Biochem. 2003, 72: 743-781. 10.1146/annurev.biochem.72.121801.161742.CrossRefPubMed Bokoch GM: Biology of the p21-activated kinases. Annu Rev Biochem. 2003, 72: 743-781. 10.1146/annurev.biochem.72.121801.161742.CrossRefPubMed
9.
go back to reference Eswaran J, Soundararajan M, Kumar R, Knapp S: UnPAKing the class differences among p21-activated kinases. Trends Biochem Sci. 2008, 33 (8): 394-403. 10.1016/j.tibs.2008.06.002.CrossRefPubMed Eswaran J, Soundararajan M, Kumar R, Knapp S: UnPAKing the class differences among p21-activated kinases. Trends Biochem Sci. 2008, 33 (8): 394-403. 10.1016/j.tibs.2008.06.002.CrossRefPubMed
10.
go back to reference Zhu G, Wang Y, Huang B, Liang J, Ding Y, Xu A, Wu W: A Rac1/PAK1 cascade controls beta-catenin activation in colon cancer cells. Oncogene. 2012, 31 (8): 1001-1012. 10.1038/onc.2011.294.CrossRefPubMed Zhu G, Wang Y, Huang B, Liang J, Ding Y, Xu A, Wu W: A Rac1/PAK1 cascade controls beta-catenin activation in colon cancer cells. Oncogene. 2012, 31 (8): 1001-1012. 10.1038/onc.2011.294.CrossRefPubMed
11.
go back to reference Carter JH, Douglass LE, Deddens JA, Colligan BM, Bhatt TR, Pemberton JO, Konicek S, Hom J, Marshall M, Graff JR: Pak-1 expression increases with progression of colorectal carcinomas to metastasis. Clin Cancer Res. 2004, 10 (10): 3448-3456. 10.1158/1078-0432.CCR-03-0210.CrossRefPubMed Carter JH, Douglass LE, Deddens JA, Colligan BM, Bhatt TR, Pemberton JO, Konicek S, Hom J, Marshall M, Graff JR: Pak-1 expression increases with progression of colorectal carcinomas to metastasis. Clin Cancer Res. 2004, 10 (10): 3448-3456. 10.1158/1078-0432.CCR-03-0210.CrossRefPubMed
12.
go back to reference Coniglio SJ, Zavarella S, Symons MH: Pak1 and Pak2 mediate tumor cell invasion through distinct signaling mechanisms. Mol Cell Biol. 2008, 28 (12): 4162-4172. 10.1128/MCB.01532-07.CrossRefPubMedPubMedCentral Coniglio SJ, Zavarella S, Symons MH: Pak1 and Pak2 mediate tumor cell invasion through distinct signaling mechanisms. Mol Cell Biol. 2008, 28 (12): 4162-4172. 10.1128/MCB.01532-07.CrossRefPubMedPubMedCentral
13.
go back to reference Schurmann A, Mooney AF, Sanders LC, Sells MA, Wang HG, Reed JC, Bokoch GM: p21-activated kinase 1 phosphorylates the death agonist bad and protects cells from apoptosis. Mol Cell Biol. 2000, 20 (2): 453-461. 10.1128/MCB.20.2.453-461.2000.CrossRefPubMedPubMedCentral Schurmann A, Mooney AF, Sanders LC, Sells MA, Wang HG, Reed JC, Bokoch GM: p21-activated kinase 1 phosphorylates the death agonist bad and protects cells from apoptosis. Mol Cell Biol. 2000, 20 (2): 453-461. 10.1128/MCB.20.2.453-461.2000.CrossRefPubMedPubMedCentral
14.
go back to reference Whale A, Hashim FN, Fram S, Jones GE, Wells CM: Signalling to cancer cell invasion through PAK family kinases. Front Biosci (Landmark Ed). 2011, 16: 849-864. 10.2741/3724.CrossRef Whale A, Hashim FN, Fram S, Jones GE, Wells CM: Signalling to cancer cell invasion through PAK family kinases. Front Biosci (Landmark Ed). 2011, 16: 849-864. 10.2741/3724.CrossRef
15.
go back to reference Kim JH, Lee HJ, Jeong SJ, Lee MH, Kim SH: Essential oil of Pinus koraiensis leaves exerts antihyperlipidemic effects via up-regulation of low-density lipoprotein receptor and inhibition of acyl-coenzyme A: cholesterol acyltransferase. Phytother Res. 26 (9): 1314-1319. Kim JH, Lee HJ, Jeong SJ, Lee MH, Kim SH: Essential oil of Pinus koraiensis leaves exerts antihyperlipidemic effects via up-regulation of low-density lipoprotein receptor and inhibition of acyl-coenzyme A: cholesterol acyltransferase. Phytother Res. 26 (9): 1314-1319.
