Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2006

Open Access 01-12-2006 | Research article

Systemic zoledronate treatment both prevents resorption of allograft bone and increases the retention of new formed bone during revascularization and remodelling. A bone chamber study in rats

Authors: Jörgen Åstrand, Anna Kajsa Harding, Per Aspenberg, Magnus Tägil

Published in: BMC Musculoskeletal Disorders | Issue 1/2006

Login to get access

Abstract

Background

In osteonecrosis the vascular supply of the bone is interrupted and the living cells die. The inorganic mineral network remains intact until ingrowing blood vessels invade the graft. Accompanying osteoclasts start to resorb the bone trabeculae and gradually replace the bone. If the osteonecrosis occurs in mechanically loaded parts, like in the subchondral bone of a loaded joint, the remodelling might lead to a weakening of the bone and, in consequence to a joint collapse. Systemic bisphosphonate treatment can reduce the resorption of necrotic bone. In the present study we investigate if zoledronate, the most potent of the commercially available bisphosphonates, can be used to reduce the amount or speed of bone graft remodeling.

Methods

Bone grafts were harvested and placed in a bone chamber inserted into the tibia of a rat. Host tissue could grow into the graft through openings in the chamber. Weekly injections with 1.05 μg zoledronate or saline were given subcutaneously until the rats were harvested after 6 weeks. The specimens were fixed, cut and stained with haematoxylin/eosin and used for histologic and histomorphometric analyses.

Results

By histology, the control specimens were almost totally resorbed in the remodeled area and the graft replaced by bone marrow. In the zoledronate treated specimens, both the old graft and new-formed bone remained and the graft trabeculas were lined with new bone. By histomorphometry, the total amount of bone (graft+ new bone) within the remodelled area was 35 % (SD 13) in the zoledronate treated grafts and 19 % (SD 12) in the controls (p = 0.001). Also the amount of new bone was increased in the treated specimens (22 %, SD 7) compared to the controls (14 %, SD 9, p = 0.032).

Conclusion

We show that zoledronate can be used to decrease the resorption of both old graft and new-formed bone during bone graft remodelling. This might be useful in bone grafting procedure but also in other orthopedic conditions, both where necrotic bone has to be remodelled i.e. after osteonecrosis of the knee and hip and in Perthes disease, or in high load, high turnover conditions like delayed union, periprosthetic osteolysis or bone lengthening operations. In our model an increased net formation of new bone was found which probably reflects that new bone formed was retained by the action of the bisphosphonates rather than a true anabolic effect.
Appendix
Available only for authorised users
Literature
1.
go back to reference Glimcher MJ, Kenzora JE: The biology of osteonecrosis of the human femoral head and its clinical implications. III. Discussion of the etiology and genesis of the pathological sequelae; commments on treatment. Clin Orthop. 1979, 273-312. Glimcher MJ, Kenzora JE: The biology of osteonecrosis of the human femoral head and its clinical implications. III. Discussion of the etiology and genesis of the pathological sequelae; commments on treatment. Clin Orthop. 1979, 273-312.
2.
go back to reference Assouline-Dayan Y, Chang C, Greenspan A, Shoenfeld Y, Gershwin ME: Pathogenesis and natural history of osteonecrosis. Semin Arthritis Rheum. 2002, 32: 94-124.CrossRefPubMed Assouline-Dayan Y, Chang C, Greenspan A, Shoenfeld Y, Gershwin ME: Pathogenesis and natural history of osteonecrosis. Semin Arthritis Rheum. 2002, 32: 94-124.CrossRefPubMed
3.
go back to reference Parks NL, Engh GA: Histology of nine structural bone grafts used in total knee arthroplasty. Clin Orthop. 1997, 17-23. 10.1097/00003086-199712000-00004. Parks NL, Engh GA: Histology of nine structural bone grafts used in total knee arthroplasty. Clin Orthop. 1997, 17-23. 10.1097/00003086-199712000-00004.
4.
go back to reference Little DG, Peat RA, Mcevoy A, Williams PR, Smith EJ, Baldock PA: Zoledronic acid treatment results in retention of femoral head structure after traumatic osteonecrosis in young Wistar rats. J Bone Miner Res. 2003, 18: 2016-22. 10.1359/jbmr.2003.18.11.2016.CrossRefPubMed Little DG, Peat RA, Mcevoy A, Williams PR, Smith EJ, Baldock PA: Zoledronic acid treatment results in retention of femoral head structure after traumatic osteonecrosis in young Wistar rats. J Bone Miner Res. 2003, 18: 2016-22. 10.1359/jbmr.2003.18.11.2016.CrossRefPubMed
5.
go back to reference Tägil M, Astrand J, Westman L, Aspenberg P: Alendronate prevents collapse in mechanically loaded osteochondral grafts: a bone chamber study in rats. Acta Orthop Scand. 2004, 75: 756-61. 10.1080/00016470410004157.CrossRefPubMed Tägil M, Astrand J, Westman L, Aspenberg P: Alendronate prevents collapse in mechanically loaded osteochondral grafts: a bone chamber study in rats. Acta Orthop Scand. 2004, 75: 756-61. 10.1080/00016470410004157.CrossRefPubMed
6.
go back to reference Kim HK, Randall TS, Bian H, Jenkins J, Garces A, Bauss F: Ibandronate for prevention of femoral head deformity after ischemic necrosis of the capital femoral epiphysis in immature pigs. J Bone Joint Surg Am. 2005, 87: 550-7. 10.2106/JBJS.D.02192.PubMed Kim HK, Randall TS, Bian H, Jenkins J, Garces A, Bauss F: Ibandronate for prevention of femoral head deformity after ischemic necrosis of the capital femoral epiphysis in immature pigs. J Bone Joint Surg Am. 2005, 87: 550-7. 10.2106/JBJS.D.02192.PubMed
7.
go back to reference Rogers MJ: From molds and macrophages to mevalonate: a decade of progress in understanding the molecular mode of action of bisphosphonates. Calcif Tissue Int. 2004, 75: 451-61. 10.1007/s00223-004-0024-1.CrossRefPubMed Rogers MJ: From molds and macrophages to mevalonate: a decade of progress in understanding the molecular mode of action of bisphosphonates. Calcif Tissue Int. 2004, 75: 451-61. 10.1007/s00223-004-0024-1.CrossRefPubMed
8.
go back to reference McQuade M, Houghton K: Use of bisphosphonates in a case of perthes disease. Orthop Nurs. 2005, 24: 393-8.CrossRefPubMed McQuade M, Houghton K: Use of bisphosphonates in a case of perthes disease. Orthop Nurs. 2005, 24: 393-8.CrossRefPubMed
9.
go back to reference Nishii T, Sugano N, Miki H, Hashimoto J, Yoshikawa H: Does alendronate prevent collapse in osteonecrosis of the femoral head?. Clin Orthop Relat Res. 2006, 443: 273-9. 10.1097/01.blo.0000194078.32776.31.CrossRefPubMed Nishii T, Sugano N, Miki H, Hashimoto J, Yoshikawa H: Does alendronate prevent collapse in osteonecrosis of the femoral head?. Clin Orthop Relat Res. 2006, 443: 273-9. 10.1097/01.blo.0000194078.32776.31.CrossRefPubMed
10.
go back to reference Agarwala S, Jain D, Joshi VR, Sule A: Efficacy of alendronate, a bisphosphonate, in the treatment of AVN of the hip. A prospective open-label study. Rheumatology. 2005, 44: 352-9. 10.1093/rheumatology/keh481.CrossRefPubMed Agarwala S, Jain D, Joshi VR, Sule A: Efficacy of alendronate, a bisphosphonate, in the treatment of AVN of the hip. A prospective open-label study. Rheumatology. 2005, 44: 352-9. 10.1093/rheumatology/keh481.CrossRefPubMed
11.
go back to reference Lai KA, Shen WJ, Yang CY, Shao CJ, Hsu JT, Lin RM: The use of alendronate to prevent early collapse of the femoral head in patients with nontraumatic osteonecrosis. A randomized clinical study. J Bone Joint Surg. 2005, 87: 2155-9. 10.2106/JBJS.D.02959.CrossRefPubMed Lai KA, Shen WJ, Yang CY, Shao CJ, Hsu JT, Lin RM: The use of alendronate to prevent early collapse of the femoral head in patients with nontraumatic osteonecrosis. A randomized clinical study. J Bone Joint Surg. 2005, 87: 2155-9. 10.2106/JBJS.D.02959.CrossRefPubMed
12.
go back to reference Jude EB, Selby PL, Burgess J, Lilleystone P, Mawer EB, Page SR, Donohoe M, Foster AV, Edmonds ME, Boulton AJ: Bisphosphonates in the treatment of Charcot neuroarthropathy: a double-blind randomised controlled trial. Diabetologia. 2001, 44: 2032-7. 10.1007/s001250100008.CrossRefPubMed Jude EB, Selby PL, Burgess J, Lilleystone P, Mawer EB, Page SR, Donohoe M, Foster AV, Edmonds ME, Boulton AJ: Bisphosphonates in the treatment of Charcot neuroarthropathy: a double-blind randomised controlled trial. Diabetologia. 2001, 44: 2032-7. 10.1007/s001250100008.CrossRefPubMed
13.
go back to reference Hilding M, Ryd L, Toksvig-Larsen S, Aspenberg P: Clodronate prevents prosthetic migration: a randomized radiostereometric study of 50 total knee patients. Acta Orthop Scand. 2000, 71: 553-7. 10.1080/000164700317362163.CrossRefPubMed Hilding M, Ryd L, Toksvig-Larsen S, Aspenberg P: Clodronate prevents prosthetic migration: a randomized radiostereometric study of 50 total knee patients. Acta Orthop Scand. 2000, 71: 553-7. 10.1080/000164700317362163.CrossRefPubMed
14.
go back to reference Venesmaa PK, Kroger HP, Miettinen HJ, Jurvelin JS, Suomalainen OT, Alhav EM: Alendronate reduces periprosthetic bone loss after uncemented primary total hip arthroplasty: a prospective randomized study. J Bone Miner Res. 2001, 2126-31. 10.1359/jbmr.2001.16.11.2126. Venesmaa PK, Kroger HP, Miettinen HJ, Jurvelin JS, Suomalainen OT, Alhav EM: Alendronate reduces periprosthetic bone loss after uncemented primary total hip arthroplasty: a prospective randomized study. J Bone Miner Res. 2001, 2126-31. 10.1359/jbmr.2001.16.11.2126.
15.
go back to reference Smith EJ, McEvoy A, Little DG, Baldock PA, Eisman JA, Gardiner EM: Transient retention of endochondral cartilaginous matrix with bisphosphonate treatment in a long-term rabbit model of distraction osteogenesis. J Bone Miner Res. 2004, 19: 1698-705. 10.1359/JBMR.040709.CrossRefPubMed Smith EJ, McEvoy A, Little DG, Baldock PA, Eisman JA, Gardiner EM: Transient retention of endochondral cartilaginous matrix with bisphosphonate treatment in a long-term rabbit model of distraction osteogenesis. J Bone Miner Res. 2004, 19: 1698-705. 10.1359/JBMR.040709.CrossRefPubMed
16.
go back to reference Tägil M, Aspenberg P, Åstrand J: Systemic zoledronate precoating of a bone graft reduces bone resorption during remodelling. Acta Orthop Scand. 2006, 77: 23-6.CrossRef Tägil M, Aspenberg P, Åstrand J: Systemic zoledronate precoating of a bone graft reduces bone resorption during remodelling. Acta Orthop Scand. 2006, 77: 23-6.CrossRef
17.
go back to reference Åstrand J, Aspenberg P: Systemic alendronate prevents resorption of necrotic bone during revascularization. A bone chamber study in rats. BMC Musculoskelet Disord. 2002, 3: 19-10.1186/1471-2474-3-19.CrossRefPubMedPubMedCentral Åstrand J, Aspenberg P: Systemic alendronate prevents resorption of necrotic bone during revascularization. A bone chamber study in rats. BMC Musculoskelet Disord. 2002, 3: 19-10.1186/1471-2474-3-19.CrossRefPubMedPubMedCentral
18.
go back to reference Doggrell SA: Zoledronate once-yearly increases bone mineral density--implications for osteoporosis. Expert Opin Pharmacother. 2002, 7: 1007-9. 10.1517/14656566.3.7.1007. ReviewCrossRef Doggrell SA: Zoledronate once-yearly increases bone mineral density--implications for osteoporosis. Expert Opin Pharmacother. 2002, 7: 1007-9. 10.1517/14656566.3.7.1007. ReviewCrossRef
19.
go back to reference Wang JS, Aspenberg P: Basic fibroblast growth factor enhances bone-graft incorporation: dose and time dependence in rats. J Orthop Res. 1996, 14: 316-23. 10.1002/jor.1100140222.CrossRefPubMed Wang JS, Aspenberg P: Basic fibroblast growth factor enhances bone-graft incorporation: dose and time dependence in rats. J Orthop Res. 1996, 14: 316-23. 10.1002/jor.1100140222.CrossRefPubMed
20.
go back to reference Thoren K, Aspenberg P: Increased bone ingrowth distance into lipid-extracted bank bone at 6 weeks. A titanium chamber study in allogeneic and syngeneic rats. Arch Orthop Trauma Surg. 1995, 114: 167-171. 10.1007/BF00443391.CrossRefPubMed Thoren K, Aspenberg P: Increased bone ingrowth distance into lipid-extracted bank bone at 6 weeks. A titanium chamber study in allogeneic and syngeneic rats. Arch Orthop Trauma Surg. 1995, 114: 167-171. 10.1007/BF00443391.CrossRefPubMed
21.
go back to reference Odvina CV, Zerwekh JE, Rao DS, Maalouf N, Gottschalk FA, Pak CY: Severely suppressed bone turnover: a potential complication of alendronate therapy. J Clin Endocrinol Metab. 2005, 90: 1294-301. 10.1210/jc.2004-0952.CrossRefPubMed Odvina CV, Zerwekh JE, Rao DS, Maalouf N, Gottschalk FA, Pak CY: Severely suppressed bone turnover: a potential complication of alendronate therapy. J Clin Endocrinol Metab. 2005, 90: 1294-301. 10.1210/jc.2004-0952.CrossRefPubMed
22.
go back to reference Bone HG, Hosking D, Devogelaer JP, Tucci JR, Emkey RD, Tonino RP, Rodriguez-Portales JA, Downs RW, Gupta J, Santora AC, Liberman UA: Ten years' experience with alendronate for osteoporosis in postmenopausal women. N Engl J Med. 2004, 350: 1189-99. 10.1056/NEJMoa030897.CrossRefPubMed Bone HG, Hosking D, Devogelaer JP, Tucci JR, Emkey RD, Tonino RP, Rodriguez-Portales JA, Downs RW, Gupta J, Santora AC, Liberman UA: Ten years' experience with alendronate for osteoporosis in postmenopausal women. N Engl J Med. 2004, 350: 1189-99. 10.1056/NEJMoa030897.CrossRefPubMed
23.
go back to reference Im GI, Qureshi SA, Kenney J, Rubash HE, Shanbhag AS: Osteoblast proliferation and maturation by bisphosphonates. Biomaterials. 2004, 18: 4105-15. 10.1016/j.biomaterials.2003.11.024.CrossRef Im GI, Qureshi SA, Kenney J, Rubash HE, Shanbhag AS: Osteoblast proliferation and maturation by bisphosphonates. Biomaterials. 2004, 18: 4105-15. 10.1016/j.biomaterials.2003.11.024.CrossRef
24.
go back to reference Wedemeyer C, von Knoch F, Pingsmann A, Hilken G, Sprecher C, Saxler G, Henschke F, Loer F, von Knoch M: Stimulation of bone formation by zoledronic acid in particle induced osteolysis. Biomaterials. 2005, 17: 3719-25. 10.1016/j.biomaterials.2004.09.026.CrossRef Wedemeyer C, von Knoch F, Pingsmann A, Hilken G, Sprecher C, Saxler G, Henschke F, Loer F, von Knoch M: Stimulation of bone formation by zoledronic acid in particle induced osteolysis. Biomaterials. 2005, 17: 3719-25. 10.1016/j.biomaterials.2004.09.026.CrossRef
25.
go back to reference Reinholz GG, Getz B, Pederson L, Sanders ES, Subramaniam M, Ingle JN, Spelsberg TC: Bisphosphonates directly regulate cell proliferation, differentiation, and gene expression in human osteoblasts. Cancer Res. 2000, 60: 6001-7.PubMed Reinholz GG, Getz B, Pederson L, Sanders ES, Subramaniam M, Ingle JN, Spelsberg TC: Bisphosphonates directly regulate cell proliferation, differentiation, and gene expression in human osteoblasts. Cancer Res. 2000, 60: 6001-7.PubMed
26.
go back to reference Plotkin LI, Aguirre JI, Kousteni S, Manolagas SC, Bellido T: Bisphosphonates and estrogens inhibit osteocyte apoptosis via distinct molecular mechanisms downstream of extracellular signal-regulated kinase activation. J Biol Chem. 2005, 280: 7317-25. 10.1074/jbc.M412817200.CrossRefPubMed Plotkin LI, Aguirre JI, Kousteni S, Manolagas SC, Bellido T: Bisphosphonates and estrogens inhibit osteocyte apoptosis via distinct molecular mechanisms downstream of extracellular signal-regulated kinase activation. J Biol Chem. 2005, 280: 7317-25. 10.1074/jbc.M412817200.CrossRefPubMed
Metadata
Title
Systemic zoledronate treatment both prevents resorption of allograft bone and increases the retention of new formed bone during revascularization and remodelling. A bone chamber study in rats
Authors
Jörgen Åstrand
Anna Kajsa Harding
Per Aspenberg
Magnus Tägil
Publication date
01-12-2006
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2006
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/1471-2474-7-63

Other articles of this Issue 1/2006

BMC Musculoskeletal Disorders 1/2006 Go to the issue