Skip to main content
Top
Published in: BMC Psychiatry 1/2010

Open Access 01-12-2010 | Research article

Model-based parametric study of frontostriatal abnormalities in schizophrenia patients

Author: Shoji Tanaka

Published in: BMC Psychiatry | Issue 1/2010

Login to get access

Abstract

Background

Several studies have suggested that the activity of the prefrontal cortex (PFC) and the dopamine (DA) release in the striatum has an inverse relationship. One would attribute this relationship primarily to the circuitry comprised of the glutamatergic projection from the PFC to the striatum and the GABAergic projection from the striatum to the midbrain DA nucleus. However, this circuitry has not characterized satisfactorily yet, so that no quantitative analysis has ever been made on the activities of the PFC and the striatum and also the DA release in the striatum.

Methods

In this study, a system dynamics model of the corticostriatal system with dopaminergic innervations is constructed to describe the relationships between the activities of the PFC and the striatum and the DA release in the striatum. By taking published receptor imaging data from schizophrenia patients and healthy subjects into this model, this article analyzes the effects of striatal D2 receptor activation on the balance of the activity and neurotransmission in the frontostriatal system of schizophrenic patients in comparison with healthy controls.

Results

The model predicts that the suppressive effect by D2 receptors at the terminals of the glutamatergic afferents to the striatum from the PFC enhances the hypofrontality-induced elevation of striatal DA release by at most 83%. The occupancy-based estimation of the 'optimum' D2 receptor occupancy by antipsychotic drugs is 52%. This study further predicts that patients with lower PFC activity tend to have greater improvement of positive symptoms following antipsychotic medication.

Conclusion

This model-based parametric study would be useful for system-level analysis of the brains with psychiatric diseases. It will be able to make reliable prediction of clinical outcome when sufficient data will be available.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hill K, Mann L, Laws KR, Stephenson CME, Nimmo-Smith I, McKenna PJ: Hypofrontality in schizophrenia: a meta-analysis of functional imaging studies. Acta Psychiatrica Scandinavica. 2004, 110 (4): 243-256. 10.1111/j.1600-0447.2004.00376.x.CrossRefPubMed Hill K, Mann L, Laws KR, Stephenson CME, Nimmo-Smith I, McKenna PJ: Hypofrontality in schizophrenia: a meta-analysis of functional imaging studies. Acta Psychiatrica Scandinavica. 2004, 110 (4): 243-256. 10.1111/j.1600-0447.2004.00376.x.CrossRefPubMed
2.
go back to reference Carter CS, Perlstein P, Ganguli R, Brar J, Mintun M, Cohen JD: Functional hypofrontality and working memory dysfunction in schizophrenia. Am J Psychiatry. 1998, 155: 1285-1287.CrossRefPubMed Carter CS, Perlstein P, Ganguli R, Brar J, Mintun M, Cohen JD: Functional hypofrontality and working memory dysfunction in schizophrenia. Am J Psychiatry. 1998, 155: 1285-1287.CrossRefPubMed
3.
go back to reference Perlstein WM, Carter CS, Noll DC, Cohen JD: Relation of prefrontal cortex dysfunction to working memory and symptoms in schizophrenia. Am J Psychiatry. 2001, 158 (7): 1105-1113. 10.1176/appi.ajp.158.7.1105.CrossRefPubMed Perlstein WM, Carter CS, Noll DC, Cohen JD: Relation of prefrontal cortex dysfunction to working memory and symptoms in schizophrenia. Am J Psychiatry. 2001, 158 (7): 1105-1113. 10.1176/appi.ajp.158.7.1105.CrossRefPubMed
4.
go back to reference Riehemann S, Volz HP, Stützer P, Smesny S, Gaser C, Sauer H: Hypofrontality in neuroleptic-naive schizophrenic patients during the Wisconsin Card Sorting Test--a fMRI study. Eur Arch Psychiatry Clin Neurosci. 2001, 251 (2): 66-71. 10.1007/s004060170055.CrossRefPubMed Riehemann S, Volz HP, Stützer P, Smesny S, Gaser C, Sauer H: Hypofrontality in neuroleptic-naive schizophrenic patients during the Wisconsin Card Sorting Test--a fMRI study. Eur Arch Psychiatry Clin Neurosci. 2001, 251 (2): 66-71. 10.1007/s004060170055.CrossRefPubMed
5.
go back to reference Weinberger DR, Berman KF, Zec RF: Physiologic Dysfunction of Dorsolateral Prefrontal Cortex in Schizophrenia: I. Regional Cerebral Blood Flow Evidence. Arch Gen Psychiatry. 1986, 43 (2): 114-124.CrossRefPubMed Weinberger DR, Berman KF, Zec RF: Physiologic Dysfunction of Dorsolateral Prefrontal Cortex in Schizophrenia: I. Regional Cerebral Blood Flow Evidence. Arch Gen Psychiatry. 1986, 43 (2): 114-124.CrossRefPubMed
6.
go back to reference Wolkin A, Sanfilipo M, Wolf AP, Angrist B, Brodie JD, Rotrosen J: Negative symptoms and hypofrontality in chronic schizophrenia. Arch Gen Psychiatry. 1992, 49 (12): 959-965.CrossRefPubMed Wolkin A, Sanfilipo M, Wolf AP, Angrist B, Brodie JD, Rotrosen J: Negative symptoms and hypofrontality in chronic schizophrenia. Arch Gen Psychiatry. 1992, 49 (12): 959-965.CrossRefPubMed
7.
go back to reference Andreasen NC, O'Leary DS, Flaum M, Nopoulos P, Watkins GL, Boles Ponto LL, Hichwa RD: Hypofrontality in schizophrenia: distributed dysfunctional circuits in neuroleptic-naive patients. Lancet. 1997, 349 (9067): 1730-1734. 10.1016/S0140-6736(96)08258-X.CrossRefPubMed Andreasen NC, O'Leary DS, Flaum M, Nopoulos P, Watkins GL, Boles Ponto LL, Hichwa RD: Hypofrontality in schizophrenia: distributed dysfunctional circuits in neuroleptic-naive patients. Lancet. 1997, 349 (9067): 1730-1734. 10.1016/S0140-6736(96)08258-X.CrossRefPubMed