16.
go back to reference Ko HS, Lee HJ, Sohn EJ, Yun M, Lee MH, Kim SH: Essential Oil of Pinus koraiensis Exerts Antiobesic and Hypolipidemic Activity via Inhibition of Peroxisome Proliferator-Activated Receptors Gamma Signaling. Evid Based Complement Alternat Med. 2013, 2013: 947037-PubMedPubMedCentral Ko HS, Lee HJ, Sohn EJ, Yun M, Lee MH, Kim SH: Essential Oil of Pinus koraiensis Exerts Antiobesic and Hypolipidemic Activity via Inhibition of Peroxisome Proliferator-Activated Receptors Gamma Signaling. Evid Based Complement Alternat Med. 2013, 2013: 947037-PubMedPubMedCentral
17.
go back to reference Joo HE, Lee HJ, Sohn EJ, Lee MH, Ko HS, Jeong SJ, Kim SH: Anti-Diabetic Potential of the Essential Oil of Pinus koraiensis Leaves toward Streptozotocin-Treated Mice and HIT-T15 Pancreatic beta Cells. Biosci Biotechnol Biochem. 2013, 77 (10): 1997-2001. 10.1271/bbb.130254.CrossRefPubMed Joo HE, Lee HJ, Sohn EJ, Lee MH, Ko HS, Jeong SJ, Kim SH: Anti-Diabetic Potential of the Essential Oil of Pinus koraiensis Leaves toward Streptozotocin-Treated Mice and HIT-T15 Pancreatic beta Cells. Biosci Biotechnol Biochem. 2013, 77 (10): 1997-2001. 10.1271/bbb.130254.CrossRefPubMed
18.
go back to reference Chen X, Zhang Y, Wang Z, Zu Y: In vivo antioxidant activity of Pinus koraiensis nut oil obtained by optimised supercritical carbon dioxide extraction. Nat Prod Res. 25 (19): 1807-1816. Chen X, Zhang Y, Wang Z, Zu Y: In vivo antioxidant activity of Pinus koraiensis nut oil obtained by optimised supercritical carbon dioxide extraction. Nat Prod Res. 25 (19): 1807-1816.
19.
go back to reference Park S, Lim Y, Shin S, Han SN: Impact of Korean pine nut oil on weight gain and immune responses in high-fat diet-induced obese mice. Nutr Res Pract. 2013, 7 (5): 352-358. 10.4162/nrp.2013.7.5.352.CrossRefPubMedPubMedCentral Park S, Lim Y, Shin S, Han SN: Impact of Korean pine nut oil on weight gain and immune responses in high-fat diet-induced obese mice. Nutr Res Pract. 2013, 7 (5): 352-358. 10.4162/nrp.2013.7.5.352.CrossRefPubMedPubMedCentral
20.
go back to reference Pasman WJ, Heimerikx J, Rubingh CM, van den Berg R, O'Shea M, Gambelli L, Hendriks HF, Einerhand AW, Scott C, Keizer HG, Mennen LI: The effect of Korean pine nut oil on in vitro CCK release, on appetite sensations and on gut hormones in post-menopausal overweight women. Lipids Health Dis. 2008, 7: 10-10.1186/1476-511X-7-10.CrossRefPubMedPubMedCentral Pasman WJ, Heimerikx J, Rubingh CM, van den Berg R, O'Shea M, Gambelli L, Hendriks HF, Einerhand AW, Scott C, Keizer HG, Mennen LI: The effect of Korean pine nut oil on in vitro CCK release, on appetite sensations and on gut hormones in post-menopausal overweight women. Lipids Health Dis. 2008, 7: 10-10.1186/1476-511X-7-10.CrossRefPubMedPubMedCentral
21.
