Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2011

Open Access 01-12-2011 | Research article

Spontaneous hyaline cartilage regeneration can be induced in an osteochondral defect created in the femoral condyle using a novel double-network hydrogel

Authors: Masashi Yokota, Kazunori Yasuda, Nobuto Kitamura, Kazunobu Arakaki, Shin Onodera, Takayuki Kurokawa, Jian-Ping Gong

Published in: BMC Musculoskeletal Disorders | Issue 1/2011

Login to get access

Abstract

Background

Functional repair of articular osteochondral defects remains a major challenge not only in the field of knee surgery but also in tissue regeneration medicine. The purpose is to clarify whether the spontaneous hyaline cartilage regeneration can be induced in a large osteochondral defect created in the femoral condyle by means of implanting a novel double-network (DN) gel at the bottom of the defect.

Methods

Twenty-five mature rabbits were used in this study. In the bilateral knees of each animal, we created an osteochondral defect having a diameter of 2.4-mm in the medial condyle. Then, in 21 rabbits, we implanted a DN gel plug into a right knee defect so that a vacant space of 1.5-mm depth (in Group I), 2.5-mm depth (in Group II), or 3.5-mm depth (in Group III) was left. In the left knee, we did not apply any treatment to the defect to obtain the control data. All the rabbits were sacrificed at 4 weeks, and the gross and histological evaluations were performed. The remaining 4 rabbits underwent the same treatment as used in Group II, and real-time PCR analysis was performed at 4 weeks.

Results

The defect in Group II was filled with a sufficient volume of the hyaline cartilage tissue rich in proteoglycan and type-2 collagen. The Wayne's gross appearance and histology scores showed that Group II was significantly greater than Group I, III, and Control (p < 0.012). The relative expression level of type-2 collagen, aggrecan, and SOX9 mRNAs was significantly greater in Group II than in the control group (p < 0.023).

Conclusions

This study demonstrated that spontaneous hyaline cartilage regeneration can be induced in vivo in an osteochondral defect created in the femoral condyle by means of implanting the DN gel plug at the bottom of the defect so that an approximately 2-mm deep vacant space was intentionally left in the defect. This fact has prompted us to propose an innovative strategy without cell culture to repair osteochondral lesions in the femoral condyle.
Appendix
Available only for authorised users
Literature
1.
go back to reference Mandelbaum BR, Browne JE, Fu F, Micheli L, Mosely JB, Erggelet C, Minas T, Peterson L: Articular cartilage lesions of the knee. Am J Sports Med. 1998, 26: 853-861.PubMed Mandelbaum BR, Browne JE, Fu F, Micheli L, Mosely JB, Erggelet C, Minas T, Peterson L: Articular cartilage lesions of the knee. Am J Sports Med. 1998, 26: 853-861.PubMed
2.
go back to reference Buckwalter JA, Mankin HA: Articular cartilage repair and transplantation. Arthritis Rheum. 1998, 41: 1331-1342. 10.1002/1529-0131(199808)41:8<1331::AID-ART2>3.0.CO;2-J.CrossRefPubMed Buckwalter JA, Mankin HA: Articular cartilage repair and transplantation. Arthritis Rheum. 1998, 41: 1331-1342. 10.1002/1529-0131(199808)41:8<1331::AID-ART2>3.0.CO;2-J.CrossRefPubMed
3.
go back to reference Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L: Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994, 331: 889-895. 10.1056/NEJM199410063311401.CrossRefPubMed Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L: Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994, 331: 889-895. 10.1056/NEJM199410063311401.CrossRefPubMed
4.
go back to reference Peterson L, Minas T, Brittberg M, Lindahl A: Treatment of osteochondritis dissecans of the knee with autologous chondrocyte transplantation: results at two to ten years. J Bone Joint Surg Am. 2003, 85-A: 17-24.PubMed Peterson L, Minas T, Brittberg M, Lindahl A: Treatment of osteochondritis dissecans of the knee with autologous chondrocyte transplantation: results at two to ten years. J Bone Joint Surg Am. 2003, 85-A: 17-24.PubMed
5.
go back to reference Hangody L, Fules P: Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints: ten years of experimental and clinical experience. J Bone Joint Surg Am. 2003, 85-A: 25-32.PubMed Hangody L, Fules P: Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints: ten years of experimental and clinical experience. J Bone Joint Surg Am. 2003, 85-A: 25-32.PubMed
6.
go back to reference Ochi M, Adachi N, Nobuto H, Yanada S, Ito Y, Agung M: Articular cartilage repair using tissue engineering technique--novel approach with minimally invasive procedure. Artif Organs. 2004, 28: 28-32. 10.1111/j.1525-1594.2004.07317.x.CrossRefPubMed Ochi M, Adachi N, Nobuto H, Yanada S, Ito Y, Agung M: Articular cartilage repair using tissue engineering technique--novel approach with minimally invasive procedure. Artif Organs. 2004, 28: 28-32. 10.1111/j.1525-1594.2004.07317.x.CrossRefPubMed
7.
go back to reference Smith GD, Knutsen G, Richardson JB: A clinical review of cartilage repair techniques. J Bone Joint Surg Am. 2005, 87-A: 445-449.CrossRef Smith GD, Knutsen G, Richardson JB: A clinical review of cartilage repair techniques. J Bone Joint Surg Am. 2005, 87-A: 445-449.CrossRef
8.
go back to reference Driesang IM, Hunziker EB: Delamination rates of tissue flaps used in articular cartilage repair. J Orthop Res. 2000, 18: 909-911. 10.1002/jor.1100180609.CrossRefPubMed Driesang IM, Hunziker EB: Delamination rates of tissue flaps used in articular cartilage repair. J Orthop Res. 2000, 18: 909-911. 10.1002/jor.1100180609.CrossRefPubMed
9.
go back to reference Redman SN, Oldfield SF, Archer CW: Current strategies for articular cartilage repair. Eur Cell Mater. 2005, 9: 23-32.PubMed Redman SN, Oldfield SF, Archer CW: Current strategies for articular cartilage repair. Eur Cell Mater. 2005, 9: 23-32.PubMed
10.
go back to reference Buckwalter JA: Articular cartilage injuries. Clin Orthop Relat Res. 2002, 402: 21-37. 10.1097/00003086-200209000-00004.CrossRefPubMed Buckwalter JA: Articular cartilage injuries. Clin Orthop Relat Res. 2002, 402: 21-37. 10.1097/00003086-200209000-00004.CrossRefPubMed
11.
go back to reference Gotterbarm T, Richter W, Jung M, Berardi Vilei S, Mainil-Varlet P, Yamashita T, Breusch SJ: An in vivo study of a growth-factor enhanced, cell free, two-layered collagen-tricalcium phosphate in deep osteochondral defects. Biomaterials. 2006, 27: 3387-3395. 10.1016/j.biomaterials.2006.01.041.CrossRefPubMed Gotterbarm T, Richter W, Jung M, Berardi Vilei S, Mainil-Varlet P, Yamashita T, Breusch SJ: An in vivo study of a growth-factor enhanced, cell free, two-layered collagen-tricalcium phosphate in deep osteochondral defects. Biomaterials. 2006, 27: 3387-3395. 10.1016/j.biomaterials.2006.01.041.CrossRefPubMed
12.
go back to reference Holland TA, Bodde EW, Baggett LS, Tabata Y, Mikos AG, Jansen JA: Osteochondral repair in the rabbit model utilizing bilayered, degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds. J Biomed Mater Res A. 2005, 75: 156-167.CrossRefPubMed Holland TA, Bodde EW, Baggett LS, Tabata Y, Mikos AG, Jansen JA: Osteochondral repair in the rabbit model utilizing bilayered, degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds. J Biomed Mater Res A. 2005, 75: 156-167.CrossRefPubMed
13.
go back to reference Fukuda A, Kato K, Hasegawa M, Hirata H, Sudo A, Okazaki K, Tsuta K, Shikinami Y, Uchida A: Enhanced repair of large osteochondral defects using a combination of artificial cartilage and basic fibroblast growth factor. Biomaterials. 2005, 26: 4301-4308. 10.1016/j.biomaterials.2004.11.007.CrossRefPubMed Fukuda A, Kato K, Hasegawa M, Hirata H, Sudo A, Okazaki K, Tsuta K, Shikinami Y, Uchida A: Enhanced repair of large osteochondral defects using a combination of artificial cartilage and basic fibroblast growth factor. Biomaterials. 2005, 26: 4301-4308. 10.1016/j.biomaterials.2004.11.007.CrossRefPubMed
14.
go back to reference Wayne JS, McDowell CL, Shields KJ, Tuan RS: In vivo response of polylactic acid-alginate scaffolds and bone marrow-derived cells for cartilage tissue engineering. Tissue Eng. 2005, 11: 953-963. 10.1089/ten.2005.11.953.CrossRefPubMed Wayne JS, McDowell CL, Shields KJ, Tuan RS: In vivo response of polylactic acid-alginate scaffolds and bone marrow-derived cells for cartilage tissue engineering. Tissue Eng. 2005, 11: 953-963. 10.1089/ten.2005.11.953.CrossRefPubMed
15.
go back to reference Steadman JR, Rodkey WG, Rodrigo JJ: Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop Relat Res. 2001, 391: S362-369. 10.1097/00003086-200110001-00033.CrossRefPubMed Steadman JR, Rodkey WG, Rodrigo JJ: Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop Relat Res. 2001, 391: S362-369. 10.1097/00003086-200110001-00033.CrossRefPubMed
16.
go back to reference Ahasan T, Sah RL: Biomechanics of integrative cartilage repair. Osteoarthritis Cartilage. 1999, 7: 29-40. 10.1053/joca.1998.0160.CrossRef Ahasan T, Sah RL: Biomechanics of integrative cartilage repair. Osteoarthritis Cartilage. 1999, 7: 29-40. 10.1053/joca.1998.0160.CrossRef
17.
go back to reference Qiu YS, Shahgaldi BF, Revell WJ, Heatley FW: Observations of subchondral plate advancement during osteochondral repair: a histomorphometric and mechanical study in the rabbit femoral condyle. Osteoarthritis Cartilage. 2003, 11: 810-820. 10.1016/S1063-4584(03)00164-X.CrossRefPubMed Qiu YS, Shahgaldi BF, Revell WJ, Heatley FW: Observations of subchondral plate advancement during osteochondral repair: a histomorphometric and mechanical study in the rabbit femoral condyle. Osteoarthritis Cartilage. 2003, 11: 810-820. 10.1016/S1063-4584(03)00164-X.CrossRefPubMed
18.
go back to reference Engler AJ, Sen S, Sweeney HL, Discher DE: Matrix elasticity directs stem cell lineage specification. Cell. 2006, 126: 677-689. 10.1016/j.cell.2006.06.044.CrossRefPubMed Engler AJ, Sen S, Sweeney HL, Discher DE: Matrix elasticity directs stem cell lineage specification. Cell. 2006, 126: 677-689. 10.1016/j.cell.2006.06.044.CrossRefPubMed
19.
go back to reference Gong JP, Katsuyama Y, Kurokawa T, Osada Y: Double-network hydrogels with extremely high mechanical strength. Adv Mater. 2003, 15: 1155-1158. 10.1002/adma.200304907.CrossRef Gong JP, Katsuyama Y, Kurokawa T, Osada Y: Double-network hydrogels with extremely high mechanical strength. Adv Mater. 2003, 15: 1155-1158. 10.1002/adma.200304907.CrossRef
20.
go back to reference Yasuda K, Kitamura N, Gong JP, Arakaki K, Kwon HJ, Onodera S, Chen YM, Kurokawa T, Kanaya F, Ohmiya Y, Osada Y: A novel double-network hydrogel induces spontaneous articular cartilage regeneration in vivo in a large osteochondral defect. Macromol Biosci. 2009, 9: 307-316. 10.1002/mabi.200800223.CrossRefPubMed Yasuda K, Kitamura N, Gong JP, Arakaki K, Kwon HJ, Onodera S, Chen YM, Kurokawa T, Kanaya F, Ohmiya Y, Osada Y: A novel double-network hydrogel induces spontaneous articular cartilage regeneration in vivo in a large osteochondral defect. Macromol Biosci. 2009, 9: 307-316. 10.1002/mabi.200800223.CrossRefPubMed
21.
go back to reference Azuma C, Yasuda K, Tanabe Y, Taniguro H, Kanaya F, Nakayama A, Chen YM, Gong JP, Osada Y: Biodegradation of high-toughness double network hydrogels as potential materials for artificial cartilage. J Biomed Mater Res A. 2007, 81: 373-380.CrossRefPubMed Azuma C, Yasuda K, Tanabe Y, Taniguro H, Kanaya F, Nakayama A, Chen YM, Gong JP, Osada Y: Biodegradation of high-toughness double network hydrogels as potential materials for artificial cartilage. J Biomed Mater Res A. 2007, 81: 373-380.CrossRefPubMed
22.
go back to reference Yasuda K, Gong JP, Katsuyama Y, Nakayama A, Tanabe Y, Kondo E, Ueno M, Osada Y: Biomechanical properties of high-toughness double network hydrogels. Biomaterials. 2005, 26: 4468-4475. 10.1016/j.biomaterials.2004.11.021.CrossRefPubMed Yasuda K, Gong JP, Katsuyama Y, Nakayama A, Tanabe Y, Kondo E, Ueno M, Osada Y: Biomechanical properties of high-toughness double network hydrogels. Biomaterials. 2005, 26: 4468-4475. 10.1016/j.biomaterials.2004.11.021.CrossRefPubMed
23.
go back to reference Tanabe Y, Yasuda K, Azuma C, Taniguro H, Onodera S, Suzuki A, Chen YM, Gong JP, Osada Y: Biological responses of novel high-toughness double network hydrogels in muscle and the subcutaneous tissues. J Mater Sci Mater Med. 2008, 19: 1379-1387. 10.1007/s10856-007-3255-7.CrossRefPubMed Tanabe Y, Yasuda K, Azuma C, Taniguro H, Onodera S, Suzuki A, Chen YM, Gong JP, Osada Y: Biological responses of novel high-toughness double network hydrogels in muscle and the subcutaneous tissues. J Mater Sci Mater Med. 2008, 19: 1379-1387. 10.1007/s10856-007-3255-7.CrossRefPubMed
24.
go back to reference Kwon HJ, Yasuda K, Ohmiya Y, Honma K, Chen YM, Gong JP: In vitro differentiation of chondrogenic ATDC5 cells is enhanced by culturing on synthetic hydrogels with various charge densities. Acta Biomater. 2010, 6: 494-501. 10.1016/j.actbio.2009.07.033.CrossRefPubMed Kwon HJ, Yasuda K, Ohmiya Y, Honma K, Chen YM, Gong JP: In vitro differentiation of chondrogenic ATDC5 cells is enhanced by culturing on synthetic hydrogels with various charge densities. Acta Biomater. 2010, 6: 494-501. 10.1016/j.actbio.2009.07.033.CrossRefPubMed
25.
go back to reference Arakaki K, Kitamura N, Kurokawa T, Onodera S, Kanaya F, Gong JP, Yasuda K: Joint immobilization inhibits spontaneous hyaline cartilage regeneration induced by a novel double-network gel implantation. J Mater Sci Mater Med. 2010, Arakaki K, Kitamura N, Kurokawa T, Onodera S, Kanaya F, Gong JP, Yasuda K: Joint immobilization inhibits spontaneous hyaline cartilage regeneration induced by a novel double-network gel implantation. J Mater Sci Mater Med. 2010,
26.
go back to reference Kelly DJ, Jacobs CR: The role of mechanical signals in regulating chondrogenesis and osteogenesis of mesenchymal stem cells. Birth Defects Res C Embryo Today. 2010, 90: 75-85. 10.1002/bdrc.20173.CrossRefPubMed Kelly DJ, Jacobs CR: The role of mechanical signals in regulating chondrogenesis and osteogenesis of mesenchymal stem cells. Birth Defects Res C Embryo Today. 2010, 90: 75-85. 10.1002/bdrc.20173.CrossRefPubMed
27.
go back to reference Buschmann MD, Gluzband YA, Grodzinsky AJ, Hunziker EB: Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. J Cell Sci. 1995, 108: 1497-1508.PubMed Buschmann MD, Gluzband YA, Grodzinsky AJ, Hunziker EB: Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. J Cell Sci. 1995, 108: 1497-1508.PubMed
28.
go back to reference Kurz B, Jin M, Patwari P, Cheng DM, Lark MW, Grodzinsky AJ: Biosynthetic response and mechanical properties of articular cartilage after injurious compression. J Orthop Res. 2001, 19: 1140-1146. 10.1016/S0736-0266(01)00033-X.CrossRefPubMed Kurz B, Jin M, Patwari P, Cheng DM, Lark MW, Grodzinsky AJ: Biosynthetic response and mechanical properties of articular cartilage after injurious compression. J Orthop Res. 2001, 19: 1140-1146. 10.1016/S0736-0266(01)00033-X.CrossRefPubMed
29.
go back to reference Ragan PM, Chin VI, Hung HH, Masuda K, Thonar EJ, Arner EC, Grodzinsky AJ, Sandy JD: Chondrocyte extracellular matrix synthesis and turnover are influenced by static compression in a new alginate disk culture system. Arch Biochem Biophys. 2000, 383: 256-264. 10.1006/abbi.2000.2060.CrossRefPubMed Ragan PM, Chin VI, Hung HH, Masuda K, Thonar EJ, Arner EC, Grodzinsky AJ, Sandy JD: Chondrocyte extracellular matrix synthesis and turnover are influenced by static compression in a new alginate disk culture system. Arch Biochem Biophys. 2000, 383: 256-264. 10.1006/abbi.2000.2060.CrossRefPubMed
30.
go back to reference Smith RL, Carter DR, Schurman DJ: Pressure and shear differentially alter human articular chondrocyte metabolism: a review. Clin Orthop Relat Res. 2004, 427: S89-95.PubMed Smith RL, Carter DR, Schurman DJ: Pressure and shear differentially alter human articular chondrocyte metabolism: a review. Clin Orthop Relat Res. 2004, 427: S89-95.PubMed
Metadata
Title
Spontaneous hyaline cartilage regeneration can be induced in an osteochondral defect created in the femoral condyle using a novel double-network hydrogel
Authors
Masashi Yokota
Kazunori Yasuda
Nobuto Kitamura
Kazunobu Arakaki
Shin Onodera
Takayuki Kurokawa
Jian-Ping Gong
Publication date
01-12-2011
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2011
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/1471-2474-12-49

Other articles of this Issue 1/2011

BMC Musculoskeletal Disorders 1/2011 Go to the issue