Skip to main content
Top
Published in: BMC Cancer 1/2009

Open Access 01-12-2009 | Research article

Arrested neural and advanced mesenchymal differentiation of glioblastoma cells-comparative study with neural progenitors

Authors: Piotr Rieske, Ewa Golanska, Magdalena Zakrzewska, Sylwester Piaskowski, Krystyna Hulas-Bigoszewska, Magdalena Wolańczyk, Malgorzata Szybka, Monika Witusik-Perkowska, Dariusz J Jaskolski, Krzysztof Zakrzewski, Wojciech Biernat, Barbara Krynska, Pawel P Liberski

Published in: BMC Cancer | Issue 1/2009

Login to get access

Abstract

Background

Although features of variable differentiation in glioblastoma cell cultures have been reported, a comparative analysis of differentiation properties of normal neural GFAP positive progenitors, and those shown by glioblastoma cells, has not been performed.

Methods

Following methods were used to compare glioblastoma cells and GFAP+NNP (NHA): exposure to neural differentiation medium, exposure to adipogenic and osteogenic medium, western blot analysis, immunocytochemistry, single cell assay, BrdU incorporation assay. To characterize glioblastoma cells EGFR amplification analysis, LOH/MSI analysis, and P53 nucleotide sequence analysis were performed.

Results

In vitro differentiation of cancer cells derived from eight glioblastomas was compared with GFAP-positive normal neural progenitors (GFAP+NNP). Prior to exposure to differentiation medium, both types of cells showed similar multilineage phenotype (CD44+/MAP2+/GFAP+/Vimentin+/Beta III-tubulin+/Fibronectin+) and were positive for SOX-2 and Nestin. In contrast to GFAP+NNP, an efficient differentiation arrest was observed in all cell lines isolated from glioblastomas. Nevertheless, a subpopulation of cells isolated from four glioblastomas differentiated after serum-starvation with varying efficiency into derivatives indistinguishable from the neural derivatives of GFAP+NNP. Moreover, the cells derived from a majority of glioblastomas (7 out of 8), as well as GFAP+NNP, showed features of mesenchymal differentiation when exposed to medium with serum.