go back to reference Hong EJ, Na KJ, Choi IG, Choi KC, Jeung EB: Antibacterial and antifungal effects of essential oils from coniferous trees. Biol Pharm Bull. 2004, 27 (6): 863-866.CrossRefPubMed Hong EJ, Na KJ, Choi IG, Choi KC, Jeung EB: Antibacterial and antifungal effects of essential oils from coniferous trees. Biol Pharm Bull. 2004, 27 (6): 863-866.CrossRefPubMed
22.
go back to reference Higuchi M, Onishi K, Kikuchi C, Gotoh Y: Scaffolding function of PAK in the PDK1-Akt pathway. Nat Cell Biol. 2008, 10 (11): 1356-1364.CrossRefPubMed Higuchi M, Onishi K, Kikuchi C, Gotoh Y: Scaffolding function of PAK in the PDK1-Akt pathway. Nat Cell Biol. 2008, 10 (11): 1356-1364.CrossRefPubMed
23.
go back to reference Mao K, Kobayashi S, Jaffer ZM, Huang Y, Volden P, Chernoff J, Liang Q: Regulation of Akt/PKB activity by P21-activated kinase in cardiomyocytes. J Mol Cell Cardiol. 2008, 44 (2): 429-434. 10.1016/j.yjmcc.2007.10.016.CrossRefPubMed Mao K, Kobayashi S, Jaffer ZM, Huang Y, Volden P, Chernoff J, Liang Q: Regulation of Akt/PKB activity by P21-activated kinase in cardiomyocytes. J Mol Cell Cardiol. 2008, 44 (2): 429-434. 10.1016/j.yjmcc.2007.10.016.CrossRefPubMed
24.
go back to reference Kichina JV, Goc A, Al-Husein B, Somanath PR, Kandel ES: PAK1 as a therapeutic target. Expert Opin Ther Targets. 2010, 14 (7): 703-725. 10.1517/14728222.2010.492779.CrossRefPubMedPubMedCentral Kichina JV, Goc A, Al-Husein B, Somanath PR, Kandel ES: PAK1 as a therapeutic target. Expert Opin Ther Targets. 2010, 14 (7): 703-725. 10.1517/14728222.2010.492779.CrossRefPubMedPubMedCentral
25.
go back to reference Ong CC, Jubb AM, Zhou W, Haverty PM, Harris AL, Belvin M, Friedman LS, Koeppen H, Hoeflich KP: p21-activated kinase 1: PAK'ed with potential. Oncotarget. 2011, 2 (6): 491-496.CrossRefPubMedPubMedCentral Ong CC, Jubb AM, Zhou W, Haverty PM, Harris AL, Belvin M, Friedman LS, Koeppen H, Hoeflich KP: p21-activated kinase 1: PAK'ed with potential. Oncotarget. 2011, 2 (6): 491-496.CrossRefPubMedPubMedCentral
26.
go back to reference Edwards DC, Sanders LC, Bokoch GM, Gill GN: Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat Cell Biol. 1999, 1 (5): 253-259.CrossRefPubMed Edwards DC, Sanders LC, Bokoch GM, Gill GN: Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat Cell Biol. 1999, 1 (5): 253-259.CrossRefPubMed
27.
go back to reference Suzuki-Inoue K, Yatomi Y, Asazuma N, Kainoh M, Tanaka T, Satoh K, Ozaki Y: Rac, a small guanosine triphosphate-binding protein, and p21-activated kinase are activated during platelet spreading on collagen-coated surfaces: roles of integrin alpha(2)beta(1). Blood. 2001, 98 (13): 3708-3716. 10.1182/blood.V98.13.3708.CrossRefPubMed Suzuki-Inoue K, Yatomi Y, Asazuma N, Kainoh M, Tanaka T, Satoh K, Ozaki Y: Rac, a small guanosine triphosphate-binding protein, and p21-activated kinase are activated during platelet spreading on collagen-coated surfaces: roles of integrin alpha(2)beta(1). Blood. 2001, 98 (13): 3708-3716. 10.1182/blood.V98.13.3708.CrossRefPubMed
28.
go back to reference Royce ME, Medgyesy D, Zukowski TH, Dwivedy S, Hoff PM, Pazdur R: Colorectal cancer: chemotherapy treatment overview. Oncology (Williston Park). 2000, 14 (12 Suppl 14): 40-46. Royce ME, Medgyesy D, Zukowski TH, Dwivedy S, Hoff PM, Pazdur R: Colorectal cancer: chemotherapy treatment overview. Oncology (Williston Park). 2000, 14 (12 Suppl 14): 40-46.