8.
go back to reference Whalley HC, Mowatt L, Stanfield AC, Hall J, Johnstone EC, Lawrie SM, McIntosh AM: Hypofrontality in subjects at high genetic risk of schizophrenia with depressive symptoms. Journal of Affective Disorders. 2008, 109 (1): 99-106. 10.1016/j.jad.2007.11.009.CrossRefPubMed Whalley HC, Mowatt L, Stanfield AC, Hall J, Johnstone EC, Lawrie SM, McIntosh AM: Hypofrontality in subjects at high genetic risk of schizophrenia with depressive symptoms. Journal of Affective Disorders. 2008, 109 (1): 99-106. 10.1016/j.jad.2007.11.009.CrossRefPubMed
9.
go back to reference Park IH, Kim JJ, Chun J, Jung YC, Seok JH, Park HJ, Lee JD: Medial prefrontal default-mode hypoactivity affecting trait physical anhedonia in schizophrenia. Psychiatry Research: Neuroimaging. 2009, 171 (3): 155-165. 10.1016/j.pscychresns.2008.03.010.CrossRefPubMed Park IH, Kim JJ, Chun J, Jung YC, Seok JH, Park HJ, Lee JD: Medial prefrontal default-mode hypoactivity affecting trait physical anhedonia in schizophrenia. Psychiatry Research: Neuroimaging. 2009, 171 (3): 155-165. 10.1016/j.pscychresns.2008.03.010.CrossRefPubMed
10.
go back to reference Morey RA, Inan S, Mitchell TV, Perkins DO, Lieberman JA, Belger A: Imaging frontostriatal function in ultra-high-risk, early, and chronic schizophrenia during executive processing. Arch Gen Psychiatry. 2005, 62 (3): 254-262. 10.1001/archpsyc.62.3.254.CrossRefPubMedPubMedCentral Morey RA, Inan S, Mitchell TV, Perkins DO, Lieberman JA, Belger A: Imaging frontostriatal function in ultra-high-risk, early, and chronic schizophrenia during executive processing. Arch Gen Psychiatry. 2005, 62 (3): 254-262. 10.1001/archpsyc.62.3.254.CrossRefPubMedPubMedCentral
11.
go back to reference Whalley HC, Simonotto E, Moorhead W, McIntosh A, Marshall I, Ebmeier KP, Owens DG, Goddard NH, Johnstone EC, Lawrie SM: Functional imaging as a predictor of schizophrenia. Biol Psychiatry. 2006, 60 (5): 454-462. 10.1016/j.biopsych.2005.11.013.CrossRefPubMed Whalley HC, Simonotto E, Moorhead W, McIntosh A, Marshall I, Ebmeier KP, Owens DG, Goddard NH, Johnstone EC, Lawrie SM: Functional imaging as a predictor of schizophrenia. Biol Psychiatry. 2006, 60 (5): 454-462. 10.1016/j.biopsych.2005.11.013.CrossRefPubMed
12.
go back to reference Molina V, Sanz J, Reig S, Martinez R, Sarramea F, Luque R, Benito C, Gispert J, Pascau J, Desco M: Hypofrontality in men with first-episode psychosis. Br J Psychiatry. 2005, 186: 203-208. 10.1192/bjp.186.3.203.CrossRefPubMed Molina V, Sanz J, Reig S, Martinez R, Sarramea F, Luque R, Benito C, Gispert J, Pascau J, Desco M: Hypofrontality in men with first-episode psychosis. Br J Psychiatry. 2005, 186: 203-208. 10.1192/bjp.186.3.203.CrossRefPubMed
13.
go back to reference Thermenos HW, Goldstein JM, Buka SL, Poldrack RA, Koch JK, Tsuang MT, Seidman LJ: The effect of working memory performance on functional MRI in schizophrenia. Schizophr Res. 2005, 74 (2-3): 179-194. 10.1016/j.schres.2004.07.021.CrossRefPubMed Thermenos HW, Goldstein JM, Buka SL, Poldrack RA, Koch JK, Tsuang MT, Seidman LJ: The effect of working memory performance on functional MRI in schizophrenia. Schizophr Res. 2005, 74 (2-3): 179-194. 10.1016/j.schres.2004.07.021.CrossRefPubMed
14.
go back to reference Glahn DC, Ragland JD, Abramoff A, Barrett J, Laird AR, Bearden CE, Velligan DI: Beyond hypofrontality: A quantitative meta-analysis of functional neuroimaging studies of working memory in schizophrenia. Hum Brain Mapp. 2005, 25 (1): 60-69. 10.1002/hbm.20138.CrossRefPubMed Glahn DC, Ragland JD, Abramoff A, Barrett J, Laird AR, Bearden CE, Velligan DI: Beyond hypofrontality: A quantitative meta-analysis of functional neuroimaging studies of working memory in schizophrenia. Hum Brain Mapp. 2005, 25 (1): 60-69. 10.1002/hbm.20138.CrossRefPubMed
15.
go back to reference Manoach DS, Press DZ, Thangaraj V, Searl MM, Goff DC, Halpern E, Saper CB, Warach S: Schizophrenic subjects activate dorsolateral prefrontal cortex during a working memory task, as measured by fMRI. Biol Psychiatry. 1999, 45: 1128-1137. 10.1016/S0006-3223(98)00318-7.CrossRefPubMed Manoach DS, Press DZ, Thangaraj V, Searl MM, Goff DC, Halpern E, Saper CB, Warach S: Schizophrenic subjects activate dorsolateral prefrontal cortex during a working memory task, as measured by fMRI. Biol Psychiatry. 1999, 45: 1128-1137. 10.1016/S0006-3223(98)00318-7.CrossRefPubMed
16.
go back to reference Tanaka S: Dopaminergic control of working memory and its relevance to schizophrenia: a circuit dynamics perspective. Neuroscience. 2006, 139: 153-171. 10.1016/j.neuroscience.2005.08.070.CrossRefPubMed Tanaka S: Dopaminergic control of working memory and its relevance to schizophrenia: a circuit dynamics perspective. Neuroscience. 2006, 139: 153-171. 10.1016/j.neuroscience.2005.08.070.CrossRefPubMed
17.
go back to reference Manoach DS, Halpern EF, Kramer TS, Chang Y, Goff DC, Rauch SL, Kennedy DN, Gollub RL: Test-retest reliability of a functional MRI working memory paradigm in normal and schizophrenic subjects. Am J Psychiatry. 2001, 158 (6): 955-958. 10.1176/appi.ajp.158.6.955.CrossRefPubMed Manoach DS, Halpern EF, Kramer TS, Chang Y, Goff DC, Rauch SL, Kennedy DN, Gollub RL: Test-retest reliability of a functional MRI working memory paradigm in normal and schizophrenic subjects. Am J Psychiatry. 2001, 158 (6): 955-958. 10.1176/appi.ajp.158.6.955.CrossRefPubMed
18.
go back to reference Haroutunian V, Knott P, Davis KL: Effects of mesocortical dopaminergic lesions upon subcortical dopaminergic function. Psychopharmacol Bull. 1988, 24 (3): 341-344.PubMed Haroutunian V, Knott P, Davis KL: Effects of mesocortical dopaminergic lesions upon subcortical dopaminergic function. Psychopharmacol Bull. 1988, 24 (3): 341-344.PubMed
19.
go back to reference Lipska BK, Weinberger DR: Cortical regulation of the mesolimbic dopamine system: implications for schizophrenia. Limbic motor circuits and neuropsychiatry Ch11 CRC. Edited by: Kalivas PW, Barnes CD. 1993 Lipska BK, Weinberger DR: Cortical regulation of the mesolimbic dopamine system: implications for schizophrenia. Limbic motor circuits and neuropsychiatry Ch11 CRC. Edited by: Kalivas PW, Barnes CD. 1993
20.
go back to reference Meyer-Lindenberg A, Miletich RS, Kohn PD, Esposito G, Carson RE, Quarantelli M, Weinberger DR, Berman KF: Reduced prefrontal activity predicts exaggerated striatal dopaminergic function in schizophrenia. Nat Neurosci. 2002, 5 (3): 267-271. 10.1038/nn804.CrossRefPubMed Meyer-Lindenberg A, Miletich RS, Kohn PD, Esposito G, Carson RE, Quarantelli M, Weinberger DR, Berman KF: Reduced prefrontal activity predicts exaggerated striatal dopaminergic function in schizophrenia. Nat Neurosci. 2002, 5 (3): 267-271. 10.1038/nn804.CrossRefPubMed
21.
go back to reference Kolachana BS, Saunders RC, Weinberger DR: Augmentation of prefrontal cortical monoaminergic activity inhibits dopamine release in the caudate nucleus: an in vivo neurochemical assessment in the rhesus monkey. Neuroscience. 1995, 69 (3): 859-868. 10.1016/0306-4522(95)00246-F.CrossRefPubMed Kolachana BS, Saunders RC, Weinberger DR: Augmentation of prefrontal cortical monoaminergic activity inhibits dopamine release in the caudate nucleus: an in vivo neurochemical assessment in the rhesus monkey. Neuroscience. 1995, 69 (3): 859-868. 10.1016/0306-4522(95)00246-F.CrossRefPubMed
22.
go back to reference Abi-Dargham A, Rodenhiser J, Printz D, Zea-Ponce Y, Gil R, Kegeles LS, Weiss R, Cooper TB, Mann JJ, Heertum RLV, et al: Increased baseline occupancy of D2 receptors by dopamine in schizophrenia. Proc Natl Acad Sci USA. 2000, 97: 8104-8109. 10.1073/pnas.97.14.8104. [comments in Seeman and Kapur (2000) PNAS PMID: 10884398]CrossRefPubMedPubMedCentral Abi-Dargham A, Rodenhiser J, Printz D, Zea-Ponce Y, Gil R, Kegeles LS, Weiss R, Cooper TB, Mann JJ, Heertum RLV, et al: Increased baseline occupancy of D2 receptors by dopamine in schizophrenia. Proc Natl Acad Sci USA. 2000, 97: 8104-8109. 10.1073/pnas.97.14.8104. [comments in Seeman and Kapur (2000) PNAS PMID: 10884398]CrossRefPubMedPubMedCentral
23.
go back to reference Agid O, Mamo D, Ginovart N, Vitcu I, Wilson AA, Zipursky RB, Kapur S: Striatal vs extrastriatal dopamine D2 receptors in antipsychotic response--a double-blind PET study in schizophrenia. Neuropsychopharmacology. 2007, 32 (6): 1209-1215. 10.1038/sj.npp.1301242.CrossRefPubMed Agid O, Mamo D, Ginovart N, Vitcu I, Wilson AA, Zipursky RB, Kapur S: Striatal vs extrastriatal dopamine D2 receptors in antipsychotic response--a double-blind PET study in schizophrenia. Neuropsychopharmacology. 2007, 32 (6): 1209-1215. 10.1038/sj.npp.1301242.CrossRefPubMed
24.
go back to reference Nicola SM, Surmeier DJ, Malenka RC: Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu Rev Neurosci. 2000, 23: 185-215. 10.1146/annurev.neuro.23.1.185.CrossRefPubMed Nicola SM, Surmeier DJ, Malenka RC: Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu Rev Neurosci. 2000, 23: 185-215. 10.1146/annurev.neuro.23.1.185.CrossRefPubMed
25.
go back to reference Surmeier DJ, Song WJ, Yan Z: Coordinated expression of dopamine receptors in neostriatal medium spiny neurons. J Neurosci. 1996, 16 (20): 6579-6591.PubMed Surmeier DJ, Song WJ, Yan Z: Coordinated expression of dopamine receptors in neostriatal medium spiny neurons. J Neurosci. 1996, 16 (20): 6579-6591.PubMed
26.
go back to reference Bamford NS, Robinson S, Palmiter RD, Joyce JA, Moore C, Meshul CK: Dopamine modulates release from corticostriatal terminals. J Neurosci. 2004, 24 (43): 9541-9552. 10.1523/JNEUROSCI.2891-04.2004.CrossRefPubMed Bamford NS, Robinson S, Palmiter RD, Joyce JA, Moore C, Meshul CK: Dopamine modulates release from corticostriatal terminals. J Neurosci. 2004, 24 (43): 9541-9552. 10.1523/JNEUROSCI.2891-04.2004.CrossRefPubMed
27.
go back to reference Bamford NS, Schmitz Y, Schumauss C, Zakharenko SS, Zablow L, Sulzer D: Heterosynaptic dopamine neurotransmission selects sets of corticostriatal terminals. Neuron. 2004, 42 (4): 653-663. 10.1016/S0896-6273(04)00265-X.CrossRefPubMed Bamford NS, Schmitz Y, Schumauss C, Zakharenko SS, Zablow L, Sulzer D: Heterosynaptic dopamine neurotransmission selects sets of corticostriatal terminals. Neuron. 2004, 42 (4): 653-663. 10.1016/S0896-6273(04)00265-X.CrossRefPubMed
28.
go back to reference Meador-Woodruff JH, Damask SP, Watson SJJ: Differential expression of autoreceptors in the ascending dopamine systems of the human brain. Proc Natl Acad Sci USA. 1994, 91 (17): 8297-8301. 10.1073/pnas.91.17.8297.CrossRefPubMedPubMedCentral Meador-Woodruff JH, Damask SP, Watson SJJ: Differential expression of autoreceptors in the ascending dopamine systems of the human brain. Proc Natl Acad Sci USA. 1994, 91 (17): 8297-8301. 10.1073/pnas.91.17.8297.CrossRefPubMedPubMedCentral
29.
go back to reference Wang H, Pickel VM: Dopamine D2 receptors are present in prefrontal cortical afferents and their targets in patches of the rat caudate-putamen nucleus. J Comp Neurol. 2002, 442: 392-404. 10.1002/cne.10086.CrossRefPubMed Wang H, Pickel VM: Dopamine D2 receptors are present in prefrontal cortical afferents and their targets in patches of the rat caudate-putamen nucleus. J Comp Neurol. 2002, 442: 392-404. 10.1002/cne.10086.CrossRefPubMed
30.
go back to reference Horvitz JC: Dopamine gating of glutamatergic sensorimotor and incentive motivational input signals to the striatum. Behav Brain Res. 2002, 137: 65-74. 10.1016/S0166-4328(02)00285-1.CrossRefPubMed Horvitz JC: Dopamine gating of glutamatergic sensorimotor and incentive motivational input signals to the striatum. Behav Brain Res. 2002, 137: 65-74. 10.1016/S0166-4328(02)00285-1.CrossRefPubMed
31.
go back to reference McGowan S, Lawrence AD, Sales T, Quested D, Grasby P: Presynaptic Dopaminergic Dysfunction in Schizophrenia: A Positron Emission Tomographic [18F] Fluorodopa Study. Arch Gen Psychiatry. 2004, 61: 134-142. 10.1001/archpsyc.61.2.134.CrossRefPubMed McGowan S, Lawrence AD, Sales T, Quested D, Grasby P: Presynaptic Dopaminergic Dysfunction in Schizophrenia: A Positron Emission Tomographic [18F] Fluorodopa Study. Arch Gen Psychiatry. 2004, 61: 134-142. 10.1001/archpsyc.61.2.134.CrossRefPubMed
32.
go back to reference Brady AM, O'Donnell P: Dopaminergic modulation of prefrontal cortical input to nucleus accumbens in vivo. Journal of Neuroscience. 2004, 24: 1040-1049. 10.1523/JNEUROSCI.4178-03.2004.CrossRefPubMed Brady AM, O'Donnell P: Dopaminergic modulation of prefrontal cortical input to nucleus accumbens in vivo. Journal of Neuroscience. 2004, 24: 1040-1049. 10.1523/JNEUROSCI.4178-03.2004.CrossRefPubMed
33.
go back to reference Slifstein M, Laruelle M: Models and methods for derivation of in vivo neuroreceptor parameters with PET and SPECT reversible radiotracers. Nucl Med Biol. 2001, 28 (5): 595-608. 10.1016/S0969-8051(01)00214-1.CrossRefPubMed Slifstein M, Laruelle M: Models and methods for derivation of in vivo neuroreceptor parameters with PET and SPECT reversible radiotracers. Nucl Med Biol. 2001, 28 (5): 595-608. 10.1016/S0969-8051(01)00214-1.CrossRefPubMed
34.
go back to reference Laruelle M, D'Souza CD, Baldwin RM, Abi-Dargham A, Kanes SJ, Fingado CL, Seibyl JP, Zoghbi SS, Bowers MB, Jatlow P, et al: Imaging D2 Receptor Occupancy by Endogenous Dopamine in Humans. Neuropsychopharmacology. 1997, 17: 162-174. 10.1016/S0893-133X(97)00043-2.CrossRefPubMed Laruelle M, D'Souza CD, Baldwin RM, Abi-Dargham A, Kanes SJ, Fingado CL, Seibyl JP, Zoghbi SS, Bowers MB, Jatlow P, et al: Imaging D2 Receptor Occupancy by Endogenous Dopamine in Humans. Neuropsychopharmacology. 1997, 17: 162-174. 10.1016/S0893-133X(97)00043-2.CrossRefPubMed
35.
go back to reference Erlandsson K, Bressan RA, Mulligan RS, Ell PJ, Cunningham VJ, Pilowsky LS: Analysis of D2 dopamine receptor occupancy with quantitative SPET using the high-affinity ligand [123I] epidepride: resolving conflicting findings. Neuroimage. 2003, 19: 1205-1214. 10.1016/S1053-8119(03)00166-6.CrossRefPubMed Erlandsson K, Bressan RA, Mulligan RS, Ell PJ, Cunningham VJ, Pilowsky LS: Analysis of D2 dopamine receptor occupancy with quantitative SPET using the high-affinity ligand [123I] epidepride: resolving conflicting findings. Neuroimage. 2003, 19: 1205-1214. 10.1016/S1053-8119(03)00166-6.CrossRefPubMed
36.
go back to reference Riccardi P, Baldwin R, Salomon R, Anderson S, Ansari MS, Li R, Dawant B, Bauernfeind A, Schmidt D, Kessler R: Estimation of Baseline Dopamine D2 Receptor Occupancy in Striatum and Extrastriatal Regions in Humans with Positron Emission Tomography with [18F] Fallypride. Biological psychiatry. 2008, 63 (2): 241-244. 10.1016/j.biopsych.2007.03.022.CrossRefPubMed Riccardi P, Baldwin R, Salomon R, Anderson S, Ansari MS, Li R, Dawant B, Bauernfeind A, Schmidt D, Kessler R: Estimation of Baseline Dopamine D2 Receptor Occupancy in Striatum and Extrastriatal Regions in Humans with Positron Emission Tomography with [18F] Fallypride. Biological psychiatry. 2008, 63 (2): 241-244. 10.1016/j.biopsych.2007.03.022.CrossRefPubMed
37.
go back to reference Verhoeff NP, Kapur S, Hussey D, Lee M, Christensen B, Psych C, Papatheodorou G, Zipursky RB: A simple method to measure baseline occupancy of neostriatal dopamine D2 receptors by dopamine in vivo in healthy subjects. Neuropsychopharmacology. 2001, 25 (2): 213-223. 10.1016/S0893-133X(01)00231-7.CrossRefPubMed Verhoeff NP, Kapur S, Hussey D, Lee M, Christensen B, Psych C, Papatheodorou G, Zipursky RB: A simple method to measure baseline occupancy of neostriatal dopamine D2 receptors by dopamine in vivo in healthy subjects. Neuropsychopharmacology. 2001, 25 (2): 213-223. 10.1016/S0893-133X(01)00231-7.CrossRefPubMed
38.
go back to reference Voruganti L, Slomka P, Zabel P, Costa G, So A, Mattar A, Awad AG: Subjective effects of AMPT-induced dopamine depletion in schizophrenia: correlation between dysphoric responses and striatal D2 binding ratios on SPECT imaging. Neuropsychopharmacology. 2001, 25 (5): 642-650. 10.1016/S0893-133X(01)00263-9.CrossRefPubMed Voruganti L, Slomka P, Zabel P, Costa G, So A, Mattar A, Awad AG: Subjective effects of AMPT-induced dopamine depletion in schizophrenia: correlation between dysphoric responses and striatal D2 binding ratios on SPECT imaging. Neuropsychopharmacology. 2001, 25 (5): 642-650. 10.1016/S0893-133X(01)00263-9.CrossRefPubMed
39.
go back to reference Sesack SR, Carr DB: Selective prefrontal cortex inputs to dopamine cells: implications for schizophrenia. Physiol Behav. 2002, 77 (4-5): 513-517. 10.1016/S0031-9384(02)00931-9.CrossRefPubMed Sesack SR, Carr DB: Selective prefrontal cortex inputs to dopamine cells: implications for schizophrenia. Physiol Behav. 2002, 77 (4-5): 513-517. 10.1016/S0031-9384(02)00931-9.CrossRefPubMed
40.
go back to reference Koch K, Wagner G, Nenadic I, Schachtzabel C, Schultz C, Roebel M, Reichenbach JR, Sauer H, Schlosser RGM: Fronto-striatal hypoactivation during correct information retrieval in patients with schizophrenia: An fMRI study. Neuroscience. 2008, 153 (1): 54-62. 10.1016/j.neuroscience.2008.01.063.CrossRefPubMed Koch K, Wagner G, Nenadic I, Schachtzabel C, Schultz C, Roebel M, Reichenbach JR, Sauer H, Schlosser RGM: Fronto-striatal hypoactivation during correct information retrieval in patients with schizophrenia: An fMRI study. Neuroscience. 2008, 153 (1): 54-62. 10.1016/j.neuroscience.2008.01.063.CrossRefPubMed
41.
go back to reference Pantelis C, Barnes TR, Nelson HE, Tanner S, Weatherley L, Owen AM, Robbins T: Frontal-striatal cognitive deficits in patients with chronic schizophrenia. Brain. 1997, 120: 1823-1843. 10.1093/brain/120.10.1823.CrossRefPubMed Pantelis C, Barnes TR, Nelson HE, Tanner S, Weatherley L, Owen AM, Robbins T: Frontal-striatal cognitive deficits in patients with chronic schizophrenia. Brain. 1997, 120: 1823-1843. 10.1093/brain/120.10.1823.CrossRefPubMed
42.
go back to reference Robbins TW: The case of frontostriatal dysfunction in schizophrenia. Schizophr Bull. 1990, 16 (3): 391-402.CrossRefPubMed Robbins TW: The case of frontostriatal dysfunction in schizophrenia. Schizophr Bull. 1990, 16 (3): 391-402.CrossRefPubMed
43.
go back to reference Frankle WG, Gil R, Hackett E, Mawlawi O, Zea-Ponce Y, Zhu Z, Kochan LD, Cangiano C, Slifstein M, Gorman JM, et al: Occupancy of dopamine D2 receptors by the atypical antipsychotic drugs risperidone and olanzapine: theoretical implications. Psychopharmacology (Berl). 2004, 175: 473-480. Frankle WG, Gil R, Hackett E, Mawlawi O, Zea-Ponce Y, Zhu Z, Kochan LD, Cangiano C, Slifstein M, Gorman JM, et al: Occupancy of dopamine D2 receptors by the atypical antipsychotic drugs risperidone and olanzapine: theoretical implications. Psychopharmacology (Berl). 2004, 175: 473-480.
44.
go back to reference Seeman P, Tallerico T: Rapid release of antipsychotic drugs from dopamine D2 receptors: an explanation for low receptor occupancy and early clinical relapse upon withdrawal of clozapine or quetiapine. Am J Psychiatry. 1999, 156 (6): 876-884.CrossRefPubMed Seeman P, Tallerico T: Rapid release of antipsychotic drugs from dopamine D2 receptors: an explanation for low receptor occupancy and early clinical relapse upon withdrawal of clozapine or quetiapine. Am J Psychiatry. 1999, 156 (6): 876-884.CrossRefPubMed
45.
go back to reference Kapur S, Zipursky R, Jones C, Remington G, Houle S: Relationship Between Dopamine D2 Occupancy, Clinical Response, and Side Effects: A Double-Blind PET Study of First-Episode Schizophrenia. Am J Psychiatry. 2000, 157: 514-520. 10.1176/appi.ajp.157.4.514.CrossRefPubMed Kapur S, Zipursky R, Jones C, Remington G, Houle S: Relationship Between Dopamine D2 Occupancy, Clinical Response, and Side Effects: A Double-Blind PET Study of First-Episode Schizophrenia. Am J Psychiatry. 2000, 157: 514-520. 10.1176/appi.ajp.157.4.514.CrossRefPubMed
46.
go back to reference Kessler RM, Ansari MS, Riccardi P, Li R, Jayathilake K, Dawant B, Meltzer HY: Occupancy of Striatal and Extrastriatal Dopamine D2 Receptors by Clozapine and Quetiapine. Neuropsychopharmacology. 2006, 31 (9): 1991-2001. 10.1038/sj.npp.1301108.CrossRefPubMed Kessler RM, Ansari MS, Riccardi P, Li R, Jayathilake K, Dawant B, Meltzer HY: Occupancy of Striatal and Extrastriatal Dopamine D2 Receptors by Clozapine and Quetiapine. Neuropsychopharmacology. 2006, 31 (9): 1991-2001. 10.1038/sj.npp.1301108.CrossRefPubMed
47.
go back to reference Mizrahi R, Rusjan P, Agid O, Graff A, Mamo DC, Zipursky RB, Kapur S: Adverse Subjective Experience With Antipsychotics and Its Relationship to Striatal and Extrastriatal D2 Receptors: a PET Study in Schizophrenia. Am J Psychiatry. 2007, 164 (4): 630-637. 10.1176/appi.ajp.164.4.630.CrossRefPubMed Mizrahi R, Rusjan P, Agid O, Graff A, Mamo DC, Zipursky RB, Kapur S: Adverse Subjective Experience With Antipsychotics and Its Relationship to Striatal and Extrastriatal D2 Receptors: a PET Study in Schizophrenia. Am J Psychiatry. 2007, 164 (4): 630-637. 10.1176/appi.ajp.164.4.630.CrossRefPubMed
Metadata
Title
Model-based parametric study of frontostriatal abnormalities in schizophrenia patients
Author
Shoji Tanaka
Publication date
01-12-2010
Publisher
BioMed Central
Published in
BMC Psychiatry / Issue 1/2010
Electronic ISSN: 1471-244X
DOI
https://doi.org/10.1186/1471-244X-10-17

Other articles of this Issue 1/2010

BMC Psychiatry 1/2010 Go to the issue