Skip to main content
Top
Published in: BMC Cancer 1/2009

Open Access 01-12-2009 | Research article

ECRG4 is a candidate tumor suppressor gene frequently hypermethylated in colorectal carcinoma and glioma

Authors: Silke Götze, Valeska Feldhaus, Thilo Traska, Marietta Wolter, Guido Reifenberger, Andrea Tannapfel, Cornelius Kuhnen, Dirk Martin, Oliver Müller, Sonja Sievers

Published in: BMC Cancer | Issue 1/2009

Login to get access

Abstract

Background

Cancer cells display widespread changes in DNA methylation that may lead to genetic instability by global hypomethylation and aberrant silencing of tumor suppressor genes by focal hypermethylation. In turn, altered DNA methylation patterns have been used to identify putative tumor suppressor genes.

Methods

In a methylation screening approach, we identified ECRG4 as a differentially methylated gene. We analyzed different cancer cells for ECRG4 promoter methylation by COBRA and bisulfite sequencing. Gene expression analysis was carried out by semi-quantitative RT-PCR. The ECRG4 coding region was cloned and transfected into colorectal carcinoma cells. Cell growth was assessed by MTT and BrdU assays. ECRG4 localization was analyzed by fluorescence microscopy and Western blotting after transfection of an ECRG4-eGFP fusion gene.

Results

We found a high frequency of ECRG4 promoter methylation in various cancer cell lines. Remarkably, aberrant methylation of ECRG4 was also found in primary human tumor tissues, including samples from colorectal carcinoma and from malignant gliomas. ECRG4 hypermethylation associated strongly with transcriptional silencing and its expression could be re-activated in vitro by demethylating treatment with 5-aza-2'-deoxycytidine. Overexpression of ECRG4 in colorectal carcinoma cells led to a significant decrease in cell growth. In transfected cells, ECRG4 protein was detectable within the Golgi secretion machinery as well as in the culture medium.

