Skip to main content
Top
Published in: BMC Ophthalmology 1/2010

Open Access 01-12-2010 | Research article

Expression of connexin genes in the human retina

Authors: Goran Söhl, Antonia Joussen, Norbert Kociok, Klaus Willecke

Published in: BMC Ophthalmology | Issue 1/2010

Login to get access

Abstract

Background

Gap junction channels allow direct metabolically and electrical coupling between adjacent cells in various mammalian tissues. Each channel is composed of 12 protein subunits, termed connexins (Cx). In the mouse retina, Cx43 could be localized mostly between astroglial cells whereas expression of Cx36, Cx45 and Cx57 genes has been detected in different neuronal subtypes. In the human retina, however, the expression pattern of connexin genes is largely unknown.

Methods

Northern blot hybridizations, RT-PCR as well as immunofluorescence analyses helped to explore at least partially the expression pattern of the following human connexin genes GJD2 (hCx36), GJC1 (hCx45), GJA9 (hCx59) and GJA10 (hCx62) in the human retina.

Results

Here we report that Northern blot hybridization signals of the orthologuous hCx36 and hCx45 were found in human retinal RNA. Immunofluorescence signals for both connexins could be located in both inner and outer plexiform layer (IPL, OPL). Expression of a third connexin gene denoted as GJA10 (Cx62) was also detected after Northern blot hybridization in the human retina. Interestingly, its gene structure is similar to that of Gja10 (mCx57) being expressed in mouse horizontal cells. RT-PCR analysis suggested that an additional exon of about 25 kb further downstream, coding for 12 amino acid residues, is spliced to the nearly complete reading frame on exon2 of GJA10 (Cx62). Cx59 mRNA, however, with high sequence identity to zebrafish Cx55.5 was only weakly detectable by RT-PCR in cDNA of human retina.

