Skip to main content
Top
Published in: BMC Public Health 1/2005

Open Access 01-12-2005 | Research article

Evaluation of school absenteeism data for early outbreak detection, New York City

Authors: Melanie Besculides, Richard Heffernan, Farzad Mostashari, Don Weiss

Published in: BMC Public Health | Issue 1/2005

Login to get access

Abstract

Background

School absenteeism data may have utility as an early indicator of disease outbreaks, however their value should be critically examined. This paper describes an evaluation of the utility of school absenteeism data for early outbreak detection in New York City (NYC).

Methods

To assess citywide temporal trends in absenteeism, we downloaded three years (2001–02, 2002–03, 2003–04) of daily school attendance data from the NYC Department of Education (DOE) website. We applied the CuSum method to identify aberrations in the adjusted daily percent absent. A spatial scan statistic was used to assess geographic clustering in absenteeism for the 2001–02 academic year.

Results

Moderate increases in absenteeism were observed among children during peak influenza season. Spatial analysis detected 790 significant clusters of absenteeism among elementary school children (p < 0.01), two of which occurred during a previously reported outbreak.

Conclusion

Monitoring school absenteeism may be moderately useful for detecting large citywide epidemics, however, school-level data were noisy and we were unable to demonstrate any practical value in using cluster analysis to detect localized outbreaks. Based on these results, we will not implement prospective monitoring of school absenteeism data, but are evaluating the utility of more specific school-based data for outbreak detection.
Appendix
Available only for authorised users
Literature
1.
go back to reference Mostashari F, Fine A, Das D, Adams J, Layton M: Use of ambulance dispatch data as an early warning system for community-wide influenza like illness, New York City. J Urban Health. 2003, 80 (2 Suppl 1): i43-9.PubMedPubMedCentral Mostashari F, Fine A, Das D, Adams J, Layton M: Use of ambulance dispatch data as an early warning system for community-wide influenza like illness, New York City. J Urban Health. 2003, 80 (2 Suppl 1): i43-9.PubMedPubMedCentral
2.
go back to reference Heffernan R, Mostashari F, Das D, Karpati A, Kuldorff M, Weiss D: Syndromic surveillance in public health practice, New York City. Emerg Infect Dis. 2004, 10: 858-64.CrossRefPubMed Heffernan R, Mostashari F, Das D, Karpati A, Kuldorff M, Weiss D: Syndromic surveillance in public health practice, New York City. Emerg Infect Dis. 2004, 10: 858-64.CrossRefPubMed
3.
go back to reference Das D, Mostashari F, Weiss D, Balter S, Heffernan R: Monitoring Over-the-Counter Pharmacy Sales for Early Outbreak Detection-New York City. 2003, Presented at the National Syndromic Surveillance Conference Das D, Mostashari F, Weiss D, Balter S, Heffernan R: Monitoring Over-the-Counter Pharmacy Sales for Early Outbreak Detection-New York City. 2003, Presented at the National Syndromic Surveillance Conference
4.
go back to reference Proctor ME, Blair KA, Davis JP: Surveillance data for waterborne illness detection: an assessment following a massive waterborne outbreak of Cryptosporidium infection. Epidemiol Infect. 1998, 120: 43-54. 10.1017/S0950268897008327.CrossRefPubMedPubMedCentral Proctor ME, Blair KA, Davis JP: Surveillance data for waterborne illness detection: an assessment following a massive waterborne outbreak of Cryptosporidium infection. Epidemiol Infect. 1998, 120: 43-54. 10.1017/S0950268897008327.CrossRefPubMedPubMedCentral
6.
go back to reference Buehler JW, Hopkins RS, Overhage JM, Sosin DM, Tong V, CDC Working Group: Framework for evaluating public health surveillance systems for early detection of outbreaks: recommendations from the CDC Working Group. MMWR Recomm Rep. 53 (RR-5): 1-11. 2004 May 7 Buehler JW, Hopkins RS, Overhage JM, Sosin DM, Tong V, CDC Working Group: Framework for evaluating public health surveillance systems for early detection of outbreaks: recommendations from the CDC Working Group. MMWR Recomm Rep. 53 (RR-5): 1-11. 2004 May 7
8.
go back to reference Hutwagner L, Thompson W, Seeman GM, Treadwell T: The bioterrorism preparedness and response Early Aberration Reporting System (EARS). J Urban Health. 2003, 80 (2 Suppl 1): i89-96.PubMedPubMedCentral Hutwagner L, Thompson W, Seeman GM, Treadwell T: The bioterrorism preparedness and response Early Aberration Reporting System (EARS). J Urban Health. 2003, 80 (2 Suppl 1): i89-96.PubMedPubMedCentral
9.
go back to reference Kulldorff M: Prospective time periodic geographical disease surveillance using a scan statistic. J of the Royal Statistical Society. 2001, A164: 61-72. 10.1111/1467-985X.00186.CrossRef Kulldorff M: Prospective time periodic geographical disease surveillance using a scan statistic. J of the Royal Statistical Society. 2001, A164: 61-72. 10.1111/1467-985X.00186.CrossRef
10.
go back to reference Kulldorff M: A spatial scan statistic. Communication in Statistics Theories and Methods. 1997, 26: 1481-96.CrossRef Kulldorff M: A spatial scan statistic. Communication in Statistics Theories and Methods. 1997, 26: 1481-96.CrossRef
12.
Metadata
Title
Evaluation of school absenteeism data for early outbreak detection, New York City
Authors
Melanie Besculides
Richard Heffernan
Farzad Mostashari
Don Weiss
Publication date
01-12-2005
Publisher
BioMed Central
Published in
BMC Public Health / Issue 1/2005
Electronic ISSN: 1471-2458
DOI
https://doi.org/10.1186/1471-2458-5-105

Other articles of this Issue 1/2005

BMC Public Health 1/2005 Go to the issue