Conclusions

ECRG4 is silenced via promoter hypermethylation in different types of human cancer cells. Its gene product may act as inhibitor of cell proliferation in colorectal carcinoma cells and may play a role as extracellular signaling molecule.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jones PA, Baylin SB: The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002, 3: 415-28. 10.1038/nrg962.CrossRefPubMed Jones PA, Baylin SB: The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002, 3: 415-28. 10.1038/nrg962.CrossRefPubMed
2.
go back to reference Rodriguez J, Frigola J, Vendrell E, et al: Chromosomal Instability Correlates with Genome-wide DNA Demethylation in Human Primary Colorectal Cancers. Cancer Res. 2006, 66: 8462-9468. 10.1158/0008-5472.CAN-06-0293.CrossRefPubMed Rodriguez J, Frigola J, Vendrell E, et al: Chromosomal Instability Correlates with Genome-wide DNA Demethylation in Human Primary Colorectal Cancers. Cancer Res. 2006, 66: 8462-9468. 10.1158/0008-5472.CAN-06-0293.CrossRefPubMed
3.
4.
go back to reference Grady WM, Willis J, Guilford PJ, et al: Methylation of the CDH1 promoter as the second genetic hit in hereditary diffuse gastric cancer. Nat Genet. 2000, 26: 16-7. 10.1038/79120.CrossRefPubMed Grady WM, Willis J, Guilford PJ, et al: Methylation of the CDH1 promoter as the second genetic hit in hereditary diffuse gastric cancer. Nat Genet. 2000, 26: 16-7. 10.1038/79120.CrossRefPubMed
5.
go back to reference Linhart HG, Lin H, Yamada Y, et al: Dnmt3b promotes tumorigenesis in vivo by gene-specific de novo methylation and transcriptional silencing. Genes Dev. 2007, 21: 3110-22. 10.1101/gad.1594007.CrossRefPubMedPubMedCentral Linhart HG, Lin H, Yamada Y, et al: Dnmt3b promotes tumorigenesis in vivo by gene-specific de novo methylation and transcriptional silencing. Genes Dev. 2007, 21: 3110-22. 10.1101/gad.1594007.CrossRefPubMedPubMedCentral
6.
go back to reference Kanai Y, Ushijima S, Kondo Y, Nakanishi Y, Hirohashi S: DNA methyltransferase expression and DNA methylation of CPG islands and peri-centromeric satellite regions in human colorectal and stomach cancers. Int J Cancer. 2001, 91: 205-12. 10.1002/1097-0215(200002)9999:9999<::AID-IJC1040>3.0.CO;2-2.CrossRefPubMed Kanai Y, Ushijima S, Kondo Y, Nakanishi Y, Hirohashi S: DNA methyltransferase expression and DNA methylation of CPG islands and peri-centromeric satellite regions in human colorectal and stomach cancers. Int J Cancer. 2001, 91: 205-12. 10.1002/1097-0215(200002)9999:9999<::AID-IJC1040>3.0.CO;2-2.CrossRefPubMed
7.
go back to reference Widschwendter M, Fiegl H, Egle D, et al: Epigenetic stem cell signature in cancer. Nat Genet. 2007, 39: 157-8. 10.1038/ng1941.CrossRefPubMed Widschwendter M, Fiegl H, Egle D, et al: Epigenetic stem cell signature in cancer. Nat Genet. 2007, 39: 157-8. 10.1038/ng1941.CrossRefPubMed
8.
go back to reference Ohm JE, McGarvey KM, Yu X, et al: A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet. 2007, 39: 237-42. 10.1038/ng1972.CrossRefPubMedPubMedCentral Ohm JE, McGarvey KM, Yu X, et al: A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet. 2007, 39: 237-42. 10.1038/ng1972.CrossRefPubMedPubMedCentral
9.
go back to reference Kanai Y, Hirohashi S: Alterations of DNA methylation associated with abnormalities of DNA methyltransferases in human cancers during transition from a precancerous to a malignant state. Carcinogenesis. 2007, 28: 2434-42. 10.1093/carcin/bgm206.CrossRefPubMed Kanai Y, Hirohashi S: Alterations of DNA methylation associated with abnormalities of DNA methyltransferases in human cancers during transition from a precancerous to a malignant state. Carcinogenesis. 2007, 28: 2434-42. 10.1093/carcin/bgm206.CrossRefPubMed
10.
go back to reference Esteller M, Corn PG, Baylin SB, Herman JG: A gene hypermethylation profile of human cancer. Cancer Res. 2001, 61: 3225-9.PubMed Esteller M, Corn PG, Baylin SB, Herman JG: A gene hypermethylation profile of human cancer. Cancer Res. 2001, 61: 3225-9.PubMed
11.
go back to reference Wales MM, Biel MA, el Deiry W, et al: p53 activates expression of HIC-1, a new candidate tumour suppressor gene on 17p13.3. Nat Med. 1995, 1: 570-7. 10.1038/nm0695-570.CrossRefPubMed Wales MM, Biel MA, el Deiry W, et al: p53 activates expression of HIC-1, a new candidate tumour suppressor gene on 17p13.3. Nat Med. 1995, 1: 570-7. 10.1038/nm0695-570.CrossRefPubMed