Conclusion

In contrast to the neuron-expressed connexin genes Gjd2 coding for mCx36, Gjc1 coding for mCx45 and Gja10 coding for mCx57 in the mouse, a subset of 4 connexin genes, including the unique GJA9 (Cx59) and GJA10 (Cx62), could be detected at least as transcript isoforms in the human retina. First immunofluorescence analyses revealed a staining pattern of hCx36 and hCx45 expression both in the IPL and OPL, partially reminiscent to that in the mouse, although additional post-mortem material is needed to further explore their sublamina-specific distribution. Appropriate antibodies against Cx59 and Cx62 protein will clarify expression of these proteins in future studies.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kumar NM, Gilula NB: The gap junction communication channel. Cell. 1996, 84: 381-388. 10.1016/S0092-8674(00)81282-9. ReviewCrossRefPubMed Kumar NM, Gilula NB: The gap junction communication channel. Cell. 1996, 84: 381-388. 10.1016/S0092-8674(00)81282-9. ReviewCrossRefPubMed
2.
go back to reference Goodenough DA, Goliger JA, Paul DL: Connexins, connexons, and intercellular communication. Annu Rev Biochem. 1996, 65: 475-502. 10.1146/annurev.bi.65.070196.002355. ReviewCrossRefPubMed Goodenough DA, Goliger JA, Paul DL: Connexins, connexons, and intercellular communication. Annu Rev Biochem. 1996, 65: 475-502. 10.1146/annurev.bi.65.070196.002355. ReviewCrossRefPubMed
3.
go back to reference Bennett MV, Zukin RS: Electrical coupling and neuronal synchronization in the Mammalian brain. Neuron. 2004, 41: 495-511. 10.1016/S0896-6273(04)00043-1. ReviewCrossRefPubMed Bennett MV, Zukin RS: Electrical coupling and neuronal synchronization in the Mammalian brain. Neuron. 2004, 41: 495-511. 10.1016/S0896-6273(04)00043-1. ReviewCrossRefPubMed
4.
go back to reference Hormuzdi SG, Filippov MA, Mitropoulou G, Monyer H, Bruzzone R: Electrical synapses: a dynamic signaling system that shapes the activity of neuronal networks. Biochim Biophys Acta. 2004, 1662: 113-137. 10.1016/j.bbamem.2003.10.023. ReviewCrossRefPubMed Hormuzdi SG, Filippov MA, Mitropoulou G, Monyer H, Bruzzone R: Electrical synapses: a dynamic signaling system that shapes the activity of neuronal networks. Biochim Biophys Acta. 2004, 1662: 113-137. 10.1016/j.bbamem.2003.10.023. ReviewCrossRefPubMed
5.
go back to reference Söhl G, Maxeiner S, Willecke K: Expression and functions of neuronal gap junctions. Nat Rev Neurosci. 2005, 6: 191-200. 10.1038/nrn1627. ReviewCrossRefPubMed Söhl G, Maxeiner S, Willecke K: Expression and functions of neuronal gap junctions. Nat Rev Neurosci. 2005, 6: 191-200. 10.1038/nrn1627. ReviewCrossRefPubMed
6.
go back to reference Cook JE, Becker D: Gap junctions in the vertebrate retina. Microsc Res Tech. 1995, 31: 408-419. 10.1002/jemt.1070310510. ReviewCrossRefPubMed Cook JE, Becker D: Gap junctions in the vertebrate retina. Microsc Res Tech. 1995, 31: 408-419. 10.1002/jemt.1070310510. ReviewCrossRefPubMed
7.
go back to reference DeVries SH, Qi X, Smith R, Makous W, Sterling P: Electrical coupling between mammalian cones. Curr Biol. 2002, 12: 1900-1907. 10.1016/S0960-9822(02)01261-7.CrossRefPubMed DeVries SH, Qi X, Smith R, Makous W, Sterling P: Electrical coupling between mammalian cones. Curr Biol. 2002, 12: 1900-1907. 10.1016/S0960-9822(02)01261-7.CrossRefPubMed
8.
go back to reference Vaney DI: The coupling pattern of axon-bearing horizontal cells in the mammalian retina. Proc Biol Sci. 1993, 52: 93-101. 10.1098/rspb.1993.0051.CrossRef Vaney DI: The coupling pattern of axon-bearing horizontal cells in the mammalian retina. Proc Biol Sci. 1993, 52: 93-101. 10.1098/rspb.1993.0051.CrossRef
9.
go back to reference Mills SL, Massey SC: Distribution and coverage of A- and B-type horizontal cells stained with Neurobiotin in the rabbit retina. Vis Neurosci. 1994, 11: 549-560. 10.1017/S0952523800002455.CrossRefPubMed Mills SL, Massey SC: Distribution and coverage of A- and B-type horizontal cells stained with Neurobiotin in the rabbit retina. Vis Neurosci. 1994, 11: 549-560. 10.1017/S0952523800002455.CrossRefPubMed
10.
go back to reference Weiler R, Schultz K, Janssen-Bienhold U: Ca(2+)-dependency of spinule plasticity at dendrites of retinal horizontal cells and its possible implication for the functional role of spinules. Vision Res. 1996, 36: 3891-3900. 10.1016/S0042-6989(96)00148-4.CrossRefPubMed Weiler R, Schultz K, Janssen-Bienhold U: Ca(2+)-dependency of spinule plasticity at dendrites of retinal horizontal cells and its possible implication for the functional role of spinules. Vision Res. 1996, 36: 3891-3900. 10.1016/S0042-6989(96)00148-4.CrossRefPubMed
11.
go back to reference Weiler R, He S, Vaney DI: Retinoic acid modulates gap junctional permeability between horizontal cells of the mammalian retina. Eur J Neurosci. 1999, 11: 3346-3350. 10.1046/j.1460-9568.1999.00799.x.CrossRefPubMed Weiler R, He S, Vaney DI: Retinoic acid modulates gap junctional permeability between horizontal cells of the mammalian retina. Eur J Neurosci. 1999, 11: 3346-3350. 10.1046/j.1460-9568.1999.00799.x.CrossRefPubMed
12.
go back to reference Mills SL: Unusual coupling patterns of a cone bipolar cell in the rabbit retina. Vis Neurosci. 1999, 16: 1029-1035. 10.1017/S0952523899166057.CrossRefPubMed Mills SL: Unusual coupling patterns of a cone bipolar cell in the rabbit retina. Vis Neurosci. 1999, 16: 1029-1035. 10.1017/S0952523899166057.CrossRefPubMed
13.
go back to reference Kolb H, Nelson R: Hyperpolarizing, small-field, amacrine cells in cone pathways of cat retina. J Comp Neurol. 1996, 371: 415-436. 10.1002/(SICI)1096-9861(19960729)371:3<415::AID-CNE5>3.0.CO;2-5.CrossRefPubMed Kolb H, Nelson R: Hyperpolarizing, small-field, amacrine cells in cone pathways of cat retina. J Comp Neurol. 1996, 371: 415-436. 10.1002/(SICI)1096-9861(19960729)371:3<415::AID-CNE5>3.0.CO;2-5.CrossRefPubMed
14.
go back to reference Mills SL, Massey SC: Differential properties of two gap junctional pathways made by AII amacrine cells. Nature. 1995, 377: 734-737. 10.1038/377734a0.CrossRefPubMed Mills SL, Massey SC: Differential properties of two gap junctional pathways made by AII amacrine cells. Nature. 1995, 377: 734-737. 10.1038/377734a0.CrossRefPubMed
15.
go back to reference Xin D, Bloomfield SA: Comparison of the responses of AII amacrine cells in the dark- and light-adapted rabbit retina. Vis Neurosci. 1999, 16: 653-665. 10.1017/S0952523899164058.CrossRefPubMed Xin D, Bloomfield SA: Comparison of the responses of AII amacrine cells in the dark- and light-adapted rabbit retina. Vis Neurosci. 1999, 16: 653-665. 10.1017/S0952523899164058.CrossRefPubMed
16.
go back to reference Trexler EB, Li W, Mills SL, Massey SC: Coupling from AII amacrine cells to ON cone bipolar cells is bidirectional. J Comp Neurol. 2001, 437: 408-22. 10.1002/cne.1292.CrossRefPubMed Trexler EB, Li W, Mills SL, Massey SC: Coupling from AII amacrine cells to ON cone bipolar cells is bidirectional. J Comp Neurol. 2001, 437: 408-22. 10.1002/cne.1292.CrossRefPubMed
17.
go back to reference Xin D, Bloomfield SA: Tracer coupling pattern of amacrine and ganglion cells in the rabbit retina. J Comp Neurol. 1997, 383: 512-528. 10.1002/(SICI)1096-9861(19970714)383:4<512::AID-CNE8>3.0.CO;2-5.CrossRefPubMed Xin D, Bloomfield SA: Tracer coupling pattern of amacrine and ganglion cells in the rabbit retina. J Comp Neurol. 1997, 383: 512-528. 10.1002/(SICI)1096-9861(19970714)383:4<512::AID-CNE8>3.0.CO;2-5.CrossRefPubMed
18.
go back to reference Hu EH, Bloomfield SA: Gap junctional coupling underlies the short-latency spike synchrony of retinal alpha ganglion cells. J Neurosci. 2003, 23: 6768-77.PubMed Hu EH, Bloomfield SA: Gap junctional coupling underlies the short-latency spike synchrony of retinal alpha ganglion cells. J Neurosci. 2003, 23: 6768-77.PubMed
19.
go back to reference Kenyon GT, Moore B, Jeffs J, Denning KS, Stephens GJ, Travis BJ, George JS, Theiler J, Marshak DW: A model of high-frequency oscillatory potentials in retinal ganglion cells. Vis Neurosci. 2003, 20: 465-480. 10.1017/S0952523803205010.CrossRefPubMedPubMedCentral Kenyon GT, Moore B, Jeffs J, Denning KS, Stephens GJ, Travis BJ, George JS, Theiler J, Marshak DW: A model of high-frequency oscillatory potentials in retinal ganglion cells. Vis Neurosci. 2003, 20: 465-480. 10.1017/S0952523803205010.CrossRefPubMedPubMedCentral
20.
go back to reference Söhl G, Willecke K: An update on connexin genes and their nomenclature in mouse and man. Cell Commun Adhes. 2003, 10: 173-180. ReviewCrossRefPubMed Söhl G, Willecke K: An update on connexin genes and their nomenclature in mouse and man. Cell Commun Adhes. 2003, 10: 173-180. ReviewCrossRefPubMed
21.
go back to reference Feigenspan A, Teubner B, Willecke K, Weiler R: Expression of neuronal connexin36 in AII amacrine cells of the mammalian retina. J Neurosci. 2001, 21: 230-239.PubMed Feigenspan A, Teubner B, Willecke K, Weiler R: Expression of neuronal connexin36 in AII amacrine cells of the mammalian retina. J Neurosci. 2001, 21: 230-239.PubMed
22.
go back to reference Feigenspan A, Janssen-Bienhold U, Hormuzdi S, Monyer H, Degen J, Söhl G, Willecke K, Ammermüller J, Weiler R: Expression of connexin36 in cone pedicles and OFF-cone bipolar cells of the mouse retina. J Neurosci. 2004, 24: 3325-3334. 10.1523/JNEUROSCI.5598-03.2004.CrossRefPubMed Feigenspan A, Janssen-Bienhold U, Hormuzdi S, Monyer H, Degen J, Söhl G, Willecke K, Ammermüller J, Weiler R: Expression of connexin36 in cone pedicles and OFF-cone bipolar cells of the mouse retina. J Neurosci. 2004, 24: 3325-3334. 10.1523/JNEUROSCI.5598-03.2004.CrossRefPubMed
23.
go back to reference Hidaka S, Akahori Y, Kurosawa Y: Dendrodendritic electrical synapses between mammalian retinal ganglion cells. J Neurosci. 2004, 24: 10553-10567. 10.1523/JNEUROSCI.3319-04.2004.CrossRefPubMed Hidaka S, Akahori Y, Kurosawa Y: Dendrodendritic electrical synapses between mammalian retinal ganglion cells. J Neurosci. 2004, 24: 10553-10567. 10.1523/JNEUROSCI.3319-04.2004.CrossRefPubMed
24.
go back to reference Schubert T, Degen J, Willecke K, Hormuzdi SG, Monyer H, Weiler R: Connexin36 mediates gap junctional coupling of alpha-ganglion cells in mouse retina. J Comp Neurol. 2005, 485: 191-201. 10.1002/cne.20510.CrossRefPubMed Schubert T, Degen J, Willecke K, Hormuzdi SG, Monyer H, Weiler R: Connexin36 mediates gap junctional coupling of alpha-ganglion cells in mouse retina. J Comp Neurol. 2005, 485: 191-201. 10.1002/cne.20510.CrossRefPubMed
25.
go back to reference Güldenagel M, Söhl G, Plum A, Traub O, Teubner B, Weiler R, Willecke K: Expression patterns of connexin genes in mouse retina. J Comp Neurol. 2000, 425: 193-201. 10.1002/1096-9861(20000918)425:2<193::AID-CNE3>3.0.CO;2-N.CrossRefPubMed Güldenagel M, Söhl G, Plum A, Traub O, Teubner B, Weiler R, Willecke K: Expression patterns of connexin genes in mouse retina. J Comp Neurol. 2000, 425: 193-201. 10.1002/1096-9861(20000918)425:2<193::AID-CNE3>3.0.CO;2-N.CrossRefPubMed
26.
go back to reference Maxeiner S, Dedek K, Janssen-Bienhold U, Ammermüller J, Brune H, Kirsch T, Pieper M, Degen J, Krüger O, Willecke K, Weiler R: Deletion of connexin45 in mouse retinal neurons disrupts the rod/cone signaling pathway between AII amacrine and ON cone bipolar cells and leads to impaired visual transmission. J Neurosci. 2005, 25: 566-576. 10.1523/JNEUROSCI.3232-04.2005.CrossRefPubMed Maxeiner S, Dedek K, Janssen-Bienhold U, Ammermüller J, Brune H, Kirsch T, Pieper M, Degen J, Krüger O, Willecke K, Weiler R: Deletion of connexin45 in mouse retinal neurons disrupts the rod/cone signaling pathway between AII amacrine and ON cone bipolar cells and leads to impaired visual transmission. J Neurosci. 2005, 25: 566-576. 10.1523/JNEUROSCI.3232-04.2005.CrossRefPubMed
27.
go back to reference Schubert T, Maxeiner S, Krüger O, Willecke K, Weiler R: Connexin45 mediates gap junctional coupling of bistratified ganglion cells in the mouse retina. J Comp Neurol. 2005, 490: 29-39. 10.1002/cne.20621.CrossRefPubMed Schubert T, Maxeiner S, Krüger O, Willecke K, Weiler R: Connexin45 mediates gap junctional coupling of bistratified ganglion cells in the mouse retina. J Comp Neurol. 2005, 490: 29-39. 10.1002/cne.20621.CrossRefPubMed
28.
go back to reference Güldenagel M, Ammermüller J, Feigenspan A, Teubner B, Degen J, Söhl G, Willecke K, Weiler R: Visual transmission deficits in mice with targeted disruption of the gap junction gene connexin36. J Neurosci. 2001, 21: 6036-6044.PubMed Güldenagel M, Ammermüller J, Feigenspan A, Teubner B, Degen J, Söhl G, Willecke K, Weiler R: Visual transmission deficits in mice with targeted disruption of the gap junction gene connexin36. J Neurosci. 2001, 21: 6036-6044.PubMed
29.
go back to reference Deans MR, Volgyi B, Goodenough DA, Bloomfield SA, Paul DL: Connexin36 is essential for transmission of rod-mediated visual signals in the mammalian retina. Neuron. 2002, 36: 703-712. 10.1016/S0896-6273(02)01046-2.CrossRefPubMedPubMedCentral Deans MR, Volgyi B, Goodenough DA, Bloomfield SA, Paul DL: Connexin36 is essential for transmission of rod-mediated visual signals in the mammalian retina. Neuron. 2002, 36: 703-712. 10.1016/S0896-6273(02)01046-2.CrossRefPubMedPubMedCentral
30.
go back to reference Hombach S, Janssen-Bienhold U, Söhl G, Schubert T, Büssow H, Ott T, Weiler R, Willecke K: Functional expression of connexin57 in horizontal cells of the mouse retina. Eur J Neurosci. 2004, 19: 2633-2640. 10.1111/j.0953-816X.2004.03360.x.CrossRefPubMed Hombach S, Janssen-Bienhold U, Söhl G, Schubert T, Büssow H, Ott T, Weiler R, Willecke K: Functional expression of connexin57 in horizontal cells of the mouse retina. Eur J Neurosci. 2004, 19: 2633-2640. 10.1111/j.0953-816X.2004.03360.x.CrossRefPubMed
31.
go back to reference Söhl G, Güldenagel M, Traub O, Willecke K: Connexin expression in the retina. Brain Res Brain Res Rev. 2000, 32: 138-145. 10.1016/S0165-0173(99)00074-0. ReviewCrossRefPubMed Söhl G, Güldenagel M, Traub O, Willecke K: Connexin expression in the retina. Brain Res Brain Res Rev. 2000, 32: 138-145. 10.1016/S0165-0173(99)00074-0. ReviewCrossRefPubMed
32.
go back to reference Hornstein EP, Verweij J, Schnapf JL: Electrical coupling between red and green cones in primate retina. Nat Neurosci. 2004, 7: 745-750. 10.1038/nn1274.CrossRefPubMed Hornstein EP, Verweij J, Schnapf JL: Electrical coupling between red and green cones in primate retina. Nat Neurosci. 2004, 7: 745-750. 10.1038/nn1274.CrossRefPubMed
33.
go back to reference Eiberger J, Degen J, Romualdi A, Deutsch U, Willecke K, Söhl G: Connexin genes in the mouse and human genome. Cell Commun Adhes. 2001, 8: 163-165. 10.3109/15419060109080717.CrossRefPubMed Eiberger J, Degen J, Romualdi A, Deutsch U, Willecke K, Söhl G: Connexin genes in the mouse and human genome. Cell Commun Adhes. 2001, 8: 163-165. 10.3109/15419060109080717.CrossRefPubMed
34.
go back to reference Zoidl G, Bruzzone R, Weickert S, Kremer M, Zoidl C, Mitropoulou G, Srinivas M, Spray DC, Dermietzel R: Molecular cloning and functional expression of zfCx52.6: a novel connexin with hemichannel-forming properties expressed in horizontal cells of the zebrafish retina. J Biol Chem. 2004, 279: 2913-2921. 10.1074/jbc.M304850200.CrossRefPubMed Zoidl G, Bruzzone R, Weickert S, Kremer M, Zoidl C, Mitropoulou G, Srinivas M, Spray DC, Dermietzel R: Molecular cloning and functional expression of zfCx52.6: a novel connexin with hemichannel-forming properties expressed in horizontal cells of the zebrafish retina. J Biol Chem. 2004, 279: 2913-2921. 10.1074/jbc.M304850200.CrossRefPubMed
35.
go back to reference Dermietzel R, Kremer M, Paputsoglu G, Stang A, Skerrett IM, Gomes D, Srinivas M, Janssen-Bienhold U, Weiler R, Nicholson BJ, Bruzzone R, Spray DC: Molecular and functional diversity of neural connexins in the retina. J Neurosci. 2000, 20: 8331-8343.PubMed Dermietzel R, Kremer M, Paputsoglu G, Stang A, Skerrett IM, Gomes D, Srinivas M, Janssen-Bienhold U, Weiler R, Nicholson BJ, Bruzzone R, Spray DC: Molecular and functional diversity of neural connexins in the retina. J Neurosci. 2000, 20: 8331-8343.PubMed
36.
go back to reference Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison R, Haussler H, Miller W: Human-Mouse Alignments with BLASTZ. Genome Research. 2003, 13: 103-107. 10.1101/gr.809403.CrossRefPubMedPubMedCentral Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison R, Haussler H, Miller W: Human-Mouse Alignments with BLASTZ. Genome Research. 2003, 13: 103-107. 10.1101/gr.809403.CrossRefPubMedPubMedCentral
37.
go back to reference Sambrook J, Russel DW: Molecular cloning: A laboratory manual. 2001, Cold Spring Harbour, NY: Cold Spring Harbour Laboratory Press, 3 Sambrook J, Russel DW: Molecular cloning: A laboratory manual. 2001, Cold Spring Harbour, NY: Cold Spring Harbour Laboratory Press, 3
38.
go back to reference Söhl G, Eiberger J, Jung YT, Kozak CA, Willecke K: The mouse gap junction gene connexin29 is highly expressed in sciatic nerve and regulated during brain development. Biol Chem. 2001, 382: 973-978. 10.1515/BC.2001.122.CrossRefPubMed Söhl G, Eiberger J, Jung YT, Kozak CA, Willecke K: The mouse gap junction gene connexin29 is highly expressed in sciatic nerve and regulated during brain development. Biol Chem. 2001, 382: 973-978. 10.1515/BC.2001.122.CrossRefPubMed
39.
go back to reference Hanauer A, Mandel JL: The glyceraldehyde 3 phosphate dehydrogenase gene family: structure of a human cDNA and of an X chromosome linked pseudogene; amazing complexity of the gene family in mouse. EMBO J. 1984, 3: 2627-2633.PubMedPubMedCentral Hanauer A, Mandel JL: The glyceraldehyde 3 phosphate dehydrogenase gene family: structure of a human cDNA and of an X chromosome linked pseudogene; amazing complexity of the gene family in mouse. EMBO J. 1984, 3: 2627-2633.PubMedPubMedCentral
40.
go back to reference Söhl G, Degen J, Teubner B, Willecke K: The murine gap junction gene connexin36 is highly expressed in mouse retina and regulated during brain development. FEBS Lett. 1998, 428: 27-31. 10.1016/S0014-5793(98)00479-7.CrossRefPubMed Söhl G, Degen J, Teubner B, Willecke K: The murine gap junction gene connexin36 is highly expressed in mouse retina and regulated during brain development. FEBS Lett. 1998, 428: 27-31. 10.1016/S0014-5793(98)00479-7.CrossRefPubMed
41.
go back to reference Manthey D, Bukauskas F, Lee CG, Kozak CA, Willecke K: Molecular cloning and functional expression of the mouse gap junction gene connexin-57 in human HeLa cells. J Biol Chem. 1999, 274: 14716-14723. 10.1074/jbc.274.21.14716.CrossRefPubMed Manthey D, Bukauskas F, Lee CG, Kozak CA, Willecke K: Molecular cloning and functional expression of the mouse gap junction gene connexin-57 in human HeLa cells. J Biol Chem. 1999, 274: 14716-14723. 10.1074/jbc.274.21.14716.CrossRefPubMed
42.
go back to reference DeVries SH, Baylor DA: Synaptic circuitry of the retina and olfactory bulb. Cell. 1993, 72: 139-49. 10.1016/S0092-8674(05)80033-9. ReviewCrossRefPubMed DeVries SH, Baylor DA: Synaptic circuitry of the retina and olfactory bulb. Cell. 1993, 72: 139-49. 10.1016/S0092-8674(05)80033-9. ReviewCrossRefPubMed
43.
go back to reference Masland RH, Raviola E: Confronting complexity: strategies for understanding the microcircuitry of the retina. Annu Rev Neurosci. 2000, 23: 249-284. 10.1146/annurev.neuro.23.1.249. ReviewCrossRefPubMed Masland RH, Raviola E: Confronting complexity: strategies for understanding the microcircuitry of the retina. Annu Rev Neurosci. 2000, 23: 249-284. 10.1146/annurev.neuro.23.1.249. ReviewCrossRefPubMed
44.
go back to reference Ghosh KK, Bujan S, Haverkamp S, Feigenspan A, Wässle H: Types of bipolar cells in the mouse retina. J Comp Neurol. 2004, 469: 70-82. 10.1002/cne.10985.CrossRefPubMed Ghosh KK, Bujan S, Haverkamp S, Feigenspan A, Wässle H: Types of bipolar cells in the mouse retina. J Comp Neurol. 2004, 469: 70-82. 10.1002/cne.10985.CrossRefPubMed
45.
go back to reference Söhl G, Odermatt B, Maxeiner S, Degen J, Willecke K: New insights into the expression and function of neural connexins with transgenic mouse mutants. Brain Res Brain Res Rev. 2004, 47: 245-259. 10.1016/j.brainresrev.2004.05.006. ReviewCrossRefPubMed Söhl G, Odermatt B, Maxeiner S, Degen J, Willecke K: New insights into the expression and function of neural connexins with transgenic mouse mutants. Brain Res Brain Res Rev. 2004, 47: 245-259. 10.1016/j.brainresrev.2004.05.006. ReviewCrossRefPubMed
46.
go back to reference Mills SL, O'Brien JJ, Li W, O'Brien J, Massey SC: Rod pathways in the mammalian retina use connexin 36. J Comp Neurol. 2001, 436: 336-350. 10.1002/cne.1071.CrossRefPubMedPubMedCentral Mills SL, O'Brien JJ, Li W, O'Brien J, Massey SC: Rod pathways in the mammalian retina use connexin 36. J Comp Neurol. 2001, 436: 336-350. 10.1002/cne.1071.CrossRefPubMedPubMedCentral
47.
go back to reference Kihara AH, Paschon V, Cardoso CM, Higa GS, Castro LM, Hamassaki DE, Britto LR: Connexin36, an essential element in the rod pathway, is highly expressed in the essentially rodless retina of Gallus gallus. J Comp Neurol. 2009, 512: 651-663. 10.1002/cne.21920.CrossRefPubMed Kihara AH, Paschon V, Cardoso CM, Higa GS, Castro LM, Hamassaki DE, Britto LR: Connexin36, an essential element in the rod pathway, is highly expressed in the essentially rodless retina of Gallus gallus. J Comp Neurol. 2009, 512: 651-663. 10.1002/cne.21920.CrossRefPubMed
48.
go back to reference Kihara AH, Paschon V, Akamine PS, Saito KC, Leonelli M, Jiang JX, Hamassaki DE, Britto LR: Differential expression of connexins during histogenesis of the chick retina. Dev Neurobiol. 2008, 68: 1287-1302. 10.1002/dneu.20652.CrossRefPubMed Kihara AH, Paschon V, Akamine PS, Saito KC, Leonelli M, Jiang JX, Hamassaki DE, Britto LR: Differential expression of connexins during histogenesis of the chick retina. Dev Neurobiol. 2008, 68: 1287-1302. 10.1002/dneu.20652.CrossRefPubMed
49.
go back to reference Zahs KR, Kofuji P, Meier C, Dermietzel R: Connexin immunoreactivity in glial cells of the rat retina. J Comp Neurol. 2003, 455: 531-546. 10.1002/cne.10524.CrossRefPubMed Zahs KR, Kofuji P, Meier C, Dermietzel R: Connexin immunoreactivity in glial cells of the rat retina. J Comp Neurol. 2003, 455: 531-546. 10.1002/cne.10524.CrossRefPubMed
50.
go back to reference Dvoriantchikova G, Ivanov D, Panchin Y, Shestopalov VI: Expression of pannexin family of proteins in the retina. FEBS Lett. 2006, 580: 2178-2182. 10.1016/j.febslet.2006.03.026.CrossRefPubMed Dvoriantchikova G, Ivanov D, Panchin Y, Shestopalov VI: Expression of pannexin family of proteins in the retina. FEBS Lett. 2006, 580: 2178-2182. 10.1016/j.febslet.2006.03.026.CrossRefPubMed
51.
go back to reference Söhl G, Nielsen PA, Eiberger J, Willecke K: Expression profiles of the novel human connexin genes hCx30.2, hCx40.1, and hCx62 differ from their putative mouse orthologues. Cell Commun Adhes. 2003, 10: 27-36. 10.1080/15419060302063.CrossRefPubMed Söhl G, Nielsen PA, Eiberger J, Willecke K: Expression profiles of the novel human connexin genes hCx30.2, hCx40.1, and hCx62 differ from their putative mouse orthologues. Cell Commun Adhes. 2003, 10: 27-36. 10.1080/15419060302063.CrossRefPubMed
52.
go back to reference Hua VB, Chang AB, Tchieu JH, Kumar NM, Nielsen PA, Saier MH: Sequence and phylogenetic analyses of 4 TMS junctional proteins of animals: connexins, innexins, claudins and occludins. J Membr Biol. 2003, 194: 59-76. 10.1007/s00232-003-2026-8.CrossRefPubMed Hua VB, Chang AB, Tchieu JH, Kumar NM, Nielsen PA, Saier MH: Sequence and phylogenetic analyses of 4 TMS junctional proteins of animals: connexins, innexins, claudins and occludins. J Membr Biol. 2003, 194: 59-76. 10.1007/s00232-003-2026-8.CrossRefPubMed
53.
go back to reference Huang H, Li H, He SG: Identification of connexin 50 and 57 mRNA in A-type horizontal cells of the rabbit retina. Cell Res. 2005, 15: 207-211. 10.1038/sj.cr.7290288.CrossRefPubMed Huang H, Li H, He SG: Identification of connexin 50 and 57 mRNA in A-type horizontal cells of the rabbit retina. Cell Res. 2005, 15: 207-211. 10.1038/sj.cr.7290288.CrossRefPubMed
54.
go back to reference Kamermans M, Fahrenfort I: Ephaptic interactions within a chemical synapse: hemichannel-mediated ephaptic inhibition in the retina. Curr Opin Neurobiol. 2004, 14: 531-541. 10.1016/j.conb.2004.08.016. ReviewCrossRefPubMed Kamermans M, Fahrenfort I: Ephaptic interactions within a chemical synapse: hemichannel-mediated ephaptic inhibition in the retina. Curr Opin Neurobiol. 2004, 14: 531-541. 10.1016/j.conb.2004.08.016. ReviewCrossRefPubMed
55.
go back to reference Itahana K, Tanaka T, Morikazu Y, Komatu S, Ishida N, Takeya T: Isolation and characterization of a novel connexin gene, Cx-60, in porcine ovarian follicles. Endocrinology. 1998, 139: 320-329. 10.1210/en.139.1.320.PubMed Itahana K, Tanaka T, Morikazu Y, Komatu S, Ishida N, Takeya T: Isolation and characterization of a novel connexin gene, Cx-60, in porcine ovarian follicles. Endocrinology. 1998, 139: 320-329. 10.1210/en.139.1.320.PubMed
56.
go back to reference Li X, Kamasawa N, Ciolofan C, Olson CO, Lu S, Davidson KG, Yasumura T, Shigemoto R, Rash JE, Nagy JI: Connexn45-containing neuronal gap junctions in rodent retina also contain36 in both apposing hemiplaques, forming behomotypic gap junctions, with scaffolding contributed by zonula occludens-1. J Neurosci. 2008, 28: 9769-9789. 10.1523/JNEUROSCI.2137-08.2008.CrossRefPubMedPubMedCentral Li X, Kamasawa N, Ciolofan C, Olson CO, Lu S, Davidson KG, Yasumura T, Shigemoto R, Rash JE, Nagy JI: Connexn45-containing neuronal gap junctions in rodent retina also contain36 in both apposing hemiplaques, forming behomotypic gap junctions, with scaffolding contributed by zonula occludens-1. J Neurosci. 2008, 28: 9769-9789. 10.1523/JNEUROSCI.2137-08.2008.CrossRefPubMedPubMedCentral
Metadata
Title
Expression of connexin genes in the human retina
Authors
Goran Söhl
Antonia Joussen
Norbert Kociok
Klaus Willecke
Publication date
01-12-2010
Publisher
BioMed Central
Published in
BMC Ophthalmology / Issue 1/2010
Electronic ISSN: 1471-2415
DOI
https://doi.org/10.1186/1471-2415-10-27

Other articles of this Issue 1/2010

BMC Ophthalmology 1/2010 Go to the issue