29.
go back to reference Chen XQ, Wu JB, Yang XQ, Song YG, Li MS: Effects of epigallocatechin-3-gallate on the proliferation of colonic cancer cell line SW620 and PAK1 gene expression. Nan Fang Yi Ke Da Xue Xue Bao. 2009, 29 (8): 1568-1570.PubMed Chen XQ, Wu JB, Yang XQ, Song YG, Li MS: Effects of epigallocatechin-3-gallate on the proliferation of colonic cancer cell line SW620 and PAK1 gene expression. Nan Fang Yi Ke Da Xue Xue Bao. 2009, 29 (8): 1568-1570.PubMed
30.
go back to reference Deepa M, Sureshkumar T, Satheeshkumar PK, Priya S: Antioxidant rich Morus alba leaf extract induces apoptosis in human colon and breast cancer cells by the downregulation of nitric oxide produced by inducible nitric oxide synthase. Nutr Cancer. 2013, 65 (2): 305-310. 10.1080/01635581.2013.748924.CrossRefPubMed Deepa M, Sureshkumar T, Satheeshkumar PK, Priya S: Antioxidant rich Morus alba leaf extract induces apoptosis in human colon and breast cancer cells by the downregulation of nitric oxide produced by inducible nitric oxide synthase. Nutr Cancer. 2013, 65 (2): 305-310. 10.1080/01635581.2013.748924.CrossRefPubMed
31.
go back to reference Sugano M, Ikeda I, Wakamatsu K, Oka T: Influence of Korean pine (Pinus koraiensis)-seed oil containing cis-5, cis-9, cis-12-octadecatrienoic acid on polyunsaturated fatty acid metabolism, eicosanoid production and blood pressure of rats. Br J Nutr. 1994, 72 (5): 775-783. 10.1079/BJN19940079.CrossRefPubMed Sugano M, Ikeda I, Wakamatsu K, Oka T: Influence of Korean pine (Pinus koraiensis)-seed oil containing cis-5, cis-9, cis-12-octadecatrienoic acid on polyunsaturated fatty acid metabolism, eicosanoid production and blood pressure of rats. Br J Nutr. 1994, 72 (5): 775-783. 10.1079/BJN19940079.CrossRefPubMed
32.
go back to reference Speijers GJ, Dederen LH, Keizer H: A sub-chronic (13 weeks) oral toxicity study in rats and an in vitro genotoxicity study with Korean pine nut oil (PinnoThin TG). Regul Toxicol Pharmacol. 2009, 55 (2): 158-165. 10.1016/j.yrtph.2009.06.010.CrossRefPubMed Speijers GJ, Dederen LH, Keizer H: A sub-chronic (13 weeks) oral toxicity study in rats and an in vitro genotoxicity study with Korean pine nut oil (PinnoThin TG). Regul Toxicol Pharmacol. 2009, 55 (2): 158-165. 10.1016/j.yrtph.2009.06.010.CrossRefPubMed
34.
go back to reference Smith SD, Jaffer ZM, Chernoff J, Ridley AJ: PAK1-mediated activation of ERK1/2 regulates lamellipodial dynamics. J Cell Sci. 2008, 121 (Pt 22): 3729-3736.CrossRefPubMedPubMedCentral Smith SD, Jaffer ZM, Chernoff J, Ridley AJ: PAK1-mediated activation of ERK1/2 regulates lamellipodial dynamics. J Cell Sci. 2008, 121 (Pt 22): 3729-3736.CrossRefPubMedPubMedCentral
Metadata
Title
Essential oil of Pinus koraiensis inhibits cell proliferation and migration via inhibition of p21-activated kinase 1 pathway in HCT116 colorectal cancer cells
Authors
Sun-Mi Cho
Eun-Ok Lee
Sung-Hoon Kim
Hyo-Jeong Lee
Publication date
01-12-2014
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2014
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/1472-6882-14-275

Other articles of this Issue 1/2014

BMC Complementary Medicine and Therapies 1/2014 Go to the issue