12.
go back to reference Chen WY, Zeng X, Carter MG, et al: Heterozygous disruption of Hic1 predisposes mice to a gender-dependent spectrum of malignant tumors. Nat Genet. 2003, 33: 197-202. 10.1038/ng1077.CrossRefPubMed Chen WY, Zeng X, Carter MG, et al: Heterozygous disruption of Hic1 predisposes mice to a gender-dependent spectrum of malignant tumors. Nat Genet. 2003, 33: 197-202. 10.1038/ng1077.CrossRefPubMed
13.
go back to reference Ushijima T: Detection and interpretation of altered methylation patterns in cancer cells. Nat Rev Cancer. 2005, 5: 223-31. 10.1038/nrc1571.CrossRefPubMed Ushijima T: Detection and interpretation of altered methylation patterns in cancer cells. Nat Rev Cancer. 2005, 5: 223-31. 10.1038/nrc1571.CrossRefPubMed
14.
go back to reference Toyota M, Ho C, Ahuja N, et al: Identification of differentially methylated sequences in colorectal cancer by methylated CpG island amplification. Cancer Res. 1999, 59: 2307-12.PubMed Toyota M, Ho C, Ahuja N, et al: Identification of differentially methylated sequences in colorectal cancer by methylated CpG island amplification. Cancer Res. 1999, 59: 2307-12.PubMed
15.
go back to reference Gius D, Cui H, Bradbury CM, et al: Distinct effects on gene expression of chemical and genetic manipulation of the cancer epigenome revealed by a multimodality approach. Cancer Cell. 2004, 6: 361-71. 10.1016/j.ccr.2004.08.029.CrossRefPubMed Gius D, Cui H, Bradbury CM, et al: Distinct effects on gene expression of chemical and genetic manipulation of the cancer epigenome revealed by a multimodality approach. Cancer Cell. 2004, 6: 361-71. 10.1016/j.ccr.2004.08.029.CrossRefPubMed
16.
go back to reference Wiencke JK, Zheng S, Morrison Z, Yeh RF: Differentially expressed genes are marked by histone 3 lysine 9 trimethylation in human cancer cells. Oncogene. 2008, 27: 2412-21. 10.1038/sj.onc.1210895.CrossRefPubMed Wiencke JK, Zheng S, Morrison Z, Yeh RF: Differentially expressed genes are marked by histone 3 lysine 9 trimethylation in human cancer cells. Oncogene. 2008, 27: 2412-21. 10.1038/sj.onc.1210895.CrossRefPubMed
17.
go back to reference Schmelz K, Sattler N, Wagner M, et al: Induction of gene expression by 5-Aza-2'-deoxycytidine in acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) but not epithelial cells by DNA-methylation-dependent and -independent mechanisms. Leukemia. 2005, 19: 103-11.PubMed Schmelz K, Sattler N, Wagner M, et al: Induction of gene expression by 5-Aza-2'-deoxycytidine in acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) but not epithelial cells by DNA-methylation-dependent and -independent mechanisms. Leukemia. 2005, 19: 103-11.PubMed
18.
go back to reference Vanaja DK, Ehrich M, Van den BD, et al: Hypermethylation of Genes for Diagnosis and Risk Stratification of Prostate Cancer. Cancer Invest. 2009, 27 (5): 549-60. 10.1080/07357900802620794.CrossRefPubMedPubMedCentral Vanaja DK, Ehrich M, Van den BD, et al: Hypermethylation of Genes for Diagnosis and Risk Stratification of Prostate Cancer. Cancer Invest. 2009, 27 (5): 549-60. 10.1080/07357900802620794.CrossRefPubMedPubMedCentral
19.
go back to reference Yue CM, Deng DJ, Bi MX, Guo LP, Lu SH: Expression of ECRG4, a novel esophageal cancer-related gene, downregulated by CpG island hypermethylation in human esophageal squamous cell carcinoma. World J Gastroenterol. 2003, 9: 1174-8.CrossRefPubMedPubMedCentral Yue CM, Deng DJ, Bi MX, Guo LP, Lu SH: Expression of ECRG4, a novel esophageal cancer-related gene, downregulated by CpG island hypermethylation in human esophageal squamous cell carcinoma. World J Gastroenterol. 2003, 9: 1174-8.CrossRefPubMedPubMedCentral
20.
go back to reference Li LW, Yu XY, Yang Y, et al: Expression of esophageal cancer related gene 4 (ECRG4), a novel tumor suppressor gene, in esophageal cancer and its inhibitory effect on the tumor growth in vitro and in vivo. Int J Cancer. 2009, 125: 1505-13. 10.1002/ijc.24513.CrossRefPubMed Li LW, Yu XY, Yang Y, et al: Expression of esophageal cancer related gene 4 (ECRG4), a novel tumor suppressor gene, in esophageal cancer and its inhibitory effect on the tumor growth in vitro and in vivo. Int J Cancer. 2009, 125: 1505-13. 10.1002/ijc.24513.CrossRefPubMed
21.
go back to reference Sobin LHWC: TNM classification of malignant tumors. 2002, New York: John Wiley & Sons Sobin LHWC: TNM classification of malignant tumors. 2002, New York: John Wiley & Sons
22.
go back to reference Louis DN, Ohgaki H, Wiestler OD, et al: The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007, 114: 97-109. 10.1007/s00401-007-0243-4.CrossRefPubMedPubMedCentral Louis DN, Ohgaki H, Wiestler OD, et al: The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007, 114: 97-109. 10.1007/s00401-007-0243-4.CrossRefPubMedPubMedCentral
23.
go back to reference Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol. 1990, 215: 403-10.CrossRefPubMed Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol. 1990, 215: 403-10.CrossRefPubMed
25.
go back to reference Li LC, Dahiya R: MethPrimer: designing primers for methylation PCRs. Bioinformatics. 2002, 18: 1427-31. 10.1093/bioinformatics/18.11.1427.CrossRefPubMed Li LC, Dahiya R: MethPrimer: designing primers for methylation PCRs. Bioinformatics. 2002, 18: 1427-31. 10.1093/bioinformatics/18.11.1427.CrossRefPubMed
26.
go back to reference van den BR, Lesnik Oberstein SA, Ferrari MD, Haan J, van Buchem MA: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy: MR imaging findings at different ages--3rd-6th decades. Radiology. 2003, 229: 683-90. 10.1148/radiol.2293021354.CrossRef van den BR, Lesnik Oberstein SA, Ferrari MD, Haan J, van Buchem MA: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy: MR imaging findings at different ages--3rd-6th decades. Radiology. 2003, 229: 683-90. 10.1148/radiol.2293021354.CrossRef
27.
go back to reference Bock C, Reither S, Mikeska T, et al: BiQ Analyzer: visualization and quality control for DNA methylation data from bisulfite sequencing. Bioinformatics. 2005, 21: 4067-8. 10.1093/bioinformatics/bti652.CrossRefPubMed Bock C, Reither S, Mikeska T, et al: BiQ Analyzer: visualization and quality control for DNA methylation data from bisulfite sequencing. Bioinformatics. 2005, 21: 4067-8. 10.1093/bioinformatics/bti652.CrossRefPubMed
28.
go back to reference Esteller M: Epigenetic gene silencing in cancer: the DNA hypermethylome. Hum Mol Genet. 2007, 16 (Spec No 1): R50-R59. 10.1093/hmg/ddm018.CrossRefPubMed Esteller M: Epigenetic gene silencing in cancer: the DNA hypermethylome. Hum Mol Genet. 2007, 16 (Spec No 1): R50-R59. 10.1093/hmg/ddm018.CrossRefPubMed
29.
30.
go back to reference Su T, Liu H, Lu S: [Cloning and identification of cDNA fragments related to human esophageal cancer]. Zhonghua Zhong Liu Za Zhi. 1998, 20: 254-7.PubMed Su T, Liu H, Lu S: [Cloning and identification of cDNA fragments related to human esophageal cancer]. Zhonghua Zhong Liu Za Zhi. 1998, 20: 254-7.PubMed
31.
go back to reference Mori Y, Ishiguro H, Kuwabara Y, et al: Expression of ECRG4 is an independent prognostic factor for poor survival in patients with esophageal squamous cell carcinoma. Oncol Rep. 2007, 18: 981-5.PubMed Mori Y, Ishiguro H, Kuwabara Y, et al: Expression of ECRG4 is an independent prognostic factor for poor survival in patients with esophageal squamous cell carcinoma. Oncol Rep. 2007, 18: 981-5.PubMed
32.
go back to reference Donninger H, Vos MD, Clark GJ: The RASSF1A tumor suppressor. J Cell Sci. 2007, 120: 3163-72. 10.1242/jcs.010389.CrossRefPubMed Donninger H, Vos MD, Clark GJ: The RASSF1A tumor suppressor. J Cell Sci. 2007, 120: 3163-72. 10.1242/jcs.010389.CrossRefPubMed
33.
go back to reference Esteller M: Dormant hypermethylated tumour suppressor genes: questions and answers. J Pathol. 2005, 205: 172-80. 10.1002/path.1707.CrossRefPubMed Esteller M: Dormant hypermethylated tumour suppressor genes: questions and answers. J Pathol. 2005, 205: 172-80. 10.1002/path.1707.CrossRefPubMed
34.
go back to reference Mund C, Brueckner B, Lyko F: Reactivation of epigenetically silenced genes by DNA methyltransferase inhibitors: basic concepts and clinical applications. Epigenetics. 2006, 1: 7-13. 10.4161/epi.1.1.2375.CrossRefPubMed Mund C, Brueckner B, Lyko F: Reactivation of epigenetically silenced genes by DNA methyltransferase inhibitors: basic concepts and clinical applications. Epigenetics. 2006, 1: 7-13. 10.4161/epi.1.1.2375.CrossRefPubMed
35.
go back to reference Mirabeau O, Perlas E, Severini C, et al: Identification of novel peptide hormones in the human proteome by hidden Markov model screening. Genome Res. 2007, 17: 320-7. 10.1101/gr.5755407.CrossRefPubMedPubMedCentral Mirabeau O, Perlas E, Severini C, et al: Identification of novel peptide hormones in the human proteome by hidden Markov model screening. Genome Res. 2007, 17: 320-7. 10.1101/gr.5755407.CrossRefPubMedPubMedCentral
36.
go back to reference Lieber M, Smith B, Szakal A, Nelson-Rees W, Todaro G: A continuous tumor-cell line from a human lung carcinoma with properties of type II alveolar epithelial cells. Int J Cancer. 1976, 17: 62-70. 10.1002/ijc.2910170110.CrossRefPubMed Lieber M, Smith B, Szakal A, Nelson-Rees W, Todaro G: A continuous tumor-cell line from a human lung carcinoma with properties of type II alveolar epithelial cells. Int J Cancer. 1976, 17: 62-70. 10.1002/ijc.2910170110.CrossRefPubMed
37.
go back to reference Brattain MG, Fine WD, Khaled FM, Thompson J, Brattain DE: Heterogeneity of malignant cells from a human colonic carcinoma. Cancer Res. 1981, 41: 1751-6.PubMed Brattain MG, Fine WD, Khaled FM, Thompson J, Brattain DE: Heterogeneity of malignant cells from a human colonic carcinoma. Cancer Res. 1981, 41: 1751-6.PubMed
38.
go back to reference Knowles BB, Howe CC, Aden DP: Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science. 1980, 209: 497-9. 10.1126/science.6248960.CrossRefPubMed Knowles BB, Howe CC, Aden DP: Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science. 1980, 209: 497-9. 10.1126/science.6248960.CrossRefPubMed
39.
go back to reference Fogh J, Wright WC, Loveless JD: Absence of HeLa cell contamination in 169 cell lines derived from human tumors. J Natl Cancer Inst. 1977, 58: 209-14.PubMed Fogh J, Wright WC, Loveless JD: Absence of HeLa cell contamination in 169 cell lines derived from human tumors. J Natl Cancer Inst. 1977, 58: 209-14.PubMed
40.
go back to reference Chen TR, Hay RJ, Macy ML: Intercellular karyotypic similarity in near-diploid cell lines of human tumor origins. Cancer Genet Cytogenet. 1983, 10: 351-62. 10.1016/0165-4608(83)90092-4.CrossRefPubMed Chen TR, Hay RJ, Macy ML: Intercellular karyotypic similarity in near-diploid cell lines of human tumor origins. Cancer Genet Cytogenet. 1983, 10: 351-62. 10.1016/0165-4608(83)90092-4.CrossRefPubMed
41.
go back to reference Soule HD, Vazguez J, Long A, Albert S, Brennan M: A human cell line from a pleural effusion derived from a breast carcinoma. J Natl Cancer Inst. 1973, 51: 1409-16.PubMed Soule HD, Vazguez J, Long A, Albert S, Brennan M: A human cell line from a pleural effusion derived from a breast carcinoma. J Natl Cancer Inst. 1973, 51: 1409-16.PubMed
42.
go back to reference Leibovitz A, Stinson JC, McCombs WB, et al: Classification of human colorectal adenocarcinoma cell lines. Cancer Res. 1976, 36: 4562-9.PubMed Leibovitz A, Stinson JC, McCombs WB, et al: Classification of human colorectal adenocarcinoma cell lines. Cancer Res. 1976, 36: 4562-9.PubMed
43.
go back to reference Ponten J, Macintyre EH: Long term culture of normal and neoplastic human glia. Acta Pathol Microbiol Scand. 1968, 74: 465-86. 10.1111/j.1699-0463.1968.tb03502.x.CrossRefPubMed Ponten J, Macintyre EH: Long term culture of normal and neoplastic human glia. Acta Pathol Microbiol Scand. 1968, 74: 465-86. 10.1111/j.1699-0463.1968.tb03502.x.CrossRefPubMed
44.
go back to reference Stein GH: T98G: an anchorage-independent human tumor cell line that exhibits stationary phase G1 arrest in vitro. J Cell Physiol. 1979, 99: 43-54. 10.1002/jcp.1040990107.CrossRefPubMed Stein GH: T98G: an anchorage-independent human tumor cell line that exhibits stationary phase G1 arrest in vitro. J Cell Physiol. 1979, 99: 43-54. 10.1002/jcp.1040990107.CrossRefPubMed
Metadata
Title
ECRG4 is a candidate tumor suppressor gene frequently hypermethylated in colorectal carcinoma and glioma
Authors
Silke Götze
Valeska Feldhaus
Thilo Traska
Marietta Wolter
Guido Reifenberger
Andrea Tannapfel
Cornelius Kuhnen
Dirk Martin
Oliver Müller
Sonja Sievers
Publication date
01-12-2009
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2009
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-9-447

Other articles of this Issue 1/2009

BMC Cancer 1/2009 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine