Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2012

Open Access 01-12-2012 | Research article

How does scapula motion change after reverse total shoulder arthroplasty? - a preliminary report

Authors: Myung-Sun Kim, Keun-Young Lim, Dong-Hyun Lee, David Kovacevic, Nam-Young Cho

Published in: BMC Musculoskeletal Disorders | Issue 1/2012

Login to get access

Abstract

Background

Arm elevation is composed of glenohumeral and scapulothoracic motion. Many reports have addressed changes of scapular position across a spectrum of shoulder disease. However, no study has examined changes in scapular position after reverse total shoulder arthroplasty (RTSA). The purpose of this study was to evaluate the changes in scapular position after RTSA compared to patients’ contralateral, nonoperated shoulder.

Methods

Seven patients that underwent RTSA for cuff tear arthropathy from July 2007 to October 2008 were enrolled. The distance between the long axis of the thoracic spine and the inferior pole of the scapula (lateralization of the scapula) was measured on shoulder A-P radiographs at 0 degrees (the neutral position) and at 30, 60, 90, and 120 degrees of shoulder abduction. In addition, the angle between the long axis of the thoracic spine and medial border of the scapula was measured and compared with the patients’ contralateral shoulder.

Results

Scapulohumeral rhythm was 2.4:1 on the operated shoulder and 4.1:1 on the nonoperated, contralateral shoulder at 120 degrees of abduction. The distance between the line of the interspinous process of upper thoracic vertebra and the inferior pole of the scapula showed a negative slope at 0 to 30 degrees abduction on the operated side, but beyond 30 degrees of abduction, this distance showed a more sudden increase than in the contralateral shoulder. The angle between the vertical vertebral line and the scapular medial border also showed greater increase beyond 30 degrees abduction on the operated limb.

Conclusions

The pattern of scapular position after RTSA, was found to differ from that of the contralateral shoulder, and showed a more scapular upward rotation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Codman EA: The shoulder. 1934, Thomas Todd Company, Boston, 32-64. Codman EA: The shoulder. 1934, Thomas Todd Company, Boston, 32-64.
2.
go back to reference Inman VT, Saunders JB, Abbott LC: Observations of the function of the shoulder joint. 1944. Clin Orthop Relat Res. 1996, 330 (9): 3-12.CrossRefPubMed Inman VT, Saunders JB, Abbott LC: Observations of the function of the shoulder joint. 1944. Clin Orthop Relat Res. 1996, 330 (9): 3-12.CrossRefPubMed
3.
go back to reference Yano Y, Hamada J, Tamai K, Yoshizaki K, Sahara R, Fujiwara T, Nohara Y: Different scapular kinematics in healthy subjects during arm elevation and lowering: glenohumeral and scapulothoracic patterns. J Shoulder Elbow Surg. 2010, 19 (2): 209-215. 10.1016/j.jse.2009.09.007.CrossRefPubMed Yano Y, Hamada J, Tamai K, Yoshizaki K, Sahara R, Fujiwara T, Nohara Y: Different scapular kinematics in healthy subjects during arm elevation and lowering: glenohumeral and scapulothoracic patterns. J Shoulder Elbow Surg. 2010, 19 (2): 209-215. 10.1016/j.jse.2009.09.007.CrossRefPubMed
4.
go back to reference Kibler WB, Uhl TL, Maddux JW, Brooks PV, Zeller B, McMullen J: Qualitative clinical evaluation of scapular dysfunction: a reliability study. J Shoulder Elbow Surg. 2002, 11 (6): 550-556. 10.1067/mse.2002.126766.CrossRefPubMed Kibler WB, Uhl TL, Maddux JW, Brooks PV, Zeller B, McMullen J: Qualitative clinical evaluation of scapular dysfunction: a reliability study. J Shoulder Elbow Surg. 2002, 11 (6): 550-556. 10.1067/mse.2002.126766.CrossRefPubMed
5.
go back to reference Ludewig PM, Cook TM, Nawoczenski DA: Three-dimensional scapular orientation and muscle activity at selected positions of humeral elevation. J Orthop Sports Phys Ther. 1996, 24 (2): 57-65.CrossRefPubMed Ludewig PM, Cook TM, Nawoczenski DA: Three-dimensional scapular orientation and muscle activity at selected positions of humeral elevation. J Orthop Sports Phys Ther. 1996, 24 (2): 57-65.CrossRefPubMed
6.
go back to reference Lukasiewicz AC, McClure P, Michener L, Pratt N, Sennett B: Comparison of 3-dimensional scapular position and orientation between subjects with and without shoulder impingement. J Orthop Sports Phys Ther. 1999, 29 (10): 574-583. discussion 584–6CrossRefPubMed Lukasiewicz AC, McClure P, Michener L, Pratt N, Sennett B: Comparison of 3-dimensional scapular position and orientation between subjects with and without shoulder impingement. J Orthop Sports Phys Ther. 1999, 29 (10): 574-583. discussion 584–6CrossRefPubMed
7.
go back to reference Mell AG, LaScalza S, Guffey P, Ray J, Maciejewski M, Carpenter JE, Hughes RE: Effect of rotator cuff pathology on shoulder rhythm. J Shoulder Elbow Surg. 2005, 14 (1 Suppl S): 58S-64S.CrossRefPubMed Mell AG, LaScalza S, Guffey P, Ray J, Maciejewski M, Carpenter JE, Hughes RE: Effect of rotator cuff pathology on shoulder rhythm. J Shoulder Elbow Surg. 2005, 14 (1 Suppl S): 58S-64S.CrossRefPubMed
8.
go back to reference Rundquist PJ, Anderson DD, Guanche CA, Ludewig PM: Shoulder kinematics in subjects with frozen shoulder. Arch Phys Med Rehabil. 2003, 84 (10): 1473-1479. 10.1016/S0003-9993(03)00359-9.CrossRefPubMed Rundquist PJ, Anderson DD, Guanche CA, Ludewig PM: Shoulder kinematics in subjects with frozen shoulder. Arch Phys Med Rehabil. 2003, 84 (10): 1473-1479. 10.1016/S0003-9993(03)00359-9.CrossRefPubMed
9.
go back to reference Warner JJ, Micheli LJ, Arslanian LE, Kennedy J, Kennedy R: Scapulothoracic motion in normal shoulders and shoulders with glenohumeral instability and impingement syndrome. A study using Moire topographic analysis. Clin Orthop Relat Res. 1992, 285 (12): 191-199.PubMed Warner JJ, Micheli LJ, Arslanian LE, Kennedy J, Kennedy R: Scapulothoracic motion in normal shoulders and shoulders with glenohumeral instability and impingement syndrome. A study using Moire topographic analysis. Clin Orthop Relat Res. 1992, 285 (12): 191-199.PubMed
10.
go back to reference Braman JP, Thomas BM, Laprade RF, Phadke V, Ludewig PM: Three-dimensional in vivo kinematics of an osteoarthritic shoulder before and after total shoulder arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2010, 18 (12): 1774-1778. 10.1007/s00167-010-1167-4.CrossRefPubMedPubMedCentral Braman JP, Thomas BM, Laprade RF, Phadke V, Ludewig PM: Three-dimensional in vivo kinematics of an osteoarthritic shoulder before and after total shoulder arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2010, 18 (12): 1774-1778. 10.1007/s00167-010-1167-4.CrossRefPubMedPubMedCentral
11.
go back to reference Boileau P, Chuinard C, Roussanne Y, Bicknell RT, Rochet N, Trojani C: Reverse shoulder arthroplasty combined with a modified latissimus dorsi and teres major tendon transfer for shoulder pseudoparalysis associated with dropping arm. Clin Orthop Relat Res. 2008, 466 (3): 584-593. 10.1007/s11999-008-0114-x.CrossRefPubMedPubMedCentral Boileau P, Chuinard C, Roussanne Y, Bicknell RT, Rochet N, Trojani C: Reverse shoulder arthroplasty combined with a modified latissimus dorsi and teres major tendon transfer for shoulder pseudoparalysis associated with dropping arm. Clin Orthop Relat Res. 2008, 466 (3): 584-593. 10.1007/s11999-008-0114-x.CrossRefPubMedPubMedCentral
12.
go back to reference Nolan BM, Ankerson E, Wiater JM: Reverse total shoulder arthroplasty improves function in cuff tear arthropathy. Clin Orthop Relat Res. 2011, 469 (9): 2476-2482. 10.1007/s11999-010-1683-z.CrossRefPubMed Nolan BM, Ankerson E, Wiater JM: Reverse total shoulder arthroplasty improves function in cuff tear arthropathy. Clin Orthop Relat Res. 2011, 469 (9): 2476-2482. 10.1007/s11999-010-1683-z.CrossRefPubMed
13.
go back to reference Cathcart CW: Movements of the Shoulder Girdle involved in those of the Arm on the Trunk. J Anat Physiol. 1884, 18 (Pt 2): 211-218.PubMedPubMedCentral Cathcart CW: Movements of the Shoulder Girdle involved in those of the Arm on the Trunk. J Anat Physiol. 1884, 18 (Pt 2): 211-218.PubMedPubMedCentral
14.
go back to reference Bagg SD, Forrest WJ: A biomechanical analysis of scapular rotation during arm abduction in the scapular plane. Am J Phys Med Rehabil. 1988, 67 (6): 238-245.PubMed Bagg SD, Forrest WJ: A biomechanical analysis of scapular rotation during arm abduction in the scapular plane. Am J Phys Med Rehabil. 1988, 67 (6): 238-245.PubMed
15.
go back to reference Poppen NK, Walker PS: Normal and abnormal motion of the shoulder. Surg Forum. 1975, 26: 519-PubMed Poppen NK, Walker PS: Normal and abnormal motion of the shoulder. Surg Forum. 1975, 26: 519-PubMed
16.
go back to reference Yano Y, Tamai K, Nohara Y, Yoshizaki K, Hamada J: Do healthy subjects elevate both shoulders in the same manner? [in Japanese]. Shoulder Joint. 2008, 80 (3): 241-244. Yano Y, Tamai K, Nohara Y, Yoshizaki K, Hamada J: Do healthy subjects elevate both shoulders in the same manner? [in Japanese]. Shoulder Joint. 2008, 80 (3): 241-244.
17.
go back to reference Ludewig PM, Cook TM: Alterations in shoulder kinematics and associated muscle activity in people with symptoms of shoulder impingement. Phys Ther. 2000, 80 (3): 276-291.PubMed Ludewig PM, Cook TM: Alterations in shoulder kinematics and associated muscle activity in people with symptoms of shoulder impingement. Phys Ther. 2000, 80 (3): 276-291.PubMed
18.
go back to reference McQuade KJ, Dawson J, Smidt GL: Scapulothoracic muscle fatigue associated with alterations in scapulohumeral rhythm kinematics during maximum resistive shoulder elevation. J Orthop Sports Phys Ther. 1998, 28 (2): 74-80.CrossRefPubMed McQuade KJ, Dawson J, Smidt GL: Scapulothoracic muscle fatigue associated with alterations in scapulohumeral rhythm kinematics during maximum resistive shoulder elevation. J Orthop Sports Phys Ther. 1998, 28 (2): 74-80.CrossRefPubMed
19.
Metadata
Title
How does scapula motion change after reverse total shoulder arthroplasty? - a preliminary report
Authors
Myung-Sun Kim
Keun-Young Lim
Dong-Hyun Lee
David Kovacevic
Nam-Young Cho
Publication date
01-12-2012
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2012
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/1471-2474-13-210

Other articles of this Issue 1/2012

BMC Musculoskeletal Disorders 1/2012 Go to the issue