Conclusion

Our results showed that stable co-expression of multilineage markers by glioblastoma cells resulted from differentiation arrest. According to our data up to 95% of glioblastoma cells can present in vitro multilineage phenotype. The mesenchymal differentiation of glioblastoma cells is advanced and similar to mesenchymal differentiation of normal neural progenitors GFAP+NNP.
Appendix
Available only for authorised users
Literature
1.
go back to reference Günther HS, Schmidt NO, Phillips HS, Kemming D, Kharbanda S, Soriano R, Modrusan Z, Meissner H, Westphal M, Lamszus K: Glioblastoma-derived stem cell-enriched cultures form distinct subgroups according to molecular and phenotypic criteria. Oncogene. 2008, 27: 2897-909. 10.1038/sj.onc.1210949.CrossRefPubMed Günther HS, Schmidt NO, Phillips HS, Kemming D, Kharbanda S, Soriano R, Modrusan Z, Meissner H, Westphal M, Lamszus K: Glioblastoma-derived stem cell-enriched cultures form distinct subgroups according to molecular and phenotypic criteria. Oncogene. 2008, 27: 2897-909. 10.1038/sj.onc.1210949.CrossRefPubMed
2.
go back to reference Ignatova TN, Kukekov VG, Laywell ED, Suslov ON, Vrionis FD, Steindler DA: Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia. 2002, 39: 193-206. 10.1002/glia.10094.CrossRefPubMed Ignatova TN, Kukekov VG, Laywell ED, Suslov ON, Vrionis FD, Steindler DA: Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia. 2002, 39: 193-206. 10.1002/glia.10094.CrossRefPubMed
3.
go back to reference Tso CL, Shintaku P, Chen J, Liu Q, Liu J, Chen Z, Yoshimoto K, Mischel PS, Cloughesy TF, Liau LM, Nelson SF: Primary glioblastomas express mesenchymal stem-like properties. Mol Cancer Res. 2006, 9: 607-19. 10.1158/1541-7786.MCR-06-0005.CrossRef Tso CL, Shintaku P, Chen J, Liu Q, Liu J, Chen Z, Yoshimoto K, Mischel PS, Cloughesy TF, Liau LM, Nelson SF: Primary glioblastomas express mesenchymal stem-like properties. Mol Cancer Res. 2006, 9: 607-19. 10.1158/1541-7786.MCR-06-0005.CrossRef
4.
go back to reference Ricci-Vitiani L, Pallini R, Larocca LM, Lombardi DG, Signore M, Pierconti F, Petrucci G, Montano N, Maira G, De Maria R: Mesenchymal differentiation of glioblastoma stem cells. Cell Death Differ. 2008, 15: 1491-8. 10.1038/cdd.2008.72.CrossRefPubMed Ricci-Vitiani L, Pallini R, Larocca LM, Lombardi DG, Signore M, Pierconti F, Petrucci G, Montano N, Maira G, De Maria R: Mesenchymal differentiation of glioblastoma stem cells. Cell Death Differ. 2008, 15: 1491-8. 10.1038/cdd.2008.72.CrossRefPubMed
5.
go back to reference Rieske P, Azizi SA, Augelli B, Gaughan J, Krynska B: A population of human brain parenchymal cells express markers of glial, neuronal and early neural cells and differentiate into cells of neuronal and glial lineages. Eur J Neurosci. 2007, 25 (1): 31-37. 10.1111/j.1460-9568.2006.05254.x.CrossRefPubMed Rieske P, Azizi SA, Augelli B, Gaughan J, Krynska B: A population of human brain parenchymal cells express markers of glial, neuronal and early neural cells and differentiate into cells of neuronal and glial lineages. Eur J Neurosci. 2007, 25 (1): 31-37. 10.1111/j.1460-9568.2006.05254.x.CrossRefPubMed
6.
go back to reference Witusik M, Gresner SM, Hulas-Bigoszewska K, Krynska B, Azizi SA, Liberski PP, Brown P, Rieske P: Neuronal and astrocytic cells, obtained after differentiation of human neural GFAP-positive progenitors, present heterogeneous expression of PrPc. Brain Res. 2007, 1186: 65-73. 10.1016/j.brainres.2007.10.039.CrossRefPubMed Witusik M, Gresner SM, Hulas-Bigoszewska K, Krynska B, Azizi SA, Liberski PP, Brown P, Rieske P: Neuronal and astrocytic cells, obtained after differentiation of human neural GFAP-positive progenitors, present heterogeneous expression of PrPc. Brain Res. 2007, 1186: 65-73. 10.1016/j.brainres.2007.10.039.CrossRefPubMed
7.
go back to reference Witusik M, Piaskowski S, Hulas-Bigoszewska K, Zakrzewska M, Gresner SM, Azizi AS, Krynska B, Liberski PP, Rieske P: Successful elimination of non-neural cells and unachievable elimination of glial cells by means of commonly used cell culture manipulations during differentiation of GFAP and SOX2-positive neural progenitors (NHA) to neuronal cells. BMC Biotechnol. 2008, 8: 56-10.1186/1472-6750-8-56.CrossRefPubMedPubMedCentral Witusik M, Piaskowski S, Hulas-Bigoszewska K, Zakrzewska M, Gresner SM, Azizi AS, Krynska B, Liberski PP, Rieske P: Successful elimination of non-neural cells and unachievable elimination of glial cells by means of commonly used cell culture manipulations during differentiation of GFAP and SOX2-positive neural progenitors (NHA) to neuronal cells. BMC Biotechnol. 2008, 8: 56-10.1186/1472-6750-8-56.CrossRefPubMedPubMedCentral
8.
go back to reference Rieske P, Augelli BJ, Stawski R, Gaughan J, Azizi SA, Krynska B: A Population of Human Brain Cells Expressing Phenotypic Markers of More Than One Lineage Can Be Induced In Vitro to Differentiate into Mesenchymal Cells. Exp Cell Res. 2009, 315: 462-73. 10.1016/j.yexcr.2008.11.004.CrossRefPubMed Rieske P, Augelli BJ, Stawski R, Gaughan J, Azizi SA, Krynska B: A Population of Human Brain Cells Expressing Phenotypic Markers of More Than One Lineage Can Be Induced In Vitro to Differentiate into Mesenchymal Cells. Exp Cell Res. 2009, 315: 462-73. 10.1016/j.yexcr.2008.11.004.CrossRefPubMed
9.
go back to reference Rieske P, Kordek R, Bartkowiak J, Debiec-Rychter M, Biernat W, Liberski PP: comparative study of epidermal growth factor receptor (EGFR) and MDM2 gene amplification and protein immunoreactivity in human glioblastomas. Pol J Pathol. 1998, 49: 145-9.PubMed Rieske P, Kordek R, Bartkowiak J, Debiec-Rychter M, Biernat W, Liberski PP: comparative study of epidermal growth factor receptor (EGFR) and MDM2 gene amplification and protein immunoreactivity in human glioblastomas. Pol J Pathol. 1998, 49: 145-9.PubMed
10.
go back to reference Szybka M, Bartkowiak J, Zakrzewski K, Polis L, Liberski P, Kordek R: Microsatellite instability and expression of DNA mismatch repair genes in malignant astrocytic tumors from adult and pediatric patients. Clin Neuropathol. 2003, 22: 180-6.PubMed Szybka M, Bartkowiak J, Zakrzewski K, Polis L, Liberski P, Kordek R: Microsatellite instability and expression of DNA mismatch repair genes in malignant astrocytic tumors from adult and pediatric patients. Clin Neuropathol. 2003, 22: 180-6.PubMed
11.
go back to reference Ohgaki H, Eibl RH, Schwab M, Reichel MB, Mariani L, Gehring M, Petersen I, Höll T, Wiestler OD, Kleihues P: Mutations of the p53 tumor suppressor gene in neoplasms of the human nervous system. Mol Carcinog. 1993, 8: 74-80. 10.1002/mc.2940080203.CrossRefPubMed Ohgaki H, Eibl RH, Schwab M, Reichel MB, Mariani L, Gehring M, Petersen I, Höll T, Wiestler OD, Kleihues P: Mutations of the p53 tumor suppressor gene in neoplasms of the human nervous system. Mol Carcinog. 1993, 8: 74-80. 10.1002/mc.2940080203.CrossRefPubMed
12.
go back to reference Biernat W, Tohma Y, Yonekawa Y, Kleihues P, Ohgaki H: Alterations of cell cycle regulatory genes in primary (de novo) and secondary glioblastomas. Acta Neuropathol. 1997, 94: 303-309. 10.1007/s004010050711.CrossRefPubMed Biernat W, Tohma Y, Yonekawa Y, Kleihues P, Ohgaki H: Alterations of cell cycle regulatory genes in primary (de novo) and secondary glioblastomas. Acta Neuropathol. 1997, 94: 303-309. 10.1007/s004010050711.CrossRefPubMed
13.
go back to reference von Deimling A, von Ammon K, Schoenfeld D, Wiestler OD, Seizinger BR, Louis DN: Subsets of glioblastoma multiforme defined by molecular genetic analysis. Brain Pathol. 1993, 3: 19-26. 10.1111/j.1750-3639.1993.tb00721.x.CrossRefPubMed von Deimling A, von Ammon K, Schoenfeld D, Wiestler OD, Seizinger BR, Louis DN: Subsets of glioblastoma multiforme defined by molecular genetic analysis. Brain Pathol. 1993, 3: 19-26. 10.1111/j.1750-3639.1993.tb00721.x.CrossRefPubMed
14.
go back to reference Zipori D: The nature of stem cells: state rather than entity. Nat Rev Genet. 2004, 5: 873-878. 10.1038/nrg1475.CrossRefPubMed Zipori D: The nature of stem cells: state rather than entity. Nat Rev Genet. 2004, 5: 873-878. 10.1038/nrg1475.CrossRefPubMed
15.
go back to reference Egusa H, Schweizer FE, Wang CC, Matsuka Y, Nishimura I: Neuronal differentiation of bone marrow-derived stromal stem cells involves suppression of discordant phenotypes through gene silencing. J Biol Chem. 2005, 280: 23691-23697. 10.1074/jbc.M413796200.CrossRefPubMed Egusa H, Schweizer FE, Wang CC, Matsuka Y, Nishimura I: Neuronal differentiation of bone marrow-derived stromal stem cells involves suppression of discordant phenotypes through gene silencing. J Biol Chem. 2005, 280: 23691-23697. 10.1074/jbc.M413796200.CrossRefPubMed
16.
go back to reference Beier D, Hau P, Proescholdt M, Lohmeier A, Wischhusen J, Oefner PJ, Aigner L, Brawanski A, Bogdahn U, Beier CP: CD133(+) and CD133(-) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res. 2007, 67: 4010-4015. 10.1158/0008-5472.CAN-06-4180.CrossRefPubMed Beier D, Hau P, Proescholdt M, Lohmeier A, Wischhusen J, Oefner PJ, Aigner L, Brawanski A, Bogdahn U, Beier CP: CD133(+) and CD133(-) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res. 2007, 67: 4010-4015. 10.1158/0008-5472.CAN-06-4180.CrossRefPubMed
17.
go back to reference Ellis P, Fagan BM, Magness ST, Hutton S, Taranova O, Hayashi S, McMahon A, Rao M, Pevny L: SOX2, a persistent marker for multipotential neural stem cells derived from embryonic stem cells, the embryo or the adult. Dev Neurosci. 2004, 26: 148-165. 10.1159/000082134.CrossRefPubMed Ellis P, Fagan BM, Magness ST, Hutton S, Taranova O, Hayashi S, McMahon A, Rao M, Pevny L: SOX2, a persistent marker for multipotential neural stem cells derived from embryonic stem cells, the embryo or the adult. Dev Neurosci. 2004, 26: 148-165. 10.1159/000082134.CrossRefPubMed
18.
19.
go back to reference Biernat W, Aguzzi A, Sure U, Grant JW, Kleihues P, Hegi ME: Identical mutations of the p53 tumor suppressor gene in the gliomatous and the sarcomatous components of gliosarcomas suggest a common origin from glial cells. J Neuropathol Exp Neurol. 1995, 54: 651-656. 10.1097/00005072-199509000-00006.CrossRefPubMed Biernat W, Aguzzi A, Sure U, Grant JW, Kleihues P, Hegi ME: Identical mutations of the p53 tumor suppressor gene in the gliomatous and the sarcomatous components of gliosarcomas suggest a common origin from glial cells. J Neuropathol Exp Neurol. 1995, 54: 651-656. 10.1097/00005072-199509000-00006.CrossRefPubMed
20.
go back to reference Boerman RH, Anderl K, Herath J, Borell T, Johnson N, Schaeffer-Klein J, Kirchhof A, Raap AK, Scheithauer BW, Jenkins RB: The glial and mesenchymal elements of gliosarcomas share similar genetic alterations. J Neuropathol Exp Neurol. 1996, 55: 973-81. 10.1097/00005072-199609000-00004.CrossRefPubMed Boerman RH, Anderl K, Herath J, Borell T, Johnson N, Schaeffer-Klein J, Kirchhof A, Raap AK, Scheithauer BW, Jenkins RB: The glial and mesenchymal elements of gliosarcomas share similar genetic alterations. J Neuropathol Exp Neurol. 1996, 55: 973-81. 10.1097/00005072-199609000-00004.CrossRefPubMed
21.
go back to reference McBratney-Owen B, Iseki S, Bamforth SD, Olsen BR, Morriss-Kay GM: Development and tissue origins of the mammalian cranial base. Dev Biol. 2008, 322: 121-32. 10.1016/j.ydbio.2008.07.016.CrossRefPubMedPubMedCentral McBratney-Owen B, Iseki S, Bamforth SD, Olsen BR, Morriss-Kay GM: Development and tissue origins of the mammalian cranial base. Dev Biol. 2008, 322: 121-32. 10.1016/j.ydbio.2008.07.016.CrossRefPubMedPubMedCentral
22.
go back to reference Sailer MH, Hazel TG, Panchision DM, Hoeppner DJ, Schwab ME, McKay RD: BMP2 and FGF2 cooperate to induce neural-crest-like fates from fetal and adult CNS stem cells. J Cell Sci. 2005, 118: 5849-60. 10.1242/jcs.02708.CrossRefPubMed Sailer MH, Hazel TG, Panchision DM, Hoeppner DJ, Schwab ME, McKay RD: BMP2 and FGF2 cooperate to induce neural-crest-like fates from fetal and adult CNS stem cells. J Cell Sci. 2005, 118: 5849-60. 10.1242/jcs.02708.CrossRefPubMed
23.
go back to reference Laywell ED, Kearns SM, Zheng T, Chen KA, Deng J, Chen HX, Roper SN, Steindler DA: Neuron-to-astrocyte transition: phenotypic fluidity and the formation of hybrid asterons in differentiating neurospheres. J Comp Neurol. 2005, 493: 321-33. 10.1002/cne.20722.CrossRefPubMedPubMedCentral Laywell ED, Kearns SM, Zheng T, Chen KA, Deng J, Chen HX, Roper SN, Steindler DA: Neuron-to-astrocyte transition: phenotypic fluidity and the formation of hybrid asterons in differentiating neurospheres. J Comp Neurol. 2005, 493: 321-33. 10.1002/cne.20722.CrossRefPubMedPubMedCentral
24.
go back to reference Hu M, Krause D, Greaves M, Sharkis S, Dexter M, Heyworth C, Enver T: Multilineage gene expression precedes commitment in the hemopoietic system. Genes Dev. 1997, 11: 774-85. 10.1101/gad.11.6.774.CrossRefPubMed Hu M, Krause D, Greaves M, Sharkis S, Dexter M, Heyworth C, Enver T: Multilineage gene expression precedes commitment in the hemopoietic system. Genes Dev. 1997, 11: 774-85. 10.1101/gad.11.6.774.CrossRefPubMed
Metadata
Title
Arrested neural and advanced mesenchymal differentiation of glioblastoma cells-comparative study with neural progenitors
Authors
Piotr Rieske
Ewa Golanska
Magdalena Zakrzewska
Sylwester Piaskowski
Krystyna Hulas-Bigoszewska
Magdalena Wolańczyk
Malgorzata Szybka
Monika Witusik-Perkowska
Dariusz J Jaskolski
Krzysztof Zakrzewski
Wojciech Biernat
Barbara Krynska
Pawel P Liberski
Publication date
01-12-2009
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2009
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-9-54

Other articles of this Issue 1/2009

BMC Cancer 1/2